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ABSTRACT

With the increasing availability of diverse healthcare data sources, such as medical
images and electronic health records, there is a growing need to effectively integrate and
fuse this multimodal data for comprehensive analysis and decision-making. However,
despite its potential, multimodal data fusion in healthcare remains limited. This
review paper provides an overview of existing literature on multimodal data fusion in
healthcare, covering 69 relevant works published between 2018 and 2024. It focuses
on methodologies that integrate different data types to enhance medical analysis,
including techniques for integrating medical images with structured and unstructured
data, combining multiple image modalities, and other features. Additionally, the paper
reviews various approaches to multimodal data fusion, such as early, intermediate, and
late fusion methods, and examines the challenges and limitations associated with these
techniques. The potential benefits and applications of multimodal data fusion in various
diseases are highlighted, illustrating specific strategies employed in healthcare artificial
intelligence (AI) model development. This research synthesizes existing information
to facilitate progress in using multimodal data for improved medical diagnosis and
treatment planning.

Subjects Computational Science, Data Mining and Machine Learning, Data Science,
Healthcare Services

Keywords Multimodal data fusion, Healthcare, Medical images, EHR, Early fusion,
Intermediate fusion, Late fusion, Patient care, Decision making, Challenges

INTRODUCTION

Automation in healthcare processes through the application of artificial intelligence (AI)
has the capacity to bring transformative changes. However, in most Al applications, the
predominance reliance on unimodal data such as computed tomography (CT) scans,
magnetic resonance imaging (MRI), X-rays images etc. presents unique challenges in
modern healthcare applications. These models frequently fail to incorporate crucial

How to cite this article Teoh JR, Dong J, Zuo X, Lai KW, Hasikin K, Wu X. 2024. Advancing healthcare through multimodal data fu-
sion: a comprehensive review of techniques and applications. Peer] Comput. Sci. 10:e2298 http://doi.org/10.7717/peerj-cs.2298


https://peerj.com/computer-science
mailto:dongjian@cesi.cn
mailto:lai.khinwee@um.edu.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2298
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2298

PeerJ Computer Science

complementary data sources and various modalities, which limits their capacity to provide
comprehensive insights (El-Sappagh et al., 2020; Moshawrab et al., 2023).

Healthcare Al applications are predominantly dominated by single-task models that
rely on singular data types, lacking comprehensive clinical context. This contrasts with the
holistic methods favored by clinicians and signifies a missed opportunity. Neglecting to
utilize multimodal systems, which integrate multiple data modalities and interdependent
tasks, hinders treatment efficacy and diagnostic accuracy (Acosta et al., 2022; EI-Sappagh et
al., 2020). Despite their potential for more accurate and comprehensive outcomes, these
systems remain limited in implementation. Embracing multimodal data integration offers a
promising solution, paving the way for Al-driven healthcare capable of nuanced diagnoses,
precise prognostic evaluations, and tailored treatment plans.

The limitations are particularly significant in the fields of radiological image
interpretation and clinical decision support systems. Radiologists facing overwhelming
image interpretations encounter increased fatigue and higher error rates. Meanwhile,
despite proficiency in image analysis, automated systems often struggle to integrate critical
clinical context, akin to human physicians’ meticulous approach (Huang et al., 2020a). The
importance of integration becomes evident in medical imaging interpretations, where the
fusion of heterogeneous data sources including imaging findings, patient demographics,
clinical history, and risk factor information is essential.

Furthermore, integrating diverse data modalities in biomedical research has proven
beneficial in understanding complex diseases like cancer. For instance, fusing genomic data
with histopathological images provides crucial insights into cancer heterogeneity, aiding
tailored therapies and improving predictions (M Sabah et al., 2021; Stahlschmidt, Ulfenborg
& Synnergren, 2022). The convergence of various data types consistently demonstrates
improved diagnostic accuracy across multiple medical imaging tasks (Huang et al., 2020b;
Mammoottil et al., 2022; Sun et al., 2023). The motivation behind utilizing multimodal data
in healthcare is its demonstrated ability to substantially enhance diagnostic accuracy, enable
personalized treatments, optimize resource allocation, and improve overall healthcare
delivery. These advancements promise transformative shifts towards comprehensive
healthcare solutions catering to individual patient needs.

In this paper, the terminology ‘data fusion’ refers to the technique of integrating multiple
data modalities, while ‘multimodal data’ refers to the combined dataset resulting from
this integration. In this study, a fusion of medical healthcare data to form multimodal
data using different types of fusion techniques is conducted to collect and synthesize the
available literature to establish a foundation for future research. We aim to find all relevant
information regarding the fusion techniques of multimodal data and different types of data
combinations. In addition, most of the review papers focused on fusion techniques and
strategies and surveyed recent trends and advances. In this study, the contributions of this
paper are as follows:

1. Our focus extended to analyzing various data fusion techniques in healthcare AI model
development. By examining each fusion method, we provided comprehensive insights
into the healthcare data fusion landscape, offering valuable guidance for researchers
and practitioners.
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2. We focused on various multimodal data fusion techniques, including the integration
of medical images with structured data, unstructured data, multiple image modalities,
and other features. By exploring these techniques, we clarified the strategies applied in
healthcare AT model development.

3. We highlighted the applications of multimodal data in various diseases to gain a clear
view of the fusion techniques used for specific types of diseases.

In this paper, we have carefully identified and reviewed 69 related works published
between 2018 and 2024 that employed data fusion techniques in combining multiple
modalities of healthcare data. This paper also provides the links and websites of the public
datasets that are normally used by researchers in particular diseases. The paper is organized
in the following structure: the Methodology section provides the article selection of this
study; the Results section presents data fusion techniques of multimodal data, reviews the
papers with related works on data fusion techniques, and discusses different multimodal
data in various diseases; and the Discussion section offers a comprehensive discussion of
the proposed framework and future works.

METHODOLOGY

Article selection
In this review paper, we systematically selected relevant studies based on specific inclusion
and exclusion criteria to ensure comprehensive coverage and quality, as shown in Fig. 1.
The inclusion criteria encompassed papers published from 2018 onwards in the Web of
Science (WOS) database, illustrated in Fig. 2. The year 2018 was chosen because it marks
the widespread introduction of multimodal data fusion in the healthcare sector. We utilized
WOS as our primary resource for finding articles due to its advantages: it is recognized
as a reliable and comprehensive database, containing high-quality scholarly journals from
various fields, and it implements rigorous quality control measures, such as peer review
and citation analysis, to ensure the reliability and credibility of the included literature.

In addition, the following research questions were developed formulated in aiding the
process of developing this review:
What are the techniques used to fuse multimodal data?
Which data can be used to form multimodal data?
What are the applications of multimodal data fusion?
How does multimodal data benefit the healthcare sector?
What types of Al models mostly developed by the researchers using data fusion?

AN

What are the challenges and possible solutions towards AI model development using
multimodal data fusion?

Search string
To find relevant articles regarding multimodal data fusion, we used the following search
string:

(“Multimodal Fusion” OR “Multimodal Data Fusion”) AND (“Medical”’) AND
(“Disease”) AND (“Data Fusion”) AND (“Early Fusion”) AND (“Intermediate Fusion”
OR “Joint Fusion”) AND (“Late Fusion”)
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Figure 1 The PRISMA flowchart of article selection process.
Full-size Eal DOI: 10.7717/peerjcs.2298/fig-1

The keywords were chosen to specifically denote the integration of multiple data
modalities and ensure the search is confined to the medical field, the primary focus of our
study. These keywords help capture studies related to various diseases, making the results
pertinent to understanding how multimodal data fusion can aid in disease diagnosis,

prognosis, or treatment.

Study selection criteria
We identified relevant studies using specific selection criteria, considering only articles
directly related to the medical field or healthcare sector and employing multimodal data
fusion techniques. The title and abstract of each paper were assessed for relevance to our
objective of reviewing multimodal data fusion in healthcare. To maintain rigor, we excluded
case studies, news items, review papers, and non-English articles. Only articles with full-text
access were included to ensure thorough examination and analysis. By adhering to these
criteria, we aimed to select high-quality and pertinent studies for our review.

We used VOSviewer to gain insights into the academic landscape of our field. This
software visualizes and analyzes bibliometric data. We created co-authorship networks to
understand researcher collaboration and analyzed citation networks to identify influential

Teoh et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2298 4/31


https://peerj.com
https://doi.org/10.7717/peerjcs.2298/fig-1
http://dx.doi.org/10.7717/peerj-cs.2298

PeerJ Computer Science

Number of Papers Published

22
20
16
15 13
10
/ 6
5 3 5
. o |
2018 2019 2020 2021 2022 2023 2024

Year

Figure 2 The number of papers published from 2018 to 2024. The increasing research interest in multi-
modal healthcare data fusion starting from 2021.
Full-size &4l DOI: 10.7717/peerjcs.2298/fig-2

papers and authors. VOSviewer also helped visualize keyword co-occurrences, revealing
research trends and clusters.

Visual representation in Fig. 3 highlights the main words of the selected literature,
using the abstract, title, and keywords of papers from the Web of Science (WOS) database.
Analyzing with VOSviewer revealed 5 clusters (yellow, blue, green, red, and purple),
showing relationships between topics. The yellow cluster focuses on deep learning
techniques, including multimodal fusion, ensemble learning, multitask learning, and
applications like sentiment analysis and remote sensing. The green cluster emphasizes
multimodal learning and data fusion, encompassing machine learning techniques, neural
networks, and classification algorithms. The purple cluster centers on feature extraction,
visualization, and computational modeling, with an emphasis on attention mechanisms and
task analysis. The red cluster highlights artificial intelligence applications in cancer research,
including predictive models and deep learning approaches. The blue cluster underscores the
integration of multimodal data and ensemble learning techniques, focusing on prediction
and data fusion strategies. By analyzing the keywords within each cluster, we gain insights
into key themes, trends, and research directions, informing further investigation and
collaboration.

RESULTS

Overview of different fusion techniques for multimodal data for
medical applications

Data fusion integrates various data types to address inference problems by combining
different viewpoints on a phenomenon. This technique leverages features within different
data sources to refine estimates and predictions (Mohsen et al., 2022). Combining data
from multiple sources, often termed data fusion in biomedical literature, minimizes errors

Teoh et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2298 5/31


https://peerj.com
https://doi.org/10.7717/peerjcs.2298/fig-2
http://dx.doi.org/10.7717/peerj-cs.2298

PeerJ Computer Science

- .i;raph neugal network

data Integration featur@fusion

transformer
multimodaldata fusion -«
CamERT S 24 mr
multimodal m@ichlne learning ¥ § engemble loarning
\ multimodal inf@mation fusion alzhelimegs disease
multimodal@eep learning
magnetic resagance imaging e, ¢ A neural @etworks mulodal mild cognitin® impairment
5 W predigtion
convolutionaliieural netwdrks S 7
> R remote sensing
dataggodels 7= ;
? 77 -artificial ifigelligence multhtaslylearning
I Za o e = <
] e S multimodal fusion
predicti@@models. 2Ty i X
/ feature extraction Z T miltiredality
/43 4 ature@election
4 X deep learning
&
" task analysis N - \ datqfusion
multimodalilearning neural lpetwork
/| greptionmashanism ~ 7~ sentiment analysis
/ } f multimiggdal data
ysualfgation = machingléarning

computational modeling

emotion gecognition classification
' i : =
B sensofffusion

multimodal figature fusion

date mining
affective @@mputing

mulumodal sensing convolutional meural network

Figure 3 Visual representation of the scientific landscape of the selected studies using VOSviewer’s
mapping function.
Full-size & DOI: 10.7717/peerjcs.2298/fig-3

compared to single-source approaches (Stahlschmidt, Ulfenborg & Synnergren, 2022). The
primary goal is to extract and integrate complementary contextual information from
diverse sources to facilitate decision-making. This approach allows AI models to use
information from various sources, particularly beneficial with noisy or incomplete data,
enhancing robustness and accuracy (Lipkova et al., 2022). There are three main types of
data fusion techniques: early, intermediate or joint, and late fusion, as illustrated in Fig. 4.
Early fusion, also known as feature-level or low-level fusion, consolidates multiple input
modalities into a unified feature vector before training a single machine learning model.
This process uses methods like concatenation, pooling, or gated units to merge input
modalities. There are two primary types: type I combines original features, while type II
integrates extracted features from methods such as manual techniques, imaging software,
or other neural networks (Huang et al., 2020a; Moshawrab et al., 2023). Early fusion merges
modalities based on predictor information or independent variables, serving either as a
preprocessing step or an unsupervised task to create features that capture underlying
patterns (Gaw, Yousefi & Gahrooei, 2022; Stahlschmidt, Ulfenborg & Synnergren, 2022).
While early fusion strategies are effective at learning relationships across modalities from
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Figure 4 Illustrations of architectures of different fusion techniques.
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low-level features, they may not capture higher-level relationships that require explicit
learning of marginal representations. These strategies can also be sensitive to variations in
sampling rates among modalities (Stahlschmidt, Ulfenborg ¢ Synnergren, 2022).

Intermediate fusion, also known as joint or middle fusion, integrates learned feature
representations from intermediate layers of neural networks with features from different
modalities. Unlike early fusion, intermediate fusion allows the loss during training
to influence feature extraction models, refining representations iteratively (Huang
et al., 2020a). This approach focuses on learned feature representations rather than
original multimodal data, enabling neural networks to learn these representations,
whether homogeneously or heterogeneously designed. This can potentially discover
more informative latent factors (Stahlschmidt, Ulfenborg & Synnergren, 2022). It is
often demonstrated through branched neural network models that merge learned
feature representations from intermediate layers with other source features, enhancing
the model’s understanding of combined representations (El-Ateif ¢ Idri, 20225 Shetty,
Ananthanarayana ¢ Mahale, 2023).

Late fusion, or decision-level fusion, consolidates predictions from multiple models into
a final decision. This process involves training separate models for different modalities and
then employing an aggregation function to merge these models’ predictions (Huang et al.,
2020a). It utilizes different rules, like Max-fusion, Averaged-fusion, or Bayesian rules, to fuse
decisions from distinct classifiers (Moshawrab et al., 2023). Late fusion integrates feature
vectors from individual modalities via separate discriminative models, combining resulting
probability values into final feature vectors for each patient. This process incorporates a
meta-learner to weigh the significance of each prediction source rather than individual
features, thereby enhancing the final label’s accuracy (EI-Sappagh et al., 2020).
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Figure 5 Sunburst chart that represents the types of fusion techniques used in different diseases. Early
fusion (inner ring), intermediate or joint fusion (middle ring), and late fusion (outer ring).
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Different fusion techniques in healthcare Al model development

The application of early, intermediate, and late fusion in medical condition in various
diseases such as Alzheimer’s disease (AD), anemia, various cancer type and many more as
shown in Fig. 5. Research on data fusion techniques in the medical field and for various
diseases has progressed significantly from 2018 to the present. The highlights and gaps are
summarized in Table 1. It is evident from Table 1 that Alzheimer’s disease and various
types of cancer have the highest number of published papers. Most studies emphasize the
advantages of using multimodal data to develop advanced models for disease detection and
prediction. However, some limitations, such as missing data and small sample sizes, are
also noted. These limitations and proposed future work are discussed in the Future Trends
section.
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Table 1 Summary table for different types of fusion techniques based on different types of diseases.

Disease

Concluding remarks

Gap

Alzheimer

Anemia

Vascular
condition

Reference (Author) Early
Bhagwat et al. (2018) /
Dimitriadis et al. (2018) /
Li & Fan (2019) /
Dai et al. (2021) /
Chen et al. (2023) /
Lietal. (2023a) /
Odusami et al. (2023) /

Spasov et al. (2018)

Lin et al. (2020)

Abdelaziz, Wang &
Elazab (2021)

Golovanevsky, Eickhoff &
Singh (2022)

Rahim et al. (2023b)
Rahim et al. (2023a)
Kadriet al. (2023)
Lu et al. (2024)

Feng et al. (2019)

Tang et al. (2023)

Purwar et al. (2020) /

Liu et al. (2018) /

Akazawa & Hashimoto
(2023)

Most of the technical papers focused on developing prediction and classification models using multimodal data for
Alzheimer’s disease. One technical paper focused on developing a detection model. This model aimed to detect the presence
of Alzheimer’s disease and mild cognitive impairment. In summary, the technical papers examined in this review collectively
highlight the advancements in machine learning and deep learning approaches for Alzheimer’s disease research using data
fusion. Some studies achieved significant improvement with approximately 90% accuracy, precision, AUC, recall, and
Fl-score after employed multimodal data. The consistent use of the ADNI dataset across multiple studies underscores its
significance as a valuable resource for Alzheimer’s disease research. There are few studies implemented other datasets for
increased and validation of model such as AIBL, PPMI and colorectal cancer dataset.

The study proposed a method that combines blood smear image features extracted by a deep CNN and clinical features and
achieved accuracy, sensitivity, and specificity of 99%, 1.00, and 0.98, respectively.

The study employed a deep learning approach with multimodal data fusion to develop prediction model. The proposed
methods make well prediction. One of the studies achieved overall prediction accuracy of 94.8% and another study predicted
severe hemorrhages better than human experts and machine learning models that utilized single data modality.

Challenges include feature se-
lection consistency and missing
timepoints.

Limited cohort size for trajectory
modeling.

Inability to consistently predict
with 100% accuracy due to out-
liers.

Missing data.

Difficulty in finding ground
truth labels for genetic data.

Limited availability of MRI and
PET imaging data.

Limited sample size.

No comparison with existing
diagnostic approaches.

MRI image segmentation is not
efficient.

Small sample size.

(continued on next page)
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Table 1 (continued)

Disease Reference (Author) Early Joint Late Concluding remarks Gap

Kumar et al. (2022a) / Most of the studies employed deep learning in multimodal data fusion. Remarkably, most of these studies achieved excep- -

Covid 19 Kumar et al. (2022b) / tional accuracy rates of 90% or higher following the integration of multimodal data. This outcome highlights the potential
of multimodal data fusion techniques to enhance predictive accuracy and diagnostic capabilities in Covid-19 research. The

Zhou et al. (2022) / studies that employed early fusion utilized public datasets in their research and others utilized private datasets. Lacks real-world application val-
idation.

Dipaola et al. (2023) / Algorithm efficiency and manual
revision requirements for opti-
mization were limitations.

Xu et al. (2021) / Lack of exploration on the ef-
fectiveness of clinical data for
diagnosis.

Zheng et al. (2021) / Integration challenges between
high-dimensional CT imaging
and low-dimensional features.

Zhang et al. (2022) / Missing data/ data inadequacy

Kharazmi et al. (2018) / Limited demographic and
tumor-related features used in
the model.

These studies focused on various cancer types including breast, skin, lung, and prostate, and it is evident that deep-learning
Cancer Nie et al. (2019) / methodologies have been extensively utilized for prediction, classification, and detection tasks. These studies focused on var- Small datasets
ious cancer types including breast, skin, lung, and prostate, and deep-learning methodologies have been extensively used for

Silva & Rohr (2020) / prediction, classification, and detection tasks. Many studies reported accuracy, sensitivity, specificity, and AUC values of 0.80 Limited clinical information and

and above when employing data fusion techniques. This showed the effectiveness of multimodal data fusion in enhancing small number of patients in pre-
predictive and diagnostic capabilities. vious studies.

Mokni et al. (2021) / Sample size imbalance.

Yan et al. (2021) / Potential biases from missing
data.

Joo et al. (2021) /

Tan et al. (2022) /

Oh et al. (2023) /

‘ala et al. (2019) / Limited sample size.

Wang et al. (2021) / Do not have independent
datasets for validation.

Schulz et al. (2021) / Lack of generalization ability of
external datasets for model vali-
dation.

Qiu et al. (2022) /

Yao et al. (2022) /

Wei et al. (2023) /

(continued on next page)
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Table 1 (continued)

Disease Reference (Author) Early Joint Late Concluding remarks Gap

Reda et al. (2018) / Lack of validation datasets.

Fu et al. (2021) / Small sample size.

Yang et al. (2022) /

Caruso et al. (2022) /

Holste et al. (2023) /

ICU mor- Lin et al. (2021) / The study proposed deep learning with multimodal data for ICU mortality prediction and the results demonstrated notable Missing value in datasets.
tality pre- improvements in C-index, with values of 0.7847.
diction
Hsu et al. (2021) / Limited by the availability of
The studies focused on multimodal data fusion for diabetes prediction and classification using deep learning techniques. FHR data.
Diabetes By integrating multiple data modalities, including EHR and imaging data, they achieved notable improvements in accuracy
Hu et al. (2023) / . .
compared to single-modality approaches.
El-Ateif & Idri (2022) / -
Diffuse Yuan et al. (2023) / This study constructed multimodal deep learning by integrating multiple image modalities and EHR. It achieved 91.22% and -
large B-cell 0.925 of accuracy and AUC after optimization of model.
lymphoma
(DLBCL)
Optical dis- Chaganti et al. (2019) / Both studies employed CNN for prediction and detection task using early fusion. The merged CNN for the first study The study lacks direct segmen-
ease achieved AUC of 0.74 while another study achieved AUC of 0.9796. However, both studies showed improvement after im- tation for optic nerve volume
plementing multimodal data. estimation.

Jin et al. (2022) /

Zhang et al. (2023) / Data insufficiency or model sim-
plicity.

Neurological Yoo et al. (2019) / These studle.s worked on multimodal deep learning by integrating MRI and clinical data. The results showed significant im- Limited training samples,
disorder provements in AUC and accuracy.

Huang et al. (2022) / -

Bone and Lietal (2023b) / The authors reported that multimodal deep learning models outperformed the traditional approach with improved accu- -
muscle Jujjavarapu et al. (2023) / racy, sensitivity, and AUC. Deep learning is computationally
expensive and less interpretable.

Schilcher et al. (2024) /

Systemic Zhao et al. (2022) / The author developed a multimodal deep learning method to predict systemic diseases using oral condition. The best accu- Limited generalizability.
disease racy and AUC achieved by the model are 0.92 and 0.88 respectively.
The studies highlighted that the use of multimodal deep learning architectures demonstrates superior performance com-
Cardi 1 Yao et al. (2023) / pared to unimodal approaches, showcasing the importance of integrating multiple healthcare data such as chest X-ray im- Small dataset.
ardiovaseuiar ages, fundus images, ECG data and EHR. The significant improvements shown in the high accuracy and AUC of models
disease Lee et al. (2023) / were achieved.

Hsieh et al. (2023) /

Puyol-Anton et al. (2022) / Lack of testing with the same
pipeline for predicting response
to other types of treatment.

Jacenkéw, O’Neil & Tsaf- /

taris (2022)

(continued on next page)
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Table 1 (continued)

Disease Reference (Author) Early Joint Late Concluding remarks Gap
Kidney dis- Chen et al. (2023) / The author reported that fusion technique improved sensitivity (0.822) in detecting hyperplastic parathyroid glands for Lack of spatial information.
ease chronic kidney disease.
False-positive results.
Survival Chen et al. (2021) / The proposed method consistently outperformed state-of-the-art methods in survival outcome prediction in computational Using previously curated gene
prediction pathology, achieving superior performance with a 3.0% to 6.87% in overall C-Index. set with potentially overlapping
biological functional impact.
Cai et al. (2023) / Both studies proposed multimodal deep learning classification model that outperformed a baseline method. They combined -
Skin disease § multiple imaging modalities such as dermatoscopic images and macroscopic images with patient metadata for skin lesion X R
Yap, Yolland & Tschandl / No comparison with human

(2018)

classification.

physicians limits clinical rele-
vance insights.
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Early fusion

A total of 69 studies were identified in this research endeavor. The predominant utilization
of early fusion (28/69) and intermediate fusion (23/69) methodologies was observed in
integrating multimodal healthcare data, with a comparatively lesser emphasis on late fusion
(18/69). Among these twenty-eight early fusion studies, seven focused on diagnosing and
predicting Alzheimer’s disease, while six were dedicated to cancer classification, with the
remaining studies addressing other diseases.

For instance, among seven studies in AD, there are two significant studies which
employed longitudinal data for disease predictions. Bhagwat et al. (2018) focused on the
prediction of clinical symptoms trajectories of AD by training a Longitudinal Siamese
Neural Network (LSN) on longitudinal multimodal data. The author successfully applied
cross-validation using three different ADNI cohorts and achieved generalizability on
validation dataset of AIBL dataset. The LSN achieved 0.900 accuracy and 0.968 AUC on
ADNI datasets and achieved 0.724 accuracy and 0.883 AUC on the replication AIBL dataset.
The study showed potential improvement in prognostic predictions and patient care in
AD.

Various cancer types, such as breast cancer, lung cancer, skin cancer, and brain
tumors, have employed multimodal data for Al development. For example, Yan et al.
(2021) proposed deep learning architectures such as CNN and VGG-16 for breast cancer
classification based on multimodal data. The author employed denoising autoencoder to
increase low-dimensional structured EHRs data to high-dimensional so that it can be fed
into the CNN with pathological images. The proposed method improved breast cancer
classification accuracy up to 92.9%.

Intermediate fusion

There are 23 studies related to multimodal fusion utilizing healthcare data. Among these, a
predominant focus has been on Alzheimer’s disease, exploring prediction models utilizing
deep learning architectures. Lin et al. (2020) employed Extreme Learning Machine (ELM)
with multiple modalities fusion to predict AD conversion within 3 years. In feature selection
process, the author utilized the least absolute shrinkage and selection operator (LASSO)
algorithm which had been said to be beneficial in selecting MRI features. Thus, the proposed
model achieved 87.1% accuracy and AUC of 94.7 in predicting AD conversion.

In another study, Akazawa ¢ Hashimoto (2023) employed pretrained VGG-16 for MRI
image, alongside CNN for extracting features from both laboratory and demographic data.
These features were then concatenated using a neural network to develop a prediction
model for severe hemorrhage, surpassing the performance of human experts and single
data type models.

Additionally, Yoo et al. (2019) implemented multimodal deep learning method in
predicting multiple sclerosis conversion. The author combined user-defined MRI and
clinical measurement in their proposed model and employed a technique called Euclidean
distance transform to increase information density in multiple sclerosis lesion masks.
The CNN-based prediction model achieved 75.0% accuracy in predicting disease activity
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within two years and outperformed random forest model that only used user-defined
measurements.

Late fusion

In this section, a total of 18 studies have leveraged late fusion techniques in multimodal
data fusion to develop detection and prediction models for various diseases. Notably, Feng
et al. (2019) employed late fusion by incorporating primary features extracted from MRI
and PET images into 3D-CNN deep learning architectures. Besides, the author applied
FSBi-LSTM on hidden spatial information to enhance performance of model, resulting in
enhanced diagnostic accuracy of 94.82%.

For prostate cancer diagnosis, Reda et al. (2018) employed late fusion techniques
by concatenating outputs from diverse classifiers, integrating clinical biomarkers and
extracted features from diffusion-weighted magnetic resonance imaging (DW-MRI). The
early diagnosis system achieved 94.4% diagnosis accuracy with 88.9% sensitivity and 100%
specificity on 18 DW-MRI datasets, indicating promising results for the computer-aided
diagnostic system.

In the cardiovascular field, Puyol-Anton et al. (2022) developed a multimodal deep
learning framework (MMDL) by using 2D Deep Canonical Correlation Analysis
(DCCA) algorithm for Cardiac resynchronization therapy (CRT) response prediction.
By combining multimodal data, they achieved a CRT response prediction accuracy of
77.38%, demonstrating that the MMDL classifier improves accuracy compared to baseline
approaches. Overall, late fusion techniques have shown efficacy in enhancing disease
detection and prediction models across diverse medical domains.

Type of multimodal data

Health data categorizes into three main types: imaging, clinical, and omics data. Each
category provides unique insights, but their fusion yields a fuller disease comprehension,
reducing ambiguity and enhancing model efficiency in medical data analysis. Imaging
methods like MRI, CT, PET, and SPECT offer varied perspectives on anatomy and
physiology. Clinical data, including patient histories, age, gender, and medication records,
aid clinicians in understanding patient characteristics and disease progression, enhancing
the contextual understanding of patient health. Additionally, genetic data play a crucial
role in predicting and diagnosing conditions, providing valuable insights into disease
progression and individualized treatment (Behrad ¢ Abadeh, 2022). The example types of
unstructured and structured data are shown in Fig. 6.

Fusion of image and structured data

The integration of medical images and EHR has emerged as a pivotal strategy in enhancing
predictive modeling across diverse medical domains. An example of architectures in fusing
medical images and structured data from EHR is shown in Fig. 7.

In recent years, there has been a growing body of research focused on utilizing medical
images and EHRs in Alzheimer’s disease research. In eight studies, Bhagwat et al. (2018),
Spasov et al. (2018), Dimitriadis et al. (2018), Li & Fan (2019), Golovanevsky, Eickhoff ¢
Singh (2022), Rahim et al. (2023b); Rahim et al. (2023a) and Lu et al. (2024), they employed
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Figure 6 Example types of unstructured and structured data in EHR. Image sources: Hospital
icon: https:/fwww.freepik.com/iconhospital_4320350; Patient icon: https:/www.flaticon.comfree-
icon/patient_1430402; Medical history icon: https:/www.freepik.com/icon/medical-history 1424569;
X-ray icon: https:/www.freepik.com/icon/k-ray_7399390; Consultation icon: https:/www.flaticon.
com/ffree-icon/consultation_10202726?; Medical report icon: https:/iwww.flaticon.comfree-
icon/medical-report_3215528?; Medical checkup icon: https:/www.flaticon.com/ree-icon/medical-
checkup_3061457?; Medicine icon: https:/www.freepik.com/ficon/medicine_4063711; People
icon: https:/www.veryicon.com/icons/miscellaneousBatour/people-23.html; Medicine icon:
https:/www.freepik.com/icon/medicine_4063711; Lab result icon: https:/www.flaticon.comfree-
icon/nvoice_751904; Histological images: https:/ivww.kaggle.com/datasets/paultimothymooney/breast-
histopathology-images/data; camera images (skin lesion): Tschandl P, Rosendahl C & Kittler H.
The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common
pigmented skin lesions. Sci. Data 5: 180161 DOI: 10.1038/sdata.2018.161 (2018); X ray image:
https:/www.kaggle.com/datasets/financekim/curated- cxr-report- generation-dataset, Public Domain;
brain MRI: https:/www.kaggle.com/datasets/masoudnickparvar/brain- tumor- mri-dataset.

Full-size Gl DOI: 10.7717/peerjcs.2298/fig-6

MRI in conjunction with clinical assessments, demographic details, and genetic data,
particularly the APOe4 marker, from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. These technical papers have significantly contributed to the understanding
and diagnosis of AD, as well as to the development of potential treatment strategies.

In the context of anemia, Purwar et al. (2020) undertook an innovative approach in
anemia detection and prediction, integrating blood smear images with clinical data from
complete blood count test (CBC) from AIIMS datasets. The features are extracted by deep
CNN and fusion technique is applied. The dimensions of fused datasets are reduced by
using linear discriminant analysis (LDA) and principal component analysis (PCA). The
resulting model exhibited remarkable accuracy, reaching a maximum of 99%.

In addition, Puyol-Anton et al. (2022) explored cardiovascular magnetic resonance
images (CMR) and electrocardiogram (ECG) data from UK Biobank and EchoNet-
Dynamic to predict the response to cardiac resynchronization therapy (CRT) for heart
failure patients. The combination of medical images and healthcare data enables CRT
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Figure 7 Type of data fusion framework for image and structure data using early, intermediate, and
late fusion. X ray images: https:/iwww.kaggle.com/datasetsfinancekim/curated- cxr-report-generation-
dataset, Public Domain.
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response prediction with 77.38% accuracy which is comparable with the current state-of-
the-art in machine learning-based CRT response prediction.

Fusion of image and unstructured data
In Covid-19, Kumar et al. (2022a); Kumar et al. (2022b) conducted pioneering research by
exploring healthcare data fusion techniques involving chest X-ray images and audio data of
cough for early diagnosis and accurate classification of Covid-19 cases. They utilized several
public datasets such as IEEE-8023 CXR—Cohen dataset, Coswara, Coughvid and many
more as stated in Table 2. Additionally, Zheng et al. (2021) employed a comprehensive
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approach by fusing various image modalities, including X-ray, CT scan, and ultrasound
images, with medical consultation data to enhance the classification of COVID-19 cases.

Jacenkow, O’Neil ¢ Tsaftaris (2022) demonstrated an innovative application of data
fusion by combining chest X-ray images with their corresponding radiological reports
to develop a classification model for cardiovascular diseases. This approach integrates
radiological images with textual information from MIMIC CXR, enriching the diagnostic
process for cardiovascular conditions. By integrating different modalities, the proposed
method achieved an average micro AUROC of 87.8, outperforming the state-of-the-art
methods for unimodal of 84.4 AUROC.

Fusion of multiple types of images

Several studies have explored image fusion techniques for Alzheimer’s disease detection.
Noteworthy contributions include the work of Dai et al. (2021), which advocate for merging
Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) from
ADNI and PPMI datasets. The paper proposed a classification model for Alzheimer’s
disease diagnosis based on improved CNN models and image fusion method, achieving
high AUC values of 0.941 in training with fusion images. The research demonstrated
that the proposed method using fusion images dataset based on multi-modality images
has higher diagnosis accuracy than single modality images dataset. Meanwhile, Kadri et
al. (2023) turther extended the exploration by combining MRI with both PET and CT,
showcasing the versatility of data fusion in Alzheimer’s disease diagnosis.

Within the domain of cancer research, Mokni et al. (2021) conducted a notable
study wherein they employed data fusion techniques. Specifically, they integrated
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) with Digital
Mammographic images (MGs) for the purpose of detecting breast cancer. The author
extracted the features by using Gradient Local Information Pattern (GLIP) and performed
Canonical Correlation Analysis (CCA) for multimodal fusion. The proposed method
achieved an AUC value of 99.10% compared to AUC values for MG and DCE-MRI
modalities alone of 97.20% and 93.50%, respectively. This integrative approach capitalizes
on the complementary strengths of DCE-MRI and MGs, offering a more comprehensive
and detailed insight into breast cancer characteristics, ultimately contributing to improved
diagnostic accuracy.

Other fusion features
In a significant contribution to the field of vascular conditions, Liu ef al. (2018) conducted a
comprehensive study focusing on the prediction of anterior communicating artery (ACOM)
aneurysms. The research involved the integration of diverse healthcare data, including CT
images, EHR, and textual reports. By combining these various sources of information,
the study aimed to enhance the accuracy and depth of predicting ACOM aneurysms,
illustrating the potential of data fusion in advancing vascular condition diagnostics.

Lin et al. (2021) made notable strides in predicting mortality rates in Intensive Care
Units (ICUs) by exploring different healthcare data sources. The study integrated chest
X-ray images, clinical data, and radiological reports from MIMIC IV to develop a robust
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Table 2 Summary table of public datasets used by each study.

Disease

Type of data

Dataset used

Reference

Alzheimer disease

Bone age assessment

Microcytic hypochro-
mia (Anemia)

Cancer prediction

Survival outcome
prediction
Prediction of HER2-
positive breast can-
cer recurrence and
metastasis risk

Colorectal cancer

PET, CT, MRI, Age, gen-
der, education years, APOE
&4 status at baseline, cere-
brospinal fluid biomarkers,
gene data, cognitive scores,

X-rays (key bone regions),
gender

Blood smear image, clinical
features

Microscopy slides, Clinical
data (cancer type, gender,
race, history of prior malig-
nancy, and age)

Whole slides images, ge-
nomic data

Whole slide H&E images

(WSIs) and clinical infor-
mation

Pathological images, multi-
omic data

ADNI https:/adni.loni.usc.edu/data-samples/
access-data/

OASIS https:/www.oasis-brains.org/

PPMI https:/www.ppmi-info.orglaccess-data-
specimens/data

AIBL http:/adni.loni.usc.edu/category/aibl-study-
data/

RSNA dataset https:/www.rsna.org/rsnaifai-
image-challenge/RSNA-Pediatric-Bone- Age-
Challenge-2017

ATIIMS https:/iwww.bioailab.org/datasets

TGCA https:/portal.gdc.cancer.gov/

Bhagwat et al. (2018)

Dimitriadis et al.
(2018)

Li & Fan (2019)

Dai et al. (2021)
Chen et al. (2023)
Lietal (2023a)
Odusami et al. (2023)
Spasov et al. (2018)
Lin et al. (2020)

Abdelaziz, Wang &
Elazab (2021)

Golovanevsky, Eickhoff
& Singh (2022)

Rahim et al. (2023b)
Rahim et al. (2023a)
Kadri et al. (2023)
Luetal (2024)

Kadri et al. (2023)

Dai et al. (2021)

Bhagwat et al. (2018)

Lietal. (2023b)

Purwar et al. (2020)

Silva & Rohr (2020)

Chen et al. (2021)

Yang et al. (2022)

Qiu et al. (2022)

(continued on next page)
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Table 2 (continued)

Disease

Type of data

Dataset used

Reference

Renal cancer

Covid

ICU-mortality pre-
diction
Diabetes

Breast cancer

Cardiovascular dis-
ease

Cardiac resynchro-
nization therapy re-
sponse prediction

Disease location in

chest X-ray images

Prostate cancer

Lung cancer

Histopathological images,
CT/MRI scans, and ge-
nomic data from whole ex-
ome sequencing

Chest X-ray and cough
sample data

Chest X-ray, clinical data
(EHR), radiology reports

Fundus and WGBF

Pathological images, EMR

Whole-slide images and
gene expression profiles

Chest X-rays, report
Clinical risk factors and

fundus photographs
CMR imaging, ECG data

Chest X-ray, clinical data

MRYI, clinical biomarkers

CT image, lung tumor
biomarker

CT, clinical data

KIRC TCGA (Kidney renal clear cell carcinoma
of the Cancer Genome Atlas) GDC portal https:
/lportal.gdc.cancer.gov/ cancer imaging archive
https:/www.cancerimagingarchive.net/
IEEE-8023 CXR—Cohen dataset https:/github.
com/fieee8023/covid-chestxray-dataset Shenzhen
CXR with Masks https:/www.kaggle.com/datasets/
yoctomanjhexr-lung-mask Montgomery county
CXR images https:/paperswithcode.com/dataset/
montgomery-county-x-ray-set COVIDGR 1.0
https:/paperswithcode.com/dataset/covidgr
Coswara https:/github.com/iscleap/Coswara-Data
Coughvid https:/cs.paperswithcode.com/paper/
the-coughvid-crowdsourcing-dataset-a-corpus
DetectNow https:/github.com/hresthagrawal/
detect-now Virufy https:/github.compirufy/
virufy-data

MIMIC IV https:/physionet.org/content/mimiciv/
2.2/

APTOS 2019 blindness detection https:/iwvww.
kaggle.com/claptos2019-blindness-detection/
data Messidor-2 https:/fwww.kaggle.com/datasets/
mariaherrerot/messidor2preprocess/data
PathoEMR dataset no longer available

TGCA https:/portal.gdc.cancer.gov/

MIMIC CXR https:/physionet.org/content/
mimic-cxr/2.0.0/

UK Biobank https:/www.ukbiobank.ac.uk/enable-
your-research/apply-for-access

UK Biobank (UKBB) https:/www.ukbiobank.
ac.uk/enable-your-research/apply-for-access
EchoNet-Dynamic https:/echonet.github.io/
dynamic/

MIMIC-CXR https:/physionet.org/
content/mimic-cxr/2.0.0/ MIMIC IV https:
Ifphysionet.org/content/mimiciv/2.2/ REFLACX
https:/paperswithcode.com/dataset/reflacx
DW-MRI https:/data.mendeley.com/datasets/
fgf86jdfg6/1

LCID https:/wiki.cancerimagingarchive.net/pages/
viewpage.action?pageld=1966254

CLARO https:/ppaperswithcode.com/dataset/claro

Schulz et al. (2021)

Kumar et al. (2022a)

Kumar et al. (2022b)

Lin et al. (2021)

El-Ateif & Idri (2022)

Yan et al. (2021)
Wang et al. (2021)

Jacenkéw, O’Neil &
Tsaftaris (2022)
Lee et al. (2023)

Puyol-Anton et al.
(2022)

Hsieh et al. (2023)

Reda et al. (2018)

Fuetal (2021)

Caruso et al. (2022)
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model for predicting mortality in the ICU. The contributions of labels, text, and image
features are demonstrated as shown in the C-index of the model achieved which is 0.7847,
surpassing the baseline model.

Zhang et al. (2023) made significant advancements in the detection of multiple
sclerosis (MS), a neurological disorder by involving the fusion of various data sources,
including brain MRI images, EHR, and free-text reports from patients’ clinical notes. The
proposed method successfully predicts MS severity with an increase of 19% AUROC.
This comprehensive fusion of structured and unstructured data enables a more accurate
prediction of multiple sclerosis, showcasing the potential of data integration in advancing
neurological disorder prediction

DISCUSSION

In the previous sections, a comprehensive review of recent studies from 2018 to the
present focused on machine learning and deep learning techniques for diagnosing,
prognosing, and predicting treatments for various diseases. The data fusion combinations
are categorized into fusion of medical images with structured data, fusion of medical
images with unstructured data, fusion of multiple image modalities, and other features
fusion. Additionally, the data fusion techniques were classified into early, intermediate,
and late fusion approaches.

Our analysis revealed that multimodal data fusion models consistently outperformed
single-modality models across performance metrics such as accuracy, sensitivity, precision,
AUQC, and C-index. Therefore, it is recommended to employ a multimodal machine
learning or deep learning model when multiple healthcare data sources are available, as
incorporating additional clinical data from EHR often results in improved performance.

Figure & shows the proposed framework of this study for improving clinical decision
support using multimodal data integration. The framework follows a cyclical pattern that
begins with the collection of data from various hospitals or health centers. This data is
then aggregated through multimodal data fusion and undergoes AI modeling processes.
The algorithms analyze the data to extract valuable insights related to health outcomes,
including diagnosis, prognosis, risk assessment, and treatment planning. These insights
are communicated back to hospitals and practitioners, enabling informed decisions for
patients.

The proposed framework for multimodal data integration in clinical decision support
offers promising solutions to address several challenges faced by the current healthcare
sector. One significant challenge lies in the limited availability of healthcare data such
as medical images, clinical data and EHRs (Feng et al., 2019; Hsu et al., 2021; Nie et al.,
2019; Zhang et al., 2023). By incorporating advanced data integration techniques, the
proposed framework enables the integration of diverse types of healthcare data sources,
thereby enhancing access to comprehensive and longitudinal patient health records. This
facilitates more accurate diagnoses, enabling more informed clinical decision-making and
personalized treatment strategies.

The lack of real-world application and the absence of comparison with human physicians
in current healthcare practices represent another critical challenge that the proposed
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Figure 8 Proposed flow of multimodal data integration for clinical decision support. Image sources:
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com/free-icon/cardiogram_7918446; Demographics icon: https:/www.freepik.com/icon/demographics_
2720724; CT scan icon: https:/www.flaticon.com/free-icon/ct-scan_2355587; Aspirin icon: https:/fwww.
freepik.com/icon/aspirin_4320310; X-rays icon: https:/www.flaticon.com/ree-icon/k-rays_706196; Con-
sultation icon: https:/www.flaticon.com/ree-icon/onsultation_10202688; Diagnosis icon: https:/www.
freepik.com/icon/diagnosis_4320491; Risk management icon: https:/iwww.flaticon.com/ree-icon/risk-
management_10240181; Diagnosis icon: https:/www.flaticon.com/ree-icon/diagnosis_1934430; Treat-
ment icon: https:/www.freepik.com/iconfreatment_3027624; Medical staff icon: https:/www.flaticon.
com/free-icon/medical-staff_6190390; Data processing icon: https:/www.flaticon.com/ree-icon/data-
processing_2980479; Al icon: https:/iwww.flaticon.com/ree-icon/ai_8131880; Data synchronization icon:
https:/mwww.flaticon.com/ree-icon/data-synchronization_4403186; Data encryption icon: https:/www.
flaticon.com/free-icon/data-encryption_4736094.

Full-size G4l DOI: 10.7717/peerjcs.2298/fig-8

framework seeks to overcome (Xu et al., 2021; Yap, Yolland & Tschandl, 2018; Zhou et al.,
2022). The proposed framework addresses this limitation by enabling the integration of
expert knowledge and clinical guidelines into decision support systems, thereby facilitating
comparative analyses between algorithmic predictions and human expert judgments. This
not only enhances the interpretability and trustworthiness of algorithmic recommendations
but also encourages collaboration between clinicians and data scientists in optimizing
clinical decision-making processes.

Future trends

Future work aimed at addressing the research gap identified in related studies should
prioritize several key areas to enhance the field of healthcare data fusion and multimodal
deep learning for clinical decision support. These include dealing with noisy or irrelevant
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data that may impact model performance, as well as addressing issues related to missing
or sparse data (Bhagwat et al., 2018; Lin et al., 2021; Spasov et al., 2018; Tan et al., 2022;
Zheng et al., 2021). To tackle this, future research efforts should incorporate robust data
imputation methods to address missing data issues effectively. Basic imputation techniques
like k-nearest neighbors (KNN) can provide a foundation, while more advanced methods
such as matrix completion and deep learning-based approaches can be explored to
accurately estimate missing values and improve the quality of input data.

Besides, a significant barrier to the clinical implementation of multimodal deep learning
methods is the limited availability of data (Feng et al., 2019; Hsu et al., 2021; Joo et al., 2021;
Nie et al., 2019; Zhang et al., 2023). To address this issue, future researchers can implement
data synthesis models that can learn the underlying data distribution and generate realistic
data samples. The example of the models are generative adversarial networks (GANs) or
variational autoencoders (VAEs). However, it is important to note that GANs and VAEs
might produce augmented data that significantly differs from the raw data, potentially
affecting model performance. When there is limited labeled data, semi-supervised learning
is suggested. By exploring semi-supervised learning, models can be trained with both
labeled and unlabeled data, effectively utilizing limited labeled data and unlabeled data to
improve model performance.

Not only this, enhancing data sharing practices and improving access to comprehensive
datasets are crucial steps toward advancing research in this field. Collaborative data-sharing
platforms and standardized data collection protocols can help mitigate this challenge.
By fostering a more open and cooperative data-sharing environment, researchers can
gain access to the necessary resources to develop and validate more robust multimodal
integration models. This, in turn, can lead to improved diagnostic accuracy and patient
outcomes, ultimately benefiting the healthcare sector.

In addition, the presence of outliers in the data can significantly impact model
performance (Spasov et al., 2018). Thus, future research should prioritize data
preprocessing techniques aimed at detecting and removing outliers from the dataset
before model training. Outlier detection techniques such as z-score, isolation forest, or
k-nearest neighbors can be employed to identify and remove outliers from the dataset
before training the model. After removing outliers from the data, another challenge
arises which is integration difficulties between high-dimensional medical images and
low-dimensional EHR features (Xu et al., 2021). To tackle this challenge, future work
should explore dimensionality reduction techniques such as PCA and autoencoders. These
techniques can be employed to achieve dimensionality reduction while preserving the
discriminative power of the data.

Therefore, future research efforts should focus on developing and improving data fusion
methodologies that address challenges related to noisy or limited data, outlier detection, and
integration difficulties. By overcoming these challenges, future frameworks for multimodal
deep learning in clinical decision support can significantly enhance diagnostic accuracy,
treatment efficacy, and patient outcomes in healthcare settings.
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CONCLUSION

This paper presents a comprehensive analysis of methods for integrating multiple types
of data in artificial intelligence models for healthcare. Our review includes 69 relevant
publications from 2018 to 2024, offering an in-depth investigation of fusion techniques,
such as incorporating medical images with organized and unorganized data, merging
distinct image modalities, and amalgamating diverse characteristics. We highlight the
utilization of data fusion approaches for different diseases, demonstrating how customized
fusion strategies can effectively address specific diagnostic and therapeutic challenges.
Focusing on these diseases provides a clearer understanding of the practical benefits

of combining multiple data types in therapeutic settings. Our extensive review of
contemporary data fusion technologies and their applications is a valuable resource

for scholars and practitioners. By outlining the advantages and constraints of each method,
we provide direction for future research aimed at creating and enhancing multimodal
Al models in healthcare. Data fusion technologies are continually advancing and hold
great potential for the future of healthcare. Advancements in this domain could improve
the resilience, effectiveness, and precision of Al systems, enhancing patient outcomes
and propelling medical science forward. The integration of diverse healthcare data from
multiple sources is crucial for the advancement of Al model development. This paper
enhances current knowledge by combining previous literature and examining different
fusion strategies, providing a comprehensive understanding of the subject and establishing
a foundation for future research focused on utilizing multimodal data to develop better
healthcare solutions.
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