
Enhancing intrusion detection
performance using explainable ensemble
deep learning
Chiheb Eddine Ben Ncir1, Mohamed Aymen Ben HajKacem2 and
Mohammed Alattas1

1 MIS Department, College of Business, University of Jeddah, Jeddah, Jeddah, Saudi Arabia
2 LARODEC Lab, ISG Tunis, University of Tunis, Le Bardo, Tunis, Tunisia

ABSTRACT
Given the exponential growth of available data in large networks, the need for an
accurate and explainable intrusion detection system has become of high necessity to
effectively discover attacks in such networks. To deal with this challenge, we propose
a two-phase Explainable Ensemble deep learning-based method (EED) for intrusion
detection. In the first phase, a new ensemble intrusion detection model using three
one-dimensional long short-term memory networks (LSTM) is designed for an
accurate attack identification. The outputs of three classifiers are aggregated using a
meta-learner algorithm resulting in refined and improved results. In the second
phase, interpretability and explainability of EED outputs are enhanced by leveraging
the capabilities of SHape Additive exPplanations (SHAP). Factors contributing to the
identification and classification of attacks are highlighted which allows security
experts to understand and interpret the attack behavior and then implement effective
response strategies to improve the network security. Experiments conducted on real
datasets have shown the effectiveness of EED compared to conventional intrusion
detection methods in terms of both accuracy and explainability. The EED method
exhibits high accuracy in accurately identifying and classifying attacks while
providing transparency and interpretability.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning
Keywords Intrusion detection, Deep learning, Interpretable machine learning, Explainable
machine learning, LSTM-based algorithms, Ensemble learning

INTRODUCTION
The rapid growth of technology has led to the emergence and development of various
systems and networks that have transformed multiple aspects of our lives, including
communication, business operations, education, healthcare, and entertainment. These
systems usually contain a lot of critical data related to our daily lives, financial transactions,
or any other important information. Consequently, they become prime targets for cyber-
attacks via networks. Many hacker entities try to violate these systems by compromising
communication networks. The 2020 NTSC (National Technology Security Coalition)
security report highlights the alarming rise in cyber-attacks with approximately 620
million in accounts being compromised by hackers in 2019. The number of attacks has
continued to increase in recent years, especially after the COVID-19 pandemic and the

How to cite this article Ben Ncir CE, Ben HajKacem MA, Alattas M. 2024. Enhancing intrusion detection performance using explainable
ensemble deep learning. PeerJ Comput. Sci. 10:e2289 DOI 10.7717/peerj-cs.2289

Submitted 21 November 2023
Accepted 6 August 2024
Published 13 September 2024

Corresponding author
Chiheb Eddine Ben Ncir,
cbenncir@uj.edu.sa

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.2289

Copyright
2024 Ben Ncir et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2289
mailto:cbenncir@�uj.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2289
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

widespread adoption of online systems and networks. The need for robust network
security measures has become more critical. In this context, Intrusion Detection Systems
(IDS) have emerged to secure computer systems and networks from dangerous
unauthorized access to data and systems. IDS have evolved over the years and have been
adapted to the changing types and forms of security threats. Initially developed in the
1980s (Liao et al., 2013), IDS emerged as a response to the growing need for defense against
unauthorized access and malicious activities within computer systems. At that time, IDS
was introduced as an additional dimension to security technologies, such as firewalls, able
to monitor system traffic and detect potential intrusions. After that, with the growth of the
internet and network environments, IDS has expanded to monitor network traffic and
detect suspicious patterns or anomalies in such networks.

More recent IDS systems have been proposed by integrating artificial intelligence
techniques, such as machine learning and deep learning, to effectively learn and identify
patterns of normal and malicious behavior (Ahmad et al., 2021; Khraisat et al., 2019).
Machine learning-based IDS have been proposed to automatically monitor user activities,
system behavior, and network traffic aiming to identify deviations from expected patterns.
However, a key challenge in applying machine learning models to detect and classify
attacks in network traffic is the need for pre-configured input features. This limitation has
been addressed through the utilization of deep learning-based models which automatically
generate different features from traffic data and subsequently detect and classify attacks.
Deep learning models have shown superior performance in terms of accuracy for attack
detection compared to traditional machine learning models (Lansky et al., 2021).

Despite the efficiency of deep learning models for intrusion detection, they suffer from a
lack of interpretability that is required to explain the obtained classification. The automatic
detection operates as a “black-box” system that only gives a final classification of the
network attacks without providing explanations of such classification and attack detection.
Explanations may help security experts to transparently and effectively determine correct
attacks and implement the right strategies to protect the system. Furthermore, existing
approaches are usually based on a single deep neural network such as multi-layer
perceptron (MLP) (Shettar et al., 2021), long short-term memory (LSTM) (Laghrissi et al.,
2021), convolutional neural network (CNN) (Nguyen & Kim, 2020), and gated recurrent
units (GRU) (Cao et al., 2022). However, since the results of a single deep learning model
can be inaccurate or biased, it becomes more interesting to build a final decision based on
an ensemble of models using ensemble learning methods.

To deal with all the discussed issues, we propose an Explainable Ensemble deep learning
(EED) method for intrusion detection systems. The EED method consists of two main
phases: data detector modeling and model explaining. In the first phase, we propose an
ensemble intrusion detection model using three LSTM structures to classify network
traffic. The outcomes of three LSTM classifiers are aggregated by a machine learning
algorithm to obtain more reliable results compared to models based on a single classifier.
Our choice of LSTM-based classifiers is due to their ability to handle sequential data and
capture temporal dependencies over time. This makes them well-suited for modeling the
sequential nature of the network traffic and more effective in identifying attacks. In the

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 2/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

second phase, we propose to explain the built intrusion detection model by using
explainable artificial intelligence (XAI) technique called SHape Additive exPlanations
(SHAP) (Lundberg & Lee, 2017). Such explanations make the detection and classification
of attacks highly transparent for security experts. The major contributions of this article
are summarized as follows:

. Design of a new ensemble deep learning model which consists of an application of three
LSTMs with different structures to learn various patterns of network traffic; and then the
integration of results using a classifier as a meta-learner for the combination and final
assignment of the correct label to each attack.

. Development of an interpretation model for the generation of explanations based on the
SHAP method that provides local and global explanations for the detection and
classification of attacks. These explanations can be helpful to security experts for a deep
understanding of output results.

. Comparative analysis of the effectiveness of conventional machine learning and deep
learning models with EED to show the effectiveness of ensemble learning model on
intrusion detection domain.

The remainder of this article is organized as follows: “Related Works” discusses a survey
of recent related works while “Background and Preliminaries” presents the LSTM model
followed by the SHAP technique. Then, “Proposed Explainable Ensemble Deep Learning
Method for Intrusion Detection” describes the proposed EED for intrusion detection.
“Experiments and Results” presents conducted experiments and obtained empirical
results. Finally, “Conclusion” summarises this work and discusses the future directions.

RELATED WORKS
This section begins by presenting the recent intrusion detection methods based on
machine learning. Then, gives the state of the art of application of deep learning methods
for intrusion detection and finally describes explainable artificial intelligence techniques
for intrusion detection.

Applications of machine learning models for intrusion detection
Machine learning models were widely used for intrusion detection (Ahmad et al., 2021; Liu
& Lang, 2019). Common machine learning models used to detect attacks include decision
trees (DT), random forest (RF), support vector machines (SVM) and k-nearest neighbors
(KNN). Debicha et al. (2021) evaluated the performance of different machine learning
models for intrusion detection. The experimental results showed that random forest
achieved the best accuracy compared to decision trees and SVM for binary classification of
attacks. Dina, Siddique & Manivannan (2022) proposed a machine learning-based
intrusion detection system to classify attacks. The experimental results showed that the
decision tree model outperforms RF and SVM models for multi-class classification of
attacks.

Sathesh (2019) proposed an intrusion detection method based on a combination of
feature selection, clustering, and classification techniques. This method applied a fuzzy

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 3/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

rule-based system to analyze the features followed by the application of DT model to select
important features. To reduce the computational complexity, data are clustered using K-
means to minimize the number of data in the training dataset. The SVM classifier is then
used to categorize the attacks on the network. Soheily-Khah, Marteau & Béchet (2018)
proposed a hybrid intrusion detection method based on K-means and random forest
algorithm. The obtained results showed a better accuracy of attack prediction using the
clustering technique. Sahu & Mehtre (2015) developed several DT-based models for
intrusion detection such as C4.5, ID3 and CART. These models employ various techniques
for feature selection, pruning, and handling missing values to build an efficient DT model
for classifying network traffic.

Aburomman & Reaz (2016) proposed a machine learning-based intrusion detection
model. They formulate the intrusion detection problem using the SVM classifier. The
authors also used a radial basis function (RBF) kernel to categorize attacks into
predetermined classes. The obtained results confirmed the suitability of SVM for intrusion
detection tasks given its high accuracy compared to conventional machine learning
methods. Li et al. (2014) also proposed an intrusion detection method based on KNN
model. In the first step, the k-means clustering algorithm is used to build a cluster center
for each group. Then, KNN is applied as a classification technique to determine the nearest
neighbors. The experimental results showed that their proposed KNN-based classifier
performs better than SVM in terms of classification accuracy. Azimjonov & Kim (2024)
presented a novel approach for designing a lightweight intrusion detection system
specifically for IoT networks. They utilized SVM as the underlying machine learning
algorithm and employed feature selection methods to enhance the efficiency of the system.
Four feature selection techniques were applied namely Importance Coefficient, Forward,
Backward, and Correlation Coefficient. These methods were used to identify the most
significant and effective features for detecting IoT botnet attacks.

Although the application of machine learning models has shown good accuracy in the
detection and classification of attacks, it requires affordable efforts for pre-processing and
configuring input features in a real-world attack investigation. Conventional machine
learning models need predefined input features given as inputs for machine learning
models. This problem is solved by using deep learning models that automatically extract
and learn features from any input data (Koumakis, 2020). This important characteristic
explains the effective and wide use of deep learning models in intrusion detection systems.

Applications of deep learning models for intrusion detection
Deep learning models have been well applied and implemented in intrusion detection
systems. Several deep learning models for intrusion detection were proposed in the
literature (Liu & Lang, 2019; Ahmad et al., 2021). Laghrissi et al. (2021) proposed a deep
learning approach for intrusion detection using LSTM. The authors studied the
performance of the model for binary and multi-class attack classification. The
experimental results showed the suitability of LSTM to improve the classification accuracy
of attacks compared to conventional machine learning methods. Muhuri et al. (2020)
developed a method for intrusion detection to classify attacks by combining a genetic

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 4/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

algorithm (GA) with LSTM neural network. They found that LSTM classifier combined
with an optimal feature set improves the accuracy of intrusion detection. The experimental
results performed on NSL-KDD dataset showed that GA can largely improve the
classification accuracy of LSTM for both binary and multi-class classification. Obtained
results using LSTM classifier outperformed those obtained using SVM and RF.

Zhang et al. (2023) introduced a novel approach that combines bidirectional long short-
term memory (BiLSTM) with an attention mechanism for network intrusion detection.
The proposed method leverages the advantages of BiLSTM in capturing dependency
relationships between features. Additionally, an attention mechanism is employed to
analyze the network traffic classification generated by the BiLSTM model. Experimental
results on a real dataset demonstrate that the proposed method achieves higher detection
accuracy compared to existing intrusion detection methods. Nguyen & Kim (2020)
proposed a deep intrusion detection method based on CNN model. The authors first
partitioned the features into four subsets using fuzzy c-means clustering and then
converted them into grayscale format data. Subsequently, the CNN model was utilized for
identifying attacks. Experimental results on the NSL-KDD dataset showed that the
proposed CNN model achieves good accuracy compared to both machine learning and
deep learning methods.

Halbouni et al. (2022) introduced a deep learning-based method for intrusion detection
systems by combining various types of deep learning models such as CNN and LSTM. The
authors also employed a feature selection technique to build the feature set. Experimental
results on the NSL-KDD dataset demonstrated that the LSTM model achieved higher
accuracy compared to the CNN model. Cao et al. (2022) proposed an intrusion detection
approach utilizing a recurrent neural network based on GRU. The authors developed an
efficient system that classifies network flow instances as normal or attack. A Pearson
correlation feature selection algorithm was utilized to optimize the computational
complexity. Experimental results on the CICIDS2018 dataset indicated that the GRU-
based RNN outperformed existing deep learning models.

Shettar et al. (2021) also presented a multi-layer perceptron (MLP) model for classifying
attacks. Experimental results on the NSL-KDD dataset demonstrated that the MLP model
achieved higher accuracy compared to traditional machine learning models. Jeyanthi &
Indrani (2023) proposed an intrusion detection system for healthcare applications using a
deep learning model with custom features. The method incorporated a recurrent neural
network (RNN) and a BiLSTM algorithm to detect and classify intrusion attacks. Custom
features were extracted from incoming data streams and used to train the deep learning
models. Experimental results showed the effectiveness of the proposed system in detecting
and mitigating security threats in a healthcare environment.

Despite the high accuracy of deep-learning-based intrusion detection systems, they
often operate as a “black-box” system that only gives a final classification of attacks without
providing explanations for the reasoning behind the classification. Explanations may help
security experts to transparently and effectively determine the correct attacks and
implement the right strategies to protect the network.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 5/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Explainable intrusion detection systems
Several works studied the explainability of intrusion detection systems (Neupane et al.,
2022) through using explainable artificial intelligence methods such as SHAP (Lundberg &
Lee, 2017) and Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh &
Guestrin, 2016).Wang et al. (2020) proposed a framework that enhances the explainability
of intrusion detection systems. Their method leverages SHAP to generate both local and
global interpretations. The local interpretation focuses on explaining the reasoning behind
a specific decision using a single data record, whereas the global interpretation utilizes the
entire dataset to provide insights into the overall structure of the model.

Younisse, Ahmad & Abu Al-Haija (2022) also proposed an explainable intrusion
detection system. They combined deep neural networks and the interpretability of the
model predictions. The proposed system utilized SHAP to provide both local and global
explanations. Keshk et al. (2023) proposed an explainable intrusion detection system in IoT
networks. They developed a deep-learning intrusion detection approach based on LSTM
and generated explanations using several techniques such as SHAP, Permutation Feature
Importance, Individual Conditional Expectation, and Partial Dependence Plot. The
proposed system achieved high accuracy and high interpretability of output results
compared to other IDS systems.

Khan et al. (2021) introduced an explainable auto-encoder-based detection framework
for identifying attacks in IoT networks. The framework utilizes CNN and LSTMmodels to
detect both known and zero-day attacks. The data are initially processed by an auto-
encoder-based LSTM to extract temporal features, followed by the CNN model for
generating predictions. The LIME is employed to provide further explanations regarding
the detected attacks. Also, in the work of Barnard, Marchetti & DaSilva (2022), an
explainable intrusion detection method is proposed which integrates eXtreme Gradient
Boosting (xgboost) as a classifier and SHAP as an explainable method. Despite the high
detection accuracy, the proposed method has a high computational complexity due to the
complexity of the explanation step. To reduce the computational cost, the authors utilized
the PDP plots to eliminate features that cannot be adequately explained while maintaining
nearly the same predictive accuracy.

Bashaiwth, Binsalleeh & AsSadhan (2023) proposed an explainable intrusion detection
method that utilizes the LSTMmodel as a classifier. The authors combined both SHAP and
LIME to enhance explainability. The combined XAI methods provide insights into the
model’s decision-making process and help identify the intrinsic features necessary to
differentiate attacks. The proposed model offers a deeper understanding of the factors
contributing to the classification of attacks. Sharma et al. (2024) also introduced a deep
neural network approach for intrusion detection that utilized a filter-based approach to
reduce the dimensionality and emphasize the most important aspects. This approach
selects the most relevant features and limits the number of inputs to the model.
Furthermore, the authors applied a set of XAI techniques to explain the attack detection.
Furthermore, Oseni et al. (2022) introduced an explainable deep learning-based intrusion
detection framework to enhance the transparency of deep learning-based IDS in IoT

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 6/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

networks. The framework incorporates the SHAP method to interpret the decisions made
by the deep learning-based IDS. The authors provide insights and explanations regarding
the reasoning behind the IDS’s predictions which allows for a better understanding of the
underlying factors contributing to the classification of intrusions. An overview of existing
explainable approaches for intrusion detection systems is given in Table 1. All the
described studies focused on enhancing the interpretability of intrusion detection systems
using various methods such as SHAP, LIME, and ensemble models. While these
approaches have shown promising results in providing explanations for detected attacks,
they are usually based on a single deep learning model such as CNN, RNN, and LSTM. We
will explore in the next sections the use of explainable techniques to interpret the results of
ensemble deep-learning-based models in intrusion detection applications.

BACKGROUND AND PRELIMINARIES
In this section, we first introduce the underlying mathematical model of LSTM and
then present the main objectives and capabilities of the explainable artificial intelligence
method SHAP.

Table 1 Comparison between recent intrusion detection methods.

Reference Year ML DL XAI Algorithm

Soheily-Khah, Marteau & Béchet (2018) 2018
p � � RF

Sathesh (2019) 2019
p � � SVM

Muhuri et al. (2020) 2020 � p � LSTM

Wang et al. (2020) 2020 � p p
SHAP

Nguyen & Kim (2020) 2020 � p � CNN

Debicha et al. (2021) 2021
p � � DT, RF, SVM

Sahu & Mehtre (2015) 2021
p � � DT

Laghrissi et al. (2021) 2021 � p � LSTM

Shettar et al. (2021) 2021 � p � MLP

Khan et al. (2021) 2021 � p p
CNN, LSTM, Autoencoder

Dina, Siddique & Manivannan (2022) 2022
p � � DT, RF, KNN

Halbouni et al. (2022) 2022 � p � CNN, LSTM

Cao et al. (2022) 2022 � p � GRU

Younisse, Ahmad & Abu Al-Haija (2022) 2022 � p p
SHAP

Barnard, Marchetti & DaSilva (2022) 2022 � p p
XG-boost, SHAP

Oseni et al. (2022) 2022 � p p
CNN, SHAP

Zhang et al. (2023) 2023 � p � BILSTM

Jeyanthi & Indrani (2023) 2023 � p � BILSTM

Keshk et al. (2023) 2023 � p p
LSTM, SHAP

Bashaiwth, Binsalleeh & AsSadhan (2023) 2023 � p p
LSTM, SHAP

Azimjonov & Kim (2024) 2024
p � � SVM

Sharma et al. (2024) 2024 � p p
DNN, SHAP, LIME

Proposed EED – � p p
Ensemble LSTM, SHAP

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 7/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

LSTM
LSTM is an improved version of RNN (Hochreiter & Schmidhuber, 1997) that solves the
problem of long-term dependencies within RNN-based networks. This problem consists of
the inability of RNNs to retain information from previous input data over longer
sequences to improve the prediction. To overcome this limitation, LSTM includes a
memory cell to learn which information will be retained or forgotten. As described in
Fig. 1, the memory cell is controlled by three primary gates: the forget gate, the memory
gate, and the output gate. These gates enable LSTM to effectively manage and regulate the
flow of information within the network.

First, the forget gate determines which information from the previous cell state should
be discarded. It takes as inputs the previous input layer xt�1, the previous hidden layer
ht�1, and the previous cell state ct�1. The forget gate applies the sigmoid function to these
inputs, producing a real number between 0 and 1. This number represents the forget gate’s
decision regarding the amount of information from the previous cell state that should be
forgotten. Mathematically, the forget gate operation can be described as follows:

ft ¼ sigmðWf � ½ht�1; xt�1� þ bf Þ (1)

where ft is the forget gate output at time-step t, sigm is the sigmoid function, Wf is the
weight matrix, ½ht�1; xt�1� is the concatenation of the previous hidden layer and the
previous input layer, and bf is the bias term.

After that, in a second step, the memory gate determines which new information
should be stored in the current cell state. It consists of two components: the input gate and
the new candidate values. The input gate decides which values should be updated while the
new candidate values are potential new values that could be added to the cell state. The
input gate and candidate values are computed using the sigmoid and hyperbolic tanh

ct-1

ht-1

xt

x +

ht

sigm

x

tanh

x

tanh

ct

ht

Forget Memory Output

sigm sigm

Figure 1 Long short-term memory structure. Full-size DOI: 10.7717/peerj-cs.2289/fig-1

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 8/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-1
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

activation functions, respectively. Mathematically, the memory gate operations can be
described as:

it ¼ sigmðWi � ½ht�1; xt�1� þ biÞ (2)
~Ct ¼ tanhðWC � ½ht�1; xt�1� þ bCÞ (3)

where it and ~Ct are respectively the input gate output and the candidate value at time-step
t, Wi and WC, are the weight matrices, ½ht�1; xt�1� is the concatenation result of the
previous hidden layer and the previous input layer, and bi and bC are the bias terms.

Finally, the output gate regulates the output information from the LSTM cell. It takes as
inputs the current input layer xt , the previous hidden layer ht�1, and the current cell state
Ct . Similarly to the forget gate, the output gate uses the sigmoid function to determine
which parts of the cell state should be returned as output. Additionally, the output gate
applies the tanh function to the cell state to generate values between �1 and 1, which are
then multiplied by the output of the sigmoid function. Mathematically, the output gate
operation can be described as:

ot ¼ sigmðWo � ½ht�1; xt� þ boÞ (4)

ht ¼ ot � tanhðCtÞ (5)

where ot and ht are respectively the output gate and the current hidden layers outputs at
time-step t, ht , is the current hidden layer output at time step t, Wo is the weight matrix,
½ht�1; xt� is the concatenation of the previous hidden layer and the current input layer, bo is
the bias term, and Ct is the current cell state.

We note here that other activation functions, such as rectified linear unit (ReLU) and
Softmax, can be used as activation functions for the LSTM model. Our choice of sigmoid
and hyperbolic tanh is based on their common use in RNN-based networks (Hochreiter &
Schmidhuber, 1997; Zhang et al., 2023) and their successful applications in malware and
intrusion detection contexts (Muhuri et al., 2020; Nguyen & Kim, 2020). Although sigmoid
and hyperbolic tanh activation functions have certain limitations, such as being
computationally consuming compared to other functions like ReLU and having a lower
convergence speed during training, their widespread use within the LSTM model can be
attributed to several reasons. Firstly, both functions are non-linear and capable of
capturing complex patterns and relationships in the data. Secondly, the gradients of these
functions can be easily computed, unlike other functions such as softmax, which allows to
effectively optimize the network parameters during the learning process.

SHAP
The SHAP technique was introduced by Lundberg & Lee (2017) to explain predictions built
using supervised learning methods. It is based on the idea of Shapley value from game
theory which quantifies the contribution of each feature to build the final predictions. The
Shapley value measures the difference in prediction when a specific feature is included or
excluded. It calculates the marginal contribution of each feature by considering all possible

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 9/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

combinations of features and their respective Shapley values. Suppose we have the
following:

. F a set of features in a dataset

. jFj the total number of features.

. A a subset of features used in the prediction model.

. |A| the number of features in the subset A.

. DiðA; xÞ is the difference between the prediction generated when including the feature i
and all the other possible predictions generated without including the feature i.

The Shapley value for a particular feature i, denoted as SViðxÞ, is calculated as the sum
over all subsets A that include the feature i as follows:

SViðxÞ ¼
X

A�Fni

jAj!� ðjFj � jAj � 1Þ!
jFj! � DiðA; xÞ: (6)

The calculated Shapley value SViðxÞ provides insights into the marginal contribution of
feature i to the prediction of a single data record x. The importance of feature i in the
determination of the class label of the data record x is quantified by considering all possible
subsets of features with and without including that feature in the learning model. The
contribution SViðxÞ can be either positive or negative. A positive value indicates that
feature i positively influences the prediction, whereas a negative value suggests a negative
influence.

The calculated SViðxÞ only gives an interpretation of the importance of feature i in
determining the class label of the data record x (Qaffas et al., 2023a). However, to build a
global overview of the importance of each feature across all data records, global Shapley
values can be calculated (Qaffas et al., 2023b) by summing local Shapley values for all data
records x 2 X as in the following:

SViðxÞ ¼
P
x2X

jSViðxÞj
jXj (7)

where |X| is the number of data records in the dataset and jSViðxÞj is the absolute value of
the local Shapley value for the data record x on feature i. Global Shapley values provide a
comprehensive understanding of features’ importance and their variation across the whole
predictive model enabling better interpretation of the learning model.

PROPOSED EXPLAINABLE ENSEMBLE DEEP LEARNING
METHOD FOR INTRUSION DETECTION
To simultaneously address the accuracy and explainability challenges of intrusion
detection models, we propose a new design of an explainable ensemble deep learning
method called EED. As shown in Fig. 2, the proposed EED method consists of two main
phases: data detector modeling and model explaining.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 10/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Figure 2 The main phases of the proposed explainable ensemble deep learning method for intrusion detection. Phase 1: Data detector modeling
and phase 2: Model explaining. Full-size DOI: 10.7717/peerj-cs.2289/fig-2

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 11/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-2
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

In the data detector modeling phase, we introduce an ensemble intrusion detection
model that utilizes three LSTM structures to analyze and classify network traffic. The
outcome of three classifiers is aggregated by a machine learning algorithm to obtain more
reliable results than a single classifier. The inclusion of multiple classifiers allows for
diversity in the modeling approach and helps reduce individual biases. The combination of
three classifiers will give a good trade-off between accuracy and computational efficiency.
Using fewer than three classifiers may limit diversity and robustness, whereas using more
than three may lead to increased computational costs.

In the second phase (model explaining), we propose to explain the built intrusion
detection model by exploiting XAI SHAP method capabilities. The transparency and the
easy interpretation of the intrusion detection model are almost as important as the
classification accuracy. For this reason, we design an intelligent SHAP-based process that
offers explanations at both the global and local levels. These explanations provide insights
into the overall structure of the intrusion detection results and also offer explanations
specific to the classification of network traffic at the input level.

Phase 1: Data detector modeling
The data detector modeling phase involves an ensemble deep learning model utilizing
three LSTM structures. This phase is divided into two main stages: (1) the base-learner
stage, where three distinct LSTM neural networks are employed, and (2) the meta-learner
stage, which focuses on applying a machine learning algorithm to effectively aggregate the
different results.

LSTM model training
Deep learning models have shown superior accuracy compared to traditional machine
learning models (Lansky et al., 2021). Specifically, LSTM-based models offer several
advantages including ease of training and satisfactory performance even with limited
computational resources. These characteristics make them highly suitable for addressing
the challenges associated with intrusion detection (Zhang et al., 2023). We leverage the
advantages of LSTM networks by proposing a design that includes three distinct LSTM
configurations as base learners. The outputs of these base learners will be then aggregated
using a meta-learner to build improved final results. The use of multiple LSTM base
learners enables to explore different representations and variations in the data and
increases the ability to capture complex relationships.

Initially, a simple LSTM classifier with a single LSTM layer is developed. Then,
additional LSTM layers are added by using two key techniques: batch normalization and
dropout. Batch normalization is applied to normalize the activation within each mini-
batch to guarantee stable and consistent learning across the network (Bjorck et al., 2018).
On the other hand, the dropout is applied to reduce network complexity by randomly
deactivating neurons during training. This allows for preventing over-reliance on specific
connections and improving generalization (Baldi & Sadowski, 2013). Furthermore, we
introduce a flattened layer before the fully connected dense layer. This flattening operation
reshapes the input data to ensure compatibility with the subsequent layers. The output of

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 12/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

the last layer is considered as the final returned predictions. The proposed layers of the
LSTM classifiers are illustrated in Figs. 3–5. These visual representations provide a clear
overview of the architectural configuration for each classifier and highlight the
arrangement and connectivity of the LSTM layers.

Concerning the activation of the output dense layer, we use the Softmax (Liu et al.,
2016) function which can be defined as follows:

rðxÞi ¼
exi

PC
j¼1 e

xj
(8)

where x represents the input vector and C denotes the total number of classes. The Softmax
function plays a crucial role in transforming the raw scores into a normalized probability
distribution across multiple classes. It is important to note that the Softmax function
ensures a valid probability distribution given that all probabilities across all classes sum up
to 1.

Concerning the loss function, we opt for the Categorical Cross-Entropy (CCE)
(Rusiecki, 2019) due to its effectiveness in handling multi-class classification tasks. The
CCE loss function is well-suited for LSTM models and has the purpose of quantifying the
dissimilarity between the predicted probability distribution and the true class label
distribution. CCE is mathematically defined as:

CCE ¼ � 1
N

XN

i¼1

XC

c¼1

ðpic logðyicÞÞ (9)

where pic is a binary indicator function that indicates whether the data record i belongs to
category c and yic represents the predicted probability distribution for the data record i

Figure 3 The layers structure of the proposed LSTM-1. Full-size DOI: 10.7717/peerj-cs.2289/fig-3

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 13/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-3
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Figure 4 The layers structure of the proposed LSTM-2. Full-size DOI: 10.7717/peerj-cs.2289/fig-4

Figure 5 The layers structure of the proposed LSTM-3. Full-size DOI: 10.7717/peerj-cs.2289/fig-5

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 14/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-4
http://dx.doi.org/10.7717/peerj-cs.2289/fig-5
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

belonging to class c. By minimizing the CCE loss, the model is trained to assign higher
probabilities to correct classes and lower probabilities to incorrect ones.

Each LSTM model is trained using a k-fold cross-validation approach, where k
represents the number of folds. The training data is split into k folds: D ¼
fD1;D2; . . . ;Dkg. Each fold Di is used as a validation set and the remaining (k� 1) folds
are used as a training set for each LSTM model. Once the models are trained, predictions
from each LSTM model for the data records in fold Di are obtained. These predictions are
denoted as c1i, c2i, and c3i, representing the predicted class labels for LSTM1, LSTM2, and
LSTM3, respectively. Given the crucial role of LSTM parameters in building effective
learning models, we propose to explore different values for each parameter. We used the
GridSearch algorithm (Gozzoli, 2018) to optimize all the LSTM parameters given its ease of
implementation and its effective computational complexity. Selected parameter values for
the three LSTM classifier configurations are reported in Table 2. Each classifier is designed
with a unique combination of parameter values.

Meta-learner model training
Once the base learners are trained individually, the next step aims to apply a meta-learner
to aggregate the results from each base classifier. The meta-learner is a machine learning
algorithm that takes the output predictions of the base learners as input and generates the
final predictions. To consolidate the predictions from each LSTM model across all folds,
we combine them into a matrix with n rows and 3k columns. This matrix, denoted as M,
has the following structure: M ¼ ½c11; c21; c31; . . . ; c1k; c2k; c3k�. Each column in M
represents the predictions from one LSTM model for a particular fold, and each row
corresponds to a data record. A selected machine learning algorithm is trained usingM as
the input data and the true class labels as the target variable. Several machine learning
algorithms can be used at this step such as random forest, support vector machines, or
K-nearest neighbor. By learning from the combined predictions of the LSTM models, the
algorithm can effectively build the final predictions. To illustrate the overall process of the

Table 2 LSTM classifiers’ architectures.

Parameter LSTM-1 LSTM-2 LSTM-3

No. of LSTM layers 1 2 3

No. of filters 32 64 128

Batch normalization –
p p

Dropout rate – 0.1 0.1

Network optimizer Adam Adam Adam

Kernel size 3 5 7

Batch size 32 32 32

Epochs 50 100 100

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 15/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

whole proposed ensemble deep learning method, we provide in Algorithm 1 a step-by-step
description of both LSTM model training and meta-learner model training stages.

Phase 2: Model explaining
This phase aims to provide explanations for the classes generated in the previous phase.
These explanations will allow cybersecurity experts to better understand and interpret the
resulting classification of attacks at both local (individual traffic data) and global (attack
class) levels.

Concerning local explanations, it focuses on explaining the predictions made for
individual data traffic records and the reasons behind assigning them to specific attack
class. To achieve this, we compute the Shapley value for each data record and each feature.
The calculated Shapley values quantify the contribution of each attack feature, for each
traffic record, towards the final prediction. These local explanations support security
experts in comprehending the reasons behind assigning a connection to a particular
normal or attack class. Furthermore, experts can analyze the positive and negative
contributions of each feature for each connection, providing insights into the impact of
individual features on the predicted class labels.

Let us consider a small traffic dataset with three features: “Source IP”, “Destination IP”,
and “Protocol”. We will focus on explaining the predictions made for individual data
traffic records using local Shapley values. Suppose we have the following three data
records:

. Record 1: Source IP: ‘192.168.0.1’, Destination IP: ‘10.0.0.1’, Protocol: ‘TCP’

. Record 2: Source IP: ‘192.168.0.2’, Destination IP: ‘10.0.0.2’, Protocol: ‘UDP’

. Record 3: Source IP: ‘192.168.0.3’, Destination IP: ‘10.0.0.3’, Protocol: ‘ICMP’

Algorithm 1 The main steps of the proposed ensemble deep learning method.

Input: D: Traffic Data

Output: P: Final classification of traffic data X

—- LSTM Model Training —-

1. Split the training data into k folds: D ¼ fD1;D2;…;Dkg.
2. For each fold Diði ¼ 1 to i <¼ kÞ

For each LSTMl model

train LSTMl on (k� 1) folds on ðD=DiÞ
Build the predictions from each LSTMl model for the data records in fold Di

3. Combine the predictions of the 3 LSTM models on data records in fold Di such thatM ¼ ½Mj½c1i; c2i; c3i��
—- Meta-learner Model Training —-

4. Train the selected machine learning algorithm on M ¼ ½c11; c21; c31;…; c1k; c2k; c3k�
5. Use the meta-learner-trained model to build the final classification on new traffic data X

6. Return P the final attack classification on traffic data D

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 16/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

For each record and each feature, we will calculate the Shapley value with respect to the
assigned class (normal or attack). Let us assume the assigned class for each record is as
follows:

. Record 1: Assigned Class ! Normal

. Record 2: Assigned Class ! Attack

. Record 3: Assigned Class ! Normal

To compute the Shapley values, we analyze the contribution of each feature for each
record towards the final prediction. Let us assume the Shapley values are calculated as
follows:

. Record 1:

– Shapley Value (Source IP) ¼ 0:1

– Shapley Value (Destination IP) ¼ �0:2

– Shapley Value (Protocol) ¼ 0:3

. Record 2:

– Shapley Value (Source IP) ¼ �0:4

– Shapley Value (Destination IP) ¼ 0:5

– Shapley Value (Protocol) ¼ 0:2

. Record 3:

– Shapley Value (Source IP) ¼ 0:2

– Shapley Value (Destination IP) ¼ �0:3

– Shapley Value (Protocol) ¼ �0:1

These Shapley values quantify the contribution of each feature for each record. Positive
values indicate a positive contribution towards the assigned class, whereas negative values
indicate a negative contribution. Based on these local explanations, security experts can
better understand the reasons behind assigning each connection to a specific normal or
attack class. They can analyze the positive and negative contributions of each feature for
each connection and gain insights into the impact of individual features on the predicted
class label. For example, in Record 1, the “Source IP” and “Protocol” features have a
positive contribution towards the assigned class while the “Destination IP” feature has a
negative contribution.

To provide security experts with summarized class interpretations, we generate further
explanations at the class level. These explanations allow identifying the most critical
features when building each attack class and then offer valuable insights into the workings
of the learning model. To determine the importance of each feature, we calculate the
average of the absolute Shapley values locally for each class across all traffic records. The
calculated global shapley values are typically sorted in descending order to show the most

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 17/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

important ones for each class. These important attack features provide insights into the
proposed prediction model and its ability to distinguish between different attack classes
which can help in better understanding the automatic recommendations built by the
intrusion detection system.

Let us consider the small example of three records described above, global shapley
values for each class can be calculated as follows:

. Assigned Class ! Normal:

– Global Shapley Value (Source IP) ¼ j0:1þ 0:2j=2 ¼ 0:15

– Global Shapley Value (Destination IP) ¼ jð�0:2Þ þ ð�0:3Þj=2 ¼ 0:25

– Global Shapley Value (Protocol) ¼ j0:3þ ð�0:1Þj=2 ¼ 0:1

. Assigned Class ! Attack:

– Global Shapley Value (Source IP) ¼ j � 0:4j=1 ¼ 0:4

– Global Shapley Value (Destination IP) ¼ j0:5j=1 ¼ 0:5

– Global Shapley Value (Protocol) ¼ j0:2j=1 ¼ 0:2

These global Shapley values represent the average absolute Shapley values per feature for
each assigned class. These global Shapley values provide insights into the overall impact of
each feature on the predictions for each class. They can help in understanding the relative
importance of features for differentiating between attack classes. For example, for the
‘Normal’ class, the most important feature is ‘Destination IP’, followed by the ‘Source IP’
and ‘Protocol’ and also for the second class, “Attack”, the most important feature is
‘Destination IP’, followed by the ‘Source IP’ and ‘Protocol’.

EXPERIMENTS AND RESULTS
Evaluation methodology: datasets description and evaluation
measures
Empirical experiments were conducted on a Dell Inspiron machine with an Intel(R)

Core(TM) i7-1165G7 processor running at 2:80 GHz and 8:00 GB of RAM. All methods
were implemented within Python 3:9:7 by using TensorFlow, Pandas, and Keras libraries
and evaluated on two datasets, NSL-KDD (https://github.com/Mamcose/NSL-KDD-
Network-Intrusion-Detection/tree/master) and UNSW-NB15 (https://research.unsw.edu.
au/projects/unsw-nb15-dataset), which are specifically designed for intrusion detection
systems. The first dataset, NSL-KDD, is an enhanced version of the widely used KDD-
CUP99 dataset (https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html). Several
improvements were made to ensure its suitability for robust intrusion detection analysis.
Firstly, redundant and duplicate records were eliminated to prevent biases and ensure a
balanced representation of data. Secondly, the distribution of records across different
attack categories in the NSL-KDD dataset was adjusted to address the imbalances in the

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 18/32

https://github.com/Mamcose/NSL-KDD-Network-Intrusion-Detection/tree/master
https://github.com/Mamcose/NSL-KDD-Network-Intrusion-Detection/tree/master
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

original KDD-CUP99 dataset. The number of records in each category was adjusted
inversely proportional to the percentage of records in the KDD-CUP99 dataset. This
adjustment helps to create a more realistic and representative dataset for training and
testing intrusion detection models. Each data record in the dataset comprises a total of 41
features, including three symbolic, seven binary, and 31 numerical features. Detailed
descriptions of these features can be found in Dhanabal & Shantharajah (2015) where
authors provide valuable insights into the dataset composition and characteristics. The
NSL-KDD dataset classifies network traffic into normal traffic and four types of attacks,
namely denial of service (DOS), probe (PROB), remote to local (R2L), and user to root
(U2R).

Concerning the second dataset, UNSW-NB15, was created by Moustafa & Slay (2015)
to address the need for a realistic and representative dataset for evaluating intrusion
detection models. Unlike NSL-KDD dataset, UNSW-NB15 contains new attack and
standard network traffic data. Each data record in the dataset is described by 47 features,
including three symbolic, two binary, and 42 numerical features. Detailed descriptions of
these features can be found in Moustafa & Slay (2015) where authors provide valuable
insights into the dataset description. The UNSW-NB15 dataset classifies network traffic
into normal traffic and nine types of attacks, namely Exploits, Generic, Reconnaissance,
Analysis, Shellcode, DoS, Worms, Fuzzers and Backdoors.

To assess the effectiveness of the proposed method, we utilized four evaluation metrics:
accuracy, precision, recall, and F1-score. These metrics provide a comprehensive analysis
of the intrusion detection system’s accuracy. Given that multiple classes are defined in each
dataset, we considered the calculation of these measures for each class i separately using
the following formula:

Accuracyi ¼ TP þ TN
TP þ TN þ FP þ FN

(10)

Precisioni ¼ TP
TP þ FP

(11)

Recalli ¼ TP
TP þ FN

(12)

F1�Scorei ¼ 2 � Precision � Recall
Precisionþ Recall

(13)

where a true positive (TP) indicates that the intrusion detection system accurately detects a
specific attack that has occurred, a true negative (TN) indicates that the system correctly
identifies a normal connection, a false positive (FP) indicates that the system erroneously
detects an attack that did not occur and a false negative (FN) occurs when the intrusion
detection system fails to detect an intrusion after a specific attack. Accuracyi represents the
proportion of accurate predictions local to class i. Precisioni measures the proportion of
true positives compared to all correct predictions while Recalli measures the proportion of
actual correctly predicted positive instances. The last measure, F1�scorei, is a harmonic
mean of both Precisioni and Recalli. All these described measures are calculated for each

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 19/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

class i and then an average over all classes (macro-averaging) is computed as in the
following:

Accuracy ¼ 1
N

XN

i¼1

Accuracyi (14)

Precision ¼ 1
N

XN

i¼1

Precisioni (15)

Recall ¼ 1
N

XN

i¼1

Recalli (16)

F1�Score ¼ 1
N

XN

i¼1

F1�Scorei (17)

where N is the total number of classes. All of these measures provide a quantitative
assessment of the performance of each evaluated method, where higher values indicate
better performance in identifying network intrusions.

Performance evaluation of ensemble learning
In this section, we present the evaluation of the performance of our proposed ensemble
deep learning method. Firstly, we conducted experiments to assess the accuracy of the
meta-learner algorithm used in EED. We evaluated the performance of EED by using
various machine meta-learning algorithms, including DT, RF, K-NN, and SVM. Obtained
results on NSL-KDD and UNSW-NB15 datasets are summarized in Table 3. The reported
results indicate that using Random Forest as a meta-learner for the proposed EED method
achieved the highest accuracy for both datasets. This is explained by its robustness and
ability to handle various data types and structures. Consequently, the Random Forest will
be considered as the default meta-learner algorithm for all the next presented experiments
to assess EED performance.

Then, we evaluated the accuracy when varying the k-fold cross-validation parameter.
The evaluation results are presented in Table 4. Reported results of NSL-KDD demonstrate

Table 3 Evaluation of EED performance using different meta-learner algorithms. The best obtained
values are highlighted in bold.

Dataset Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

NSL-KDD EED (DT) 96.14 96.47 96.23 96.77

EED (RF) 97.05 97.38 97.15 97.19

EED (K-NN) 95.39 95.97 95.67 95.88

EED (SVM) 95.14 95.19 95.22 95.38

UNSW-NB15 EED (DT) 93.25 93.47 91.19 92.35

EED (RF) 95.15 95.88 95.01 95.25

EED (K-NN) 93.21 93.66 93.61 92.88

EED (SVM) 95.18 95.68 95.71 95.49

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 20/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

that EED achieved the highest accuracy when k = 8 and k = 6 with 96:99 and 97:05
respectively. However, the obtained results of UNSW-NB15 dataset clearly show that EED
achieved the highest accuracy when k = 8 with 95:15. Consequently, we decided to
continue evaluations with k = 8.

Next, we evaluated the accuracy for each LSTM classifier as outlined in “Phase 1: Data
detector modeling”. We individually assessed the performance of each LSTM classifier and
compared it to the performance of the ensemble model. The comparative results on the
NSL-KDD and UNSW-NB15 datasets are presented in Table 5. Reported results on both
datasets demonstrate that our proposed ensemble learning model outperformed all
individual LSTM classifiers in terms of all evaluation measures. These experiments confirm
that combining the outcomes of different LSTM structures significantly enhances the
overall model performance. The Random Forest algorithm as the meta-learner and the
combination of diverse LSTM classifiers contribute to achieving superior performance
compared to individual LSTM models.

Table 4 Evaluation of the performance of EED (RF) when changing k-fold cross-validation
parameter. The best obtained values are highlighted in bold.

Dataset Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

NSL-KDD 2 96.14 96.47 96.23 96.77

4 95.89 95.35 95.22 95.74

6 96.99 96.01 96.39 97.01

8 97.05 97.38 97.15 97.19

10 96.59 96.39 96.99 96.31

UNSW-NB15 2 93.14 93.47 93.23 93.77

4 94.06 94.25 94.11 94.88

6 94.99 94.28 94.18 94.88

8 95.15 95.88 95.01 95.25

10 93.98 93.19 93.57 93.18

Table 5 Comparison of the accuracy of the proposed ensemble method with individual LSTM
models. The best obtained values are highlighted in bold.

Dataset Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

NSL-KDD LSTM-1 96.15 96.11 96.48 96.19

LSTM-2 96.04 96.15 96.34 96.08

LSTM-3 96.31 96.15 96.49 96.13

EED 97.05 97.38 97.15 97.19

UNSW-NB15 LSTM-1 93.89 93.87 93.11 93.19

LSTM-2 94.28 94.87 94.27 94.18

LSTM-3 94.54 94.15 94.55 94.28

EED 95.15 95.88 95.01 95.25

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 21/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Comparison between EED and existing intrusion detection methods
We assessed the accuracy of the proposed EED method compared to existing machine
learning and deep learning-based intrusion detection methods. The comparative results
are presented in Table 6. Reported results of NSL-KDD dataset demonstrate that EED
achieved the highest accuracy among the compared methods. Our model attained an
accuracy value of 97:05% surpassing all machine learning algorithms such as the decision
tree-based method that achieved an accuracy of 95:17%, the K-nearest neighbor approach
with 94:13% and the SVM method with 94:58%. Similarly, the accuracy achieved by our
model on UNSW-NB15 dataset was 95.15% outperforming other machine learning
algorithms, such as the decision tree-based method with 93:87% and the SVM method
with 94:12%. These results can be explained by the effectiveness of the designed LSTM
layers in building and extracting better input features from the dataset.

Furthermore, when compared to deep learning-based models, our EED model also
demonstrated superior accuracy for both datasets. For example, the Multilayer Perceptron
achieved an accuracy of 94:18%, the CNN achieved 95:77%, and GRU achieved 96:57% for
NSL-KDD dataset. The higher accuracy of our EED model compared to deep-learning-
based methods can be explained by the strength of ensemble learning to combine results of
multiple deep models to enhance the overall performance. Therefore, the obtained results
highlight the effectiveness and superiority of the proposed EED method compared to
existing machine learning and deep learning-based intrusion detection methods. The

Table 6 Comparison of the accuracy of EED with existing intrusion detection methods. The best obtained values are highlighted in bold.

Dataset Type Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

NSL-KDD Machine learning models DT 95.14 95.36 95.48 95.39

RF 96.59 96.57 96.78 96.66

K-NN 94.13 94.01 94.38 94.25

SVM 94.58 94.51 94.79 94.68

Deep learning models MLP 94.18 94.29 94.22 94.38

LSTM 96.15 96.11 96.48 96.19

CNN 95.77 95.47 95.68 95.39

GRU 96.57 96.51 96.98 96.82

EED 97.05 97.38 97.15 97.19

UNSW-NB15 Machine learning models DT 93.87 93.22 93.48 93.79

RF 94.59 94.11 94.18 94.02

K-NN 92.89 92.11 93.38 92.45

SVM 94.12 94.51 94.64 94.84

Deep learning models MLP 94.01 94.28 94.98 94.18

LSTM 93.88 93.28 93.18 93.27

CNN 93.48 93.48 93.24 93.84

GRU 94.54 94.28 94.11 94.57

EED 95.15 95.88 95.01 95.25

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 22/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

utilization of ensemble learning, along with the designed LSTM layers, has resulted in
enhanced intrusion detection capabilities.

Then, we evaluated the running times of the proposed method compared to existing
methods. The comparative results are presented in Fig. 6. Machine learning based method
spends less time on each dataset, but its performance is not as good as other deep learning
methods. Most of deep learning methods are time-consuming on the two datasets.
Although the running time values of deep learning methods are high, their performance is
excellent compared to machine learning. Our method showed a relatively comparable
running times to deep learning-based methods while achieving superior accuracy. Thus,
our proposed EEDmethod is relatively time consuming with enhanced detection accuracy.

Generating local and global explanations
To provide local explanations, we used the force plot which shows the contribution of each
feature in the model’s decision-making process. Figure 7A presents a local explanation for
an average of 10 data records from NSL-KDD datasets, correctly classified by the model as
a DOS attack. The feature same_srv_rate with a value of 0:01 significantly influences the
decision to assign records to this class. A lower value of same_srv_rate increases the
probability of assigning the record to the DoS attack class. Additionally, diff_srv_rate with
a value of 0:08 and count with a value of 103 also contribute to the assignment of records to
the DoS attack class. Figure 7B displays a local explanation for an average of 10 data
records classified as a Probe (PROB) attack. The plot reveals that feature values such as
src_bytes equal to 0, dst_host_rerror_rate equal to 0:25 and dst_bytes equal to 0
predominantly contribute to the decision of classifying a record as a PROB attack. It is
important to note that dst_host_same_srv with a value of 0:52 decreases the probability of
assigning a record to the PROB attack class. Concerning Figure 7C, it illustrates a local
explanation for 10 data records correctly classified as R2L attack. The values of features
such as num_compromised = 2, hot = 3, and src_bytes = 2.42 significantly influence the

Figure 6 Comparison of the running times of EED with existing methods.
Full-size DOI: 10.7717/peerj-cs.2289/fig-6

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 23/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-6
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

decision to classify a record as an R2L attack. Higher values of these features largely
increase the probability of classifying the record as an R2L attack. The last Fig. 7D presents
a local explanation for 10 data records correctly assigned to the User to U2R attack class.
The feature duration with a value of 12 positively contributes to the final classification
indicating that a large duration value increases the likelihood of the connection being
assigned to the U2R attack class. Moreover, dst_bytes = 0 and src_bytes = 7.045 also
positively contribute to this decision.

Figure 8A presents a local explanation for an average of 10 data records from UNSW-
NB15 dataset which are correctly classified by the model as a Generic attack. The feature
sbytes with a value of 1:76 significantly influences the decision to assign records to this
class. A higher value of sttl increases the probability of assigning the record to the Generic
attack class. In addition, smeanwith a value of 638 and ct_dst_src_ltmwith a value of 2 also
contribute to the assignment of records to the Generic attack class. Concerning Fig. 8B, it
shows a local explanation for 10 data records correctly classified as Analysis attack. The
values of features such as dbytes = 0.001, sttl = 62, and dmean = 439 significantly contribute
the decision to classify a record as an Analysis attack. Higher values of these features
largely increase the probability of assigning the record as an Analysis attack. Figure 8C

Figure 7 Force plot of an average of 10 data records fromNSL-KDD dataset, assigned respectively to the attack classes (A) DOS, (B) PROB, (C)
R2L and (D) U2R. Full-size DOI: 10.7717/peerj-cs.2289/fig-7

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 24/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-7
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

illustrates a local explanation for an average of 10 data records classified as a DoS attack.
This figure shows that feature values such as ct_dst_src_ltm equal to 4, sbytes equal to 200
and seman equal to 100 scientifically increase the probability of classifying a record as a
DoS attack. Lastly, Fig. 8D presents a local explanation for 10 data records correctly
assigned to the Backdoors attack class. The feature sbytes with a value of 114 positively
contributes to the final classification indicating that a large value of this feature increases
the likelihood of the data record being classified to the Backdoors attack class. In addition,
a lower value of ct_dst_sport_ltm increases the probability of assigning the record to the
Backdoors attack class.

In order to provide insights into the important features that were crucial in building
attack classes, we build global explanations of EED results by using the SHAP feature-
summary-plot as schematized in Figs. 9 and 10 for NSL-KDD and UNSW-NB15 datasets
respectively. In these plots, each dot corresponds to a data record in the dataset. The
vertical position of a dot represents a specific feature, while the horizontal position
indicates the impact of that feature’s value on the model’s classes (local to each class
individually). The color of each dot represents the value of the corresponding feature for
that record in the dataset, with red indicating high values, purple indicating medium

Figure 8 Force plot of an average of 10 data records from UNSW-NB15 dataset, assigned respectively to the attack classes (A) Generic, (B)
Analysis, (C) DoS and (D) Backdoors. Full-size DOI: 10.7717/peerj-cs.2289/fig-8

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 25/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-8
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Figure 9 Top 20 important features that were crucial in building each attack class from NSL-KDD dataset (A) DOS Class, (B) PROB class, (C)
R2L class and (D) U2R class. Full-size DOI: 10.7717/peerj-cs.2289/fig-9

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 26/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-9
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Figure 10 Top 20 important features that were crucial in building each attack class from UNSW-NB15 dataset (A) Generic class, (B) Analysis
class, (C) DOS class and (D) Backdoors class. Full-size DOI: 10.7717/peerj-cs.2289/fig-10

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 27/32

http://dx.doi.org/10.7717/peerj-cs.2289/fig-10
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

values, and blue indicating low values. Figure 9A focuses on the identification of DOS
attacks. It shows that high values of the src_bytes feature increase the probability of a
connection being classified as a DOS attack by 20% to 30%. Additionally, low values of the
dst_bytes feature contribute to the identification of DOS attacks. Moving to the PROB
attack class in Fig. 9B, explanations reveal that low values of the src_bytes feature increase
the probability of a prediction being classified as a PROB attack by 30%. Moreover, large
values of the dst_host_same_srv feature raise the probability of the connection being
classified as a PROB attack by 10% to 30%.

Concerning Fig. 9C, it demonstrates the global explanation of the R2L attack class. It
indicates that low values of the dst_srv_count feature increase the probability of a
prediction being classified as an R2L attack, with a range of 0% to 30%. Also, large values
of the logged_in feature increase the probability of the connection being classified as an
R2L attack, ranging from 0% to 30%. Lastly, Fig. 9D provides the global explanation of the
U2R attack class. It shows that low values of the dst_srv_count feature increase the
probability of considering records as U2R attacks, ranging from 0% to 30%. Additionally,
large values of both dst_host_same_src and logged_in features increase the probability of
the connection being classified as a PROB attack, with a range of 0% to 20%.

Figure 10A displays the global explanation of Generic attack class. It shows that low
values of the sttl feature increase the probability of a connection being classified as a DOS
attack by 20% to 30%. Moreover, high values of the smean feature influence the
classification of Generic attacks. However, reported results in Fig. 10B show that high
values of the smean feature raise the probability of assigning a connection as an Analysis
attack by 15%. In addition, low values of the sbytes feature increase the probability of the
data record to be classified as an Analysis attack by 20%. Moving to Fig. 10C that gives
explanations of the DoS attack class, reported results show that low values of ct_srv_dst
feature contribute significantly to the classification of data records as a DoS attack, with a
range of 0% to 30%. Similarly, large values of the sbyte feature increase the probability of
the connection to be classified as a DoS attack with a range of 5% to 20%. Finally, Fig. 10D
displays the global explanation of the Backdoors attack class. It indicates that low values of
both sbytes and smean features increase the probability of the connection being classified as
a Backdoors attack, with a range of 20% to 30%. Moreover, large values of the
ct_dst_sport_ltm feature increase the probability of a connection being classified as
Backdoors attacks, ranging from 10% to 20%.

CONCLUSION
We proposed in this work an explainable ensemble deep learning method for an effective
intrusion detection. The proposed method deals with the issues of accuracy and
explainability while detecting attacks. It is based on ensemble deep learning and
explainable artificial intelligence capabilities to build local and global explanations. It
includes two phases: data detector modeling and model explaining. The first phase aims to
identify attacks using three LSTMS classifiers. The results of three classifiers is aggregated
by the random forest algorithm to obtain improved results compared to a single classifier.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 28/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

The second phase is devoted to explain the model’s predictions by generating local and
global explanations using SHAP technique. Empirical experiments performed on real
datasets have shown a significant improvement of both accuracy and explainability.

In this work, the obtained results heavily depend on the quality of the selected features.
The initial feature selection greatly influences both the model outputs and the
interpretability of the results. To enhance the identification and detection of attacks, it
would be beneficial to incorporate a feature selection step that identifies most relevant
features. This would help in improving the accuracy and explainability of the model.

In addition, integrating other XAI techniques, such as Local Rule-based Explanations
(LORE), could further enhance the interpretability of the model. LORE can facilitate the
generation of explanations in the form of simple rules making them intuitive and easily
understandable, even for non-experts. Coupling LORE with SHAP would provide refined
explanations where SHAP will focus on interpreting impacts of individual features while
LORE will focus on generating global rule-based explanations. Furthermore, a potential
future direction for the improvement of this work is to explore the impact of incorporating
more than three classifiers in the ensemble intrusion detection model. By increasing the
number of classifiers, we can further enhance the accuracy of the system. However, it is
essential to evaluate the feasibility and computational costs associated with integrating a
larger number of classifiers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No.
(UJ-24-DR-20621-1). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
University of Jeddah, Jeddah, Saudi Arabia: UJ-24-DR-20621-1.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Chiheb Eddine Ben Ncir conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

. Mohamed Aymen Ben HajKacem performed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

. Mohammed Alattas conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 29/32

http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/aymenhk1/EEDID
- aymenhk1, & Chihebncir. (2024). aymenhk1/EEDID: EEDID V1 (0.0.1.1). Zenodo.

https://doi.org/10.5281/zenodo.13330555.
The NSL-KDD dataset is available at the Information Security Center of Excellence

(INSCOE) at the University of New Brunswick (UNB) in Canada: https://github.com/
Mamcose/NSL-KDD-Network-Intrusion-Detection/tree/master.

The UNSW-NB15 dataset is available at The Australian Centre for Cyber Security
(ACCS) at the University of New South Wales (UNSW) in Canberra, Australia: https://
research.unsw.edu.au/projects/unsw-nb15-dataset.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2289#supplemental-information.

REFERENCES
Aburomman AA, Reaz MBI. 2016. A novel SVM-kNN-PSO ensemble method for intrusion

detection system. Applied Soft Computing 38:360–372 DOI 10.1016/j.asoc.2015.10.011.

Ahmad Z, Shahid Khan A, Wai Shiang C, Abdullah J, Ahmad F. 2021. Network intrusion
detection system: a systematic study of machine learning and deep learning approaches.
Transactions on Emerging Telecommunications Technologies 32:e4150 DOI 10.1002/ett.4150.

Azimjonov J, Kim T. 2024. Designing accurate lightweight intrusion detection systems for IoT
networks using fine-tuned linear SVM and feature selectors. Computers & Security 137:103598
DOI 10.1016/j.cose.2023.103598.

Baldi P, Sadowski PJ. 2013. Understanding dropout. In: Advances in Neural Information
Processing Systems, 26.

Barnard P, Marchetti N, DaSilva LA. 2022. Robust network intrusion detection through
explainable artificial intelligence (XAI). IEEE Networking Letters 4(3):167–171
DOI 10.1109/LNET.2022.3186589.

Bashaiwth A, Binsalleeh H, AsSadhan B. 2023. An explanation of the LSTMmodel used for DDoS
attacks classification. Applied Sciences 13(15):8820 DOI 10.3390/app13158820.

Bjorck N, Gomes CP, Selman B, Weinberger KQ. 2018. Understanding batch normalization.
In: Advances in Neural Information Processing Systems, 31.

Cao B, Li C, Song Y, Qin Y, Chen C. 2022.Network intrusion detection model based on CNN and
GRU. Applied Sciences 12(9):4184 DOI 10.3390/app12094184.

Debicha I, Debatty T, Mees W, Dricot J-M. 2021. Efficient intrusion detection using evidence
theory. ArXiv preprint DOI 10.48550/arXiv.2103.08585.

Dhanabal L, Shantharajah S. 2015. A study on nsl-kdd dataset for intrusion detection system
based on classification algorithms. International Journal of Advanced Research in Computer and
Communication Engineering 4(6):446–452.

Dina AS, Siddique A, Manivannan D. 2022. Effect of balancing data using synthetic data on the
performance of machine learning classifiers for intrusion detection in computer networks. IEEE
Access 10(8):96731–96747 DOI 10.1109/ACCESS.2022.3205337.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 30/32

https://github.com/aymenhk1/EEDID
https://doi.org/10.5281/zenodo.13330555
https://github.com/Mamcose/NSL-KDD-Network-Intrusion-Detection/tree/master
https://github.com/Mamcose/NSL-KDD-Network-Intrusion-Detection/tree/master
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.7717/peerj-cs.2289#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2289#supplemental-information
http://dx.doi.org/10.1016/j.asoc.2015.10.011
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1016/j.cose.2023.103598
http://dx.doi.org/10.1109/LNET.2022.3186589
http://dx.doi.org/10.3390/app13158820
http://dx.doi.org/10.3390/app12094184
http://dx.doi.org/10.48550/arXiv.2103.08585
http://dx.doi.org/10.1109/ACCESS.2022.3205337
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Gozzoli A. 2018. Practical guide to hyperparameters optimization for deep learning models San
Francisco: FloydHub.

Halbouni A, Gunawan TS, Habaebi MH, Halbouni M, Kartiwi M, Ahmad R. 2022. CNN-LSTM:
hybrid deep neural network for network intrusion detection system. IEEE Access
10(11):99837–99849 DOI 10.1109/ACCESS.2022.3206425.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Jeyanthi D, Indrani B. 2023. IoT-based intrusion detection system for healthcare using
RNNBiLSTM deep learning strategy with custom features. Soft Computing 27(16):1–16
DOI 10.1007/s00500-023-08536-8.

Keshk M, Koroniotis N, Pham N, Moustafa N, Turnbull B, Zomaya AY. 2023. An explainable
deep learning-enabled intrusion detection framework in IoT networks. Information Sciences
639(7):119000 DOI 10.1016/j.ins.2023.119000.

Khan IA, Moustafa N, Pi D, Sallam KM, Zomaya AY, Li B. 2021. A new explainable deep
learning framework for cyber threat discovery in industrial iot networks. IEEE Internet of Things
Journal 9(13):11604–11613 DOI 10.1109/JIOT.2021.3130156.

Khraisat A, Gondal I, Vamplew P, Kamruzzaman J. 2019. Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity 2:1–22 DOI 10.1186/s42400-019-0038-7.

Koumakis L. 2020. Deep learning models in genomics; are we there yet? Computational and
Structural Biotechnology Journal 18:1466–1473 DOI 10.1016/j.csbj.2020.06.017.

Laghrissi F, Douzi S, Douzi K, Hssina B. 2021. Intrusion detection systems using long short-term
memory (LSTM). Journal of Big Data 8(1):65 DOI 10.1186/s40537-021-00448-4.

Lansky J, Ali S, Mohammadi M, MajeedMK, Karim SHT, Rashidi S, Hosseinzadeh M, Rahmani
AM. 2021. Deep learning-based intrusion detection systems: a systematic review. IEEE Access
9:101574–101599 DOI 10.1109/ACCESS.2021.3097247.

Li W, Yi P, Wu Y, Pan L, Li J. 2014. A new intrusion detection system based on KNN classification
algorithm in wireless sensor network. Journal of Electrical and Computer Engineering
2014(5):1–8 DOI 10.1155/2014/240217.

Liao HJ, Lin CHR, Lin YC, Tung KY. 2013. Intrusion detection system: a comprehensive review.
Journal of Network and Computer Applications 36:16–24 DOI 10.1016/j.jnca.2012.09.004.

Liu H, Lang B. 2019.Machine learning and deep learning methods for intrusion detection systems:
a survey. Applied Sciences 9(20):4396 DOI 10.3390/app9204396.

LiuW,Wen Y, Yu Z, YangM. 2016. Large-margin softmax loss for convolutional neural networks.
ArXiv preprint DOI 10.48550/arXiv.1612.02295.

Lundberg SM, Lee SI. 2017. A unified approach to interpreting model predictions. In: Advances in
Neural Information Processing Systems, Vol. 30.

Moustafa N, Slay J. 2015. UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information
Systems Conference (MilCIS), Piscataway: IEEE, 1–6.

Muhuri PS, Chatterjee P, Yuan X, Roy K, Esterline A. 2020. Using a long short-term memory
recurrent neural network (LSTM-RNN) to classify network attacks. Information 11(5):243
DOI 10.3390/info11050243.

Neupane S, Ables J, Anderson W, Mittal S, Rahimi S, Banicescu I, Seale M. 2022. Explainable
intrusion detection systems (X-IDS): a survey of current methods, challenges, and opportunities.
IEEE Access 10(7):112392–112415 DOI 10.1109/ACCESS.2022.3216617.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 31/32

http://dx.doi.org/10.1109/ACCESS.2022.3206425
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/s00500-023-08536-8
http://dx.doi.org/10.1016/j.ins.2023.119000
http://dx.doi.org/10.1109/JIOT.2021.3130156
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1016/j.csbj.2020.06.017
http://dx.doi.org/10.1186/s40537-021-00448-4
http://dx.doi.org/10.1109/ACCESS.2021.3097247
http://dx.doi.org/10.1155/2014/240217
http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.3390/app9204396
http://dx.doi.org/10.48550/arXiv.1612.02295
http://dx.doi.org/10.3390/info11050243
http://dx.doi.org/10.1109/ACCESS.2022.3216617
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

Nguyen MT, Kim K. 2020. Genetic convolutional neural network for intrusion detection systems.
Future Generation Computer Systems 113(11):418–427 DOI 10.1016/j.future.2020.07.042.

Oseni A, Moustafa N, Creech G, Sohrabi N, Strelzoff A, Tari Z, Linkov I. 2022. An explainable
deep learning framework for resilient intrusion detection in IoT-enabled transportation
networks. IEEE Transactions on Intelligent Transportation Systems 24:1000–1014
DOI 10.1109/TITS.2022.3188671.

Qaffas AA, Ben HajKacem MA, Ben Ncir CE, Nasraoui O. 2023a. An explainable artificial
intelligence approach for multi-criteria ABC item classification. Journal of Theoretical and
Applied Electronic Commerce Research 18(2):848–866 DOI 10.3390/jtaer18020044.

Qaffas AA, Hajkacem MAB, Ncir CEB, Nasraoui O. 2023b. Interpretable multi-criteria abc
analysis based on semi-supervised clustering and explainable artificial intelligence. IEEE Access
11:43778–43792 DOI 10.1109/ACCESS.2023.3272403.

Ribeiro MT, Singh S, Guestrin C. 2016. “Why should i trust you?” explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1135–1144.

Rusiecki A. 2019. Trimmed categorical cross-entropy for deep learning with label noise. Electronics
Letters 55(6):319–320 DOI 10.1049/el.2018.7980.

Sahu S, Mehtre BM. 2015. Network intrusion detection system using j48 decision tree. In: 2015
International Conference on Advances in Computing, Communications and Informatics
(ICACCI), Piscataway: IEEE, 2023–2026.

Sathesh DA. 2019. Enhanced soft computing approaches for intrusion detection schemes in social
media networks. Journal of Soft Computing Paradigm 1(2):69–79 DOI 10.36548/jscp.2019.2.002.

Sharma B, Sharma L, Lal C, Roy S. 2024. Explainable artificial intelligence for intrusion detection
in iot networks: a deep learning based approach. Expert Systems with Applications 238:121751
DOI 10.1016/j.eswa.2023.121751.

Shettar P, Kachavimath AV, Mulla MM, Hanchinmani G. 2021. Intrusion detection system using
mlp and chaotic neural networks. In: 2021 International Conference on Computer
Communication and Informatics (ICCCI). Piscataway: IEEE, 1–4.

Soheily-Khah S, Marteau PF, Béchet N. 2018. Intrusion detection in network systems through
hybrid supervised and unsupervised machine learning process: a case study on the iscx dataset.
In: 2018 1st International Conference on Data Intelligence and Security (ICDIS). Piscataway:
IEEE, 219–226.

Wang M, Zheng K, Yang Y, Wang X. 2020. An explainable machine learning framework for
intrusion detection systems. IEEE Access 8:73127–73141 DOI 10.1109/ACCESS.2020.2988359.

Younisse R, Ahmad A, Abu Al-Haija Q. 2022. Explaining intrusion detection-based convolutional
neural networks using shapley additive explanations (SHAP). Big Data and Cognitive
Computing 6(4):126 DOI 10.3390/bdcc6040126.

Zhang J, Zhang X, Liu Z, Fu F, Jiao Y, Xu F. 2023. A network intrusion detection model based on
bilstm with multi-head attention mechanism. Electronics 12(19):4170
DOI 10.3390/electronics12194170.

Ben Ncir et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2289 32/32

http://dx.doi.org/10.1016/j.future.2020.07.042
http://dx.doi.org/10.1109/TITS.2022.3188671
http://dx.doi.org/10.3390/jtaer18020044
http://dx.doi.org/10.1109/ACCESS.2023.3272403
http://dx.doi.org/10.1049/el.2018.7980
http://dx.doi.org/10.36548/jscp.2019.2.002
http://dx.doi.org/10.1016/j.eswa.2023.121751
http://dx.doi.org/10.1109/ACCESS.2020.2988359
http://dx.doi.org/10.3390/bdcc6040126
http://dx.doi.org/10.3390/electronics12194170
http://dx.doi.org/10.7717/peerj-cs.2289
https://peerj.com/computer-science/

	Enhancing intrusion detection performance using explainable ensemble deep learning
	Introduction
	Related works
	Background and preliminaries
	Proposed explainable ensemble deep learning method for intrusion detection
	Experiments and results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

