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ABSTRACT
Large amounts of machine learning methods with condensed names bring great
challenges for researchers to select a suitable approach for a target dataset in the area
of academic research. Although the graph neural networks based on the knowledge
graph have been proven helpful in recommending a machine learning method for a
given dataset, the issues of inadequate entity representation and over-smoothing of
embeddings still need to be addressed. This article proposes a recommendation
framework that integrates the feature-enhanced graph neural network and an anti-
smoothing aggregation network. In the proposed framework, in addition to utilizing
the textual description information of the target entities, each node is enhanced
through its neighborhood information before participating in the higher-order
propagation process. In addition, an anti-smoothing aggregation network is designed
to reduce the influence of central nodes in each information aggregation by an
exponential decay function. Extensive experiments on the public dataset demonstrate
that the proposed approach exhibits substantial advantages over the strong baselines
in recommendation tasks.

Subjects Data Mining and Machine Learning, Data Science, Text Mining, Neural Networks
Keywords Knowledge graph, Machine learning method recommendation, An anti-smoothing
aggregation network, A feature-enhanced graph neural network, Text-based collaborative filtering

INTRODUCTION
In the last decades, the field of machine learning has witnessed a surge in the emergence of
numerous machine learning methods and datasets. The overwhelming amounts of
machine learning methods have resulted in severe information overload. Thus, it becomes
difficult for researchers to select the appropriate machine learning approach for a given
dataset in scientific research. Therefore, some efforts must be taken to automatically
recommend the most suitable machine learning method for a target dataset.

Actually, recommender systems (Guo et al., 2020;Wang et al., 2024) provide an effective
solution to the information overload problem. In recent years, knowledge graph-based
recommender systems have achieved great success in the fields of news recommendation
(Wang et al., 2018;Qiu, Hu &Wu, 2022), movie recommendation (Cheng et al., 2020), and
commodity recommendation (Ma et al., 2019; Li et al., 2023). Inspired by this, researchers
have attempted to recommend the most suitable machine learning method for a target
dataset by incorporating knowledge graph. For example, a description-enhanced approach
(Cao et al., 2021) was devised by leveraging the knowledge graph and descriptive

How to cite this article Zhang X, Guo J. 2024. A feature-enhanced knowledge graph neural network for machine learning method
recommendation. PeerJ Comput. Sci. 10:e2284 DOI 10.7717/peerj-cs.2284

Submitted 9 April 2024
Accepted 5 August 2024
Published 28 August 2024

Corresponding author
Xin Zhang, zhangxin@hfuu.edu.cn

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2284

Copyright
2024 Zhang and Guo

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2284
mailto:zhangxin@�hfuu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2284
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


information as the auxiliary information to improve the quality and efficiency of picking
up the machine learning method for a target dataset. To further improve the performance
of machine learning method recommendation, cross-modal knowledge graph contrastive
learning (Cao et al., 2022) maximized the consistency of graph structure modality and
description text modality by introducing contrastive learning. However, the graph neural
network, a core component in the knowledge graph-based recommendation method,
needs more support in fully utilizing the node feature information to further improve the
recommendation efficiency in machine learning applications.

Figure 1 in Cao et al. (2021) shows that the rich connections in the machine learning
knowledge graph can be utilized to recommend the appropriate method for the target
dataset. For example, theMovieLens-20M dataset is taken as a seed node in this figure. The
first-order neighbors of MovieLens-20M include its relevant tasks (e.g., Recommender
Systems) and its adopted methods (e.g., Knowledge Graph Convolutional Network
(KGCN)). The first-order neighbors provide information about which tasks MovieLens-
20M is suitable for and which methods it is used by. The second layer captures entities that
overlap with interactive items such as authors, papers, Bing-News, and Last-FM. These
entities are connected to the target entity through other entities and have some
relationship and similarity with the target entity. Reasoning through the connectivity
between entities helps to generate correct recommendations, which is the key to knowledge
graph-based recommend systems (Wang et al., 2019b). However, in most knowledge
graph-based recommendation methods, each node is only represented by its initial
representation, and informative messages carried by its neighbors are ignored. Actually,
more hidden messages are carried by the neighbors of each node. For example, when the
aggregation process involves the node Last-FM, its initial representation, which only
contains its name, is insufficient. The node representation should convey other relevant
messages, such as information about the method MKR applied on the dataset Last-FM.
Furthermore, as the number of layers increases, the embedding of each entity accumulates
an expanding amount of information. This accumulation tends to obscure the fine-grained
details of the node itself, making it difficult to distinguish from the remaining nodes, which
is the embedding over-smoothing (Li, Han & Wu, 2018) issue.

Inspired by these observations, the article proposes the feature-enhanced knowledge
graph neural networks for machine learning method recommendation (FEGNN). The
FEGNNmethod enhances the structural information of the knowledge graph by enriching
entity representation and alleviating the effects of over-smoothing, thereby improving the
recommendation effectiveness.

The contributions of this article are listed as follows.
• Although the representation of each target entity can be enhanced by the textual

description information in the machine learning knowledge graph, a closer relationship
between the first-order neighbors of a node and the node itself is captured. The
representation for each node is enhanced through its neighborhood information before
participating in the higher-order propagation of the target entity process.

• A novel framework that integrates the feature-enhanced graph neural network and an
anti-smoothing aggregation network is devised. Over-smoothing issue may be caused by
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the multiple stacks of several graph neural network layers. Different from DEKR, to
prevent the representation of the target entity from being over-smoothing, an exponential
decay function is incorporated into FEGNN to control the influence of the original central
node in the information transfer process.

• Extensive experiments are conducted on the public real datasets. The experimental
results demonstrate that the proposed FEGNN method improves Top-K recommendation
and click-through-rate prediction over the strong baselines.

RELATED WORK
This section introduces graph neural networks, knowledge graphs and knowledge graph-
based recommendation methods.

Graph neural networks
Graph neural networks (GNN) are widely applied in recommendation systems by utilizing
auxiliary graph-structured information. GNN offers a unified framework to manage the
substantial data in recommender systems and explicitly encode critical collaborative
signals to enhance the representations of users and items. Numerous GNN variants have
been proposed in recent years. For instance, dynamic representation learning via recurrent
graph neural networks (Zhang et al., 2023) designed a one-stage model that integrates a
recurrent neural network into GNN to generate compact representations. Gated recursion-
based graph neural network (Ge, Zhao & Zhao, 2022) proposed a gated recursive algorithm
in order to address the node aggregation issue and extract deep dependency features
among nodes. Multi-relational graph attention networks (Li et al., 2022b) captured more
complex semantic relationships between entities through an attention mechanism and
embedding edge relationship types. Although GNN-based recommendation systems have
enhanced the effectiveness of recommendation, it is necessary to exploit more
comprehensive graph structures and semantic relationships between entities. Thus,
researchers attempt to apply the graph neural network in knowledge graphs to further
improve the recommendation performance.

Knowledge graph-based recommender systems
A knowledge graph is a graphical database that is specifically crafted to organize, represent,
and store structured knowledge (Li, Qu & Wang, 2023). Its fundamental concept was
visually representing real-world information and concepts with a triple <entity,
relationship, entity>. A knowledge graph is utilized in various domains, such as question
answering, text classification and recommendation systems (Qiu et al., 2020; Zhu et al.,
2023; Cui et al., 2022b; Zhang et al., 2022b). Recommendation methods based on
knowledge graphs can be divided into three categories: embedding-based, path-based and
propagation-based methods.

Embedding-based methods. The embedding-based methods leveraged knowledge
graph information to enhance the representation of each entity. The entities and
relationships in the knowledge graph were encoded as low-dimensional vectors in the
embedding-based methods to preserve the inherent graph structure. For instance,
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personalized recommendation system based on knowledge embedding and historical
behavior (Hui et al., 2022) used self-attention to determine user preferences and integrated
knowledge graph embeddings with user behavior. The deep interest network based on
knowledge graph embedding (Zhang et al., 2022a) addressed the limitations of static
interaction matrices by combining gated recurrent units with an attention mechanism. A
knowledge graph-based approach for visualization recommendation (Li et al., 2022a)
enhanced the performance of TransE by replacing evidently incorrect triples with
self-adversarial negative sampling. Despite the simplicity and flexibility, these approaches
overlooked the complex semantic relationships between entities in the knowledge graph,
which leads to the fact that the entity expression in the knowledge graph was monotonous.

Path-based methods. The path-based approach enhanced recommendations by
identifying connectivity similarities among paths from users to items. This was achieved by
constructing a user-item graph and leveraging entity connectivity to enhance
recommendation effectiveness while preserving interpretability. For instance, reinforced
sequential learning with gated recurrent unit (Cui et al., 2022a) combined reinforcement
path reasoning network components and gated recurrent units to enhance path reasoning
capabilities. Reinforcement learning framework for multi-level recommendation reasoning
(Wang et al., 2022) addressed local optimization issues by incorporating abstract markov
decision processes and developed a multi-layer path extraction algorithm to improve
model performance. Path language modeling recommendation (Geng et al., 2022)
predicted new paths based on higher joint path probability allocation scores, effectively
extending the reachability of items that traditional methods cannot achieve. However,
valuable information may be lost by separating complex user-item connectivity into
discrete linear paths in the path-based recommendation methods.

Propagation-based methods. The propagation-based recommendation methods
optimized the utilization of knowledge graph information by integrating connectivity
information and semantic representations of entities and relationships. These methods
utilized embedding propagation, which aggregated the embeddings of multi-hop neighbor
nodes in the knowledge graph, to enhance entity representation. These methods facilitated
the anticipation of user preferences by comprehensively representing users and items. For
instance, knowledge graph convolutional networks (Wang et al., 2019b) and knowledge
graph convolutional networks with label smoothness (Wang et al., 2019c) leveraged graph
convolutional networks to compute neighborhood-propagated embeddings of items in
knowledge graphs. Description enhanced knowledge graph recommendation (Cao et al.,
2021) overcame the limitations of lacking textual descriptive information by combining
knowledge graph-based and text-based approaches. Cross-modal knowledge graph
contrastive learning (Cao et al., 2022) learned node representations by considering
descriptive attributes and structural connections as two modalities and maximizing the
consistency between them. Knowledge-adaptive contrastive learning (Wang et al., 2023)
learned the generated user-item interaction view and knowledge graph view by
introducing contrastive learning. These techniques took the entire knowledge graph as
input, obtaining the embedding for each entity by aggregating information from all its
neighbors. However, the recommendation performance may be hurt by the lack of
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constraints between the target entity and its neighbors since the embedding learning
process inevitably introduces noise (less informative neighbors) and involves substantial
computation (a large number of neighbors).

The influence of direct neighbors during higher-order propagation is ignored in these
propagation-based methods. In this article, the features of nodes involved in the high-
order propagation process of the target entity are enhanced through their first-order
neighbor information. An anti-smoothing aggregation network is designed to reduce the
impact of over-smoothing.

PROBLEM FORMULATION
This section outlines the formulation of the FEGNN problem. The article defines the
machine learning datasets as D ¼ d1; d2; . . . ; dMf g and the machine learning methods as
M ¼ m1;m2; . . . ;mNf g. The dataset-method interaction matrix
Y ¼ fydmjd 2 D;m 2 Mg can be represented as follows:

ydm ¼ 1; if ðd;mÞ interaction record exists;
0; otherwise:

�
(1)

The knowledge graph G consists of numerous triples, expressed as
G ¼ f h; r; tð Þjh; t 2 e; r 2 Rg, where h is the head entity, t is the tail entity, and r is the
relationship between them. e and R represent the sets of entities and relationships in the
knowledge graph. For instance, the triple (Last-FM, used, KGCN) indicates that the Last-
FM dataset is used by the KGCN method, and the KGCN method employs the Last-FM
dataset conversely. This article uses the rich auxiliary information in the knowledge graph
by linking the target entities to other machine learning knowledge graph entities. Two
types of nodes in the knowledge graph are defined. Specifically, nodes with descriptive
information are defined as descriptive nodes et , and the remaining entities are general
nodes eg1; e

g
2; . . . ; e

g
n

� �
. Descriptive nodes are excluded from the outward extension

process.
The representations of nodes involved in target entity propagation are enhanced by

aggregating their direct neighbor information in the knowledge graph. These feature-
enhanced nodes are denoted as G ¼ g1; g2; . . . ; gif g. The ultimate representation of the
target entity is derived from these feature-enhanced nodes.

Furthermore, the textual descriptive information is incorporated as the description-
enhanced features for both dataset and method entities in the machine learning knowledge
graph. Compared with the traditional knowledge graph, the fundamental concepts and
operational attributes can be obtained through these textual descriptive messages.
Specifically, td 2 T and tm 2 T represent the descriptive information of the dataset and the
method, respectively. T is a set of descriptive documents.

The machine learning recommendation task involves predicting the interaction
probability between a given dataset and the methods by leveraging the auxiliary
information from the machine learning knowledge graph. This article aims to
predict the interaction probability between datasets and methods for applications of
lacking interaction records. This can be expressed as ŷdm ¼ F d;m;�ð Þ, where ŷdm denotes
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the interaction probability, and � represents a parameter set within the predictor
function F .

METHODS
Overall framework
The proposed FEGNN approach consists of two main components. The first component is
a graph neural network that integrates the feature-enhanced graph neural network and an
anti-smoothing aggregation network by exploring the high-order connectivity of entities in
the machine learning knowledge graph. The other component is a deep text-based
collaborative filtering network that captures linear and nonlinear textual content
interactions. Finally, the outcomes of the two components are integrated to predict the
interaction probability of a particular target entity. The proposed FEGNN approach is
illustrated in Fig. 1.

All of the parts mentioned below contribute to the novel component, namely
“feature-enhanced knowledge graph neural network”. The first part of FEGNN is “Linking
and Propagating”. It can be easily observed that the proposed method takes the target
dataset and method as inputs. In the “Linking and Propagating” part, the target dataset and
candidate machine learning method are initially linked to the corresponding entity nodes
in the machine learning knowledge graph G. The linked entities ed and em serve as the seed
nodes. Different from the propagation process in DEKR, the features of general nodes
involved in the propagation process for the target entity are enhanced by their first-order
neighborhood information, as shown in yellow. The article defines these feature-enhanced
nodes as g1; g2; . . . ; gif g. Then, the target node extends progressively to higher-order
neighbor nodes through these feature-enhanced ones. This article designs an anti-
smoothing aggregation network to acquire entity representations to predict the
probability ŷ1.

Similar to DEKR, the article uses the text-based deep collaborative network component
to capture interaction information in the textual descriptive information and predict the
probability ŷ2. Both components determine the ultimate interaction probability of the
target dataset and method.

Feature-enhanced knowledge graph neural network
Feature enhancement. On the basis of the knowledge graph, graph neural networks
provide a method of further exploiting the rich connections between entities. Considering
the close relationship between a node and its direct neighbors, these neighbors may convey
informative messages. For instance, the propagated node represents a machine learning
method, and its embedding information in the traditional knowledge graph method may
only include the name, which is insufficient. More messages in the knowledge graph
method such as its associated task, datasets and authors, are needed to explain a machine
learning method better. These additional messages can be obtained from its direct
neighbors in the knowledge graph. Therefore, the article actively enhances the features of
these general nodes e1; e2; . . . ; eif g involved in the propagation process of the target entity
as feature-enhanced nodes g1; g2; . . . ; gif g by aggregating information from itself and its
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direct neighbors. Then, the target entity is propagated over these feature-enhanced nodes
to obtain a more comprehensive higher-order representation.

Nevertheless, the significance of the neighbors for a target entity should not be
uniformly assessed. For example, given a specific dataset, a machine learning method
experimented on the dataset theoretically provides more impact than the author with
which the dataset has interacted. This distinction arises because the methods using the
same dataset typically address similar tasks, while authors may be involved in diverse
fields. Therefore, it is crucial to distinguish the importance of the neighbors. In this article,
the following formula is designed to calculate the attention scores for different relations (r)
of node (e):

~pr;et ¼
exp pr;et

� �
P

et2N eð Þ exp pr;et
� � : (2)

where et is the neighbor of node e, ~pr;et represents the relevant weight of neighbors, and the
higher weights indicate the necessary to transmit more information for the target node. As
each node has a varying number of neighbors, a fixed sampling strategy is employed to
enhance the training efficiency.

Figure 1 Framework of feature-enhanced knowledge graph neural networks for machine learning method recommendation (FEGNN).
Full-size DOI: 10.7717/peerj-cs.2284/fig-1
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A weighted summation approach is used to calculate the representation of
neighborhood information. This approach utilizes correlation weights derived from Eq. (2)
denoted as Nei.

eNei ¼
X

et2N eð Þ ~pr;et et: (3)

Thus, more informative messages are exploited by means of integrating the neighbor
information and its own information. The calculation formula is as follows:

g ¼ LeakyReLU W0 e 0ð Þ þ e 0ð Þ
Nei

� �
þ b0

� �
: (4)

Here, LeakyRelu is adopted as the activation function, which can handle both positive
and negative signals. Wo and b0 are the learnable parameters.

Consequently, high-order representations of entities are derived based on these
feature-enhanced nodes g1; g2; . . . ; gif g.

Anti-smoothing aggregation networks
One-hop Anti-smoothing Propagation. A single propagation layer is taken as an example
to better explain the mechanism of the anti-smoothing aggregation network. A specific
dataset-method pair is treated as the seed node in this illustrated example. Once these
nodes are mapped to the corresponding nodes ed � emð Þ in the knowledge graph,
connections can be established with other entities (first-order neighbors) through various
relationships. Distinguishing the contributions of different relations (r) for the
feature-enhanced node (g) is essential. Therefore, the following formula is used to calculate
the contribution weights:

~pdr;g ¼
exp pdr;g

� �
P

g2N mð Þ exp pdr;g

� � : (5)

~pmr;g ¼
exp pmr;g

� �
P

g2N dð Þ exp pmr;g

� � (6)

Here, ~pdr;g and ~pmr;g denote the correlation weights calculated by N mð Þ and N dð Þ with
reference to gd and gm, respectively.

Then, a weighted summation is adopted to indicate the aggregated neighborhood
information using the formula below:

gN dð Þ ¼
X

g2N dð Þ ~p
d
r;g g (7)

gN mð Þ ¼
X

g2N mð Þ ~p
m
r;g g: (8)

In the following step, the node’s self-information is updated by merging the information
of its neighbors during the propagation process to accumulate more enriched messages

Zhang and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2284 8/21

http://dx.doi.org/10.7717/peerj-cs.2284
https://peerj.com/computer-science/


with each convolutional layer. At the same time, node features are augmented to provide
richer information for the FEGNN.

However, these may exacerbate the issue of over-smoothing. Considering these factors,
an anti-smooth aggregation network is proposed for the aggregation process. This
structure can systematically reduce the effect of self-information during each aggregation.
The goal is to prevent an undue reliance on progressively enriched self-information to
alleviate the problem of over-smoothing. The calculation formula for the anti-smoothing
structure is shown below.

al ¼ a � e� lþ1ð Þ (9)

where l is denoted as the current number of propagation layers, and a is a decay parameter
that adjusts smoothing. After aggregating neighborhood information, the final
representation in one-hop propagation for a given entity is shown as follows.

g 1ð Þ
d ¼ LeakyReLU W0 a0 � g 0ð Þ

d þ g 0ð Þ
N dð Þ

� �
þ b0

� �
(10)

g 1ð Þ
m ¼ LeakyReLU W0 a0 � g 0ð Þ

m þ g 0ð Þ
N mð Þ

� �
þ b0

� �
(11)

where W0 and b0 are the learnable parameters, LeakyReLU is adopted as the activation
function. g 0ð Þ

d and g 0ð Þ
N dð Þ denote the original representations of the node and its neighbors,

respectively.
Higher-order propagation. The ultimate representation of the entity is acquired by

multiple layers of propagation to capture more complex connection details and
information from distant neighbors. The computational formula is expressed as follows.

g lð Þ
d ¼ LeakyReLU Wl�1 al�1 � g l�1ð Þ

d þ g l�1ð Þ
N dð Þ

� �
þ bl�1

� �
(12)

g lð Þ
m ¼ LeakyReLU Wl�1 al�1 � g l�1ð Þ

m þ g l�1ð Þ
N mð Þ

� �
þ bl�1

� �
: (13)

In this equation, Wl�1 represents the trainable weight matrix, and LeakyReLU is
configured as the activation function. g l�1ð Þ denotes the entity representation derived from
the preceding aggregation layer, and the higher-order representation for a target entity is
obtained by multiple high-order propagations.

Prediction layer. After multiple hops of aggregation, the final representations for the
target dataset and machine learning method, namely g lð Þ

d , g lð Þ
m , are derived by incorporating

information from its l-hop neighbors. The interaction probability between the target
dataset and the machine learning method is predicted by leveraging the graph neural
network, as shown below.

ŷ1 ¼ r g lð Þ
d

� �T
g lð Þ
m

	 

(14)

where r is the sigmoid activation function.
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Text-based collaborative filtering
The graph neural network captures the structure information by utilizing auxiliary
knowledge graph data. However, relying solely on the graph structure poses a challenge
due to the brevity of the illustration of machine learning methods and datasets, which leads
to factual inconsistencies. For instance, the path in (MovieLens-20M, dataset. method,
DeepFM), (DeepFM, method. dataset, Bing News), (Bing News, dataset. method, DKN)
might incorrectly suggest MovieLens-20M is suitable for DKN. Actually, DKN is a text-
based recommendation method, while MovieLens-20M is a film dataset without effective
textual information.

This article uses a content-based deep collaborative filtering network to predict the
interaction probability for the target dataset and method. Note that the description nodes
of core entities are not engaged in the propagation to higher-order neighbors. For the
textual description related to the target entity, the n words of the original description are
represented as t = w1:n = [w1, w2, …,wn]. The matrix s1:n 2 Rp�n signifies the embedding
matrix of the sentence. Pretrained words to vectors are produced on GloVe (Pennington,
Socher & Manning, 2014), the initial embedding representation for each word in which
global statistical information and local contextual features are contained. The sentence
representation st 2 Rp is derived by aggregating the average of the word representations.

For the descriptive information etdð Þ and etmð Þ associated with a given dataset-method
pair g dð Þ-g mð Þ, the low-dimensional vectors vd and vm are obtained through matrix
transformation. This process can be expressed as follows.

vd ¼ Wdsd (15)

vm ¼ Wmsm: (16)

To further explore the interaction between the dataset and the machine learning
method, a neural collaborative filtering framework (He et al., 2017) is utilized in this article.
Generalized matrix factorization captures linear interactions in the descriptive information
for the dataset and method. Simultaneously, a multi-layer perceptron layer captures
nonlinear interactions in the descriptive information. A concept similar to matrix
factorization is employed to extract linear interaction between the dataset and method
description features.

fl ¼ vd
K

vm (17)

ŷl ¼ r GTfl

� �
: (18)

Here,
J

denotes the element-wise product. GT denotes the learnable weight matrix. A
sigmoid activation function is adopted as r.

Meanwhile, the two feature vectors vd and vm are concatenated to capture nonlinear
interaction features through a multi-layer perceptron. The formulation is described as
follows.

ho ¼ vd k vm (19)
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fnl ¼ hn ¼ r WT
n hn�1 þ bn

� �
(20)

ŷnl ¼ r MTfnl

� �
: (21)

Here k donates the concatenation operation of two vectors, and r represents the
sigmoid activation function. MT denotes the learnable weight matrix.

Ultimately, the two hidden vectors of the last layer of both networks are concatenated as
inputs for the neural matrix factorization layer. Both linear and non-linear features are
integrated in the text-based collaborative filtering component. The interaction probability
between the target dataset and the machine learning method is predicted as follows.

ŷ2 ¼ r WT
t fl k fnlð Þ� �

: (22)

Prediction
After incorporating the two critical components in FEGNN, the embedding
representations for both the dataset and the method are obtained. This involved utilizing
both the graph structure and text description information. As the two embedding
representations are obtained through different learning methods, our approach enables the
model to learn and optimize these representations independently. Subsequently, the final
predicted probability is expressed as follows.

ŷdm ¼ WT r g hð Þ
d

� �T
g hð Þ
m

	 

þ r WT

t fl k fnlð Þ� �	 

: (23)

The loss function is defined as follows:

L ¼
X

d2D;m2M J ŷ1; ydm
� �þ J ŷ2; ydm

� �� �þ k k � k (24)

where J is the cross-entropy function, when the actual output ŷ1 or ŷ2 is close to the
desired output ydm, the value of the cost function is close to zero. The cross-entropy
function J helps to accelerate the speed of updating the weights. k controls the
regularisation strength and � is the set of parameters.

EXPERIMENTS
In this section, the performance of the proposed FEGNN method is evaluated by
conducting experiments on the Machine Learning Dataset to address the following three
questions.

1) How does the proposed FEGNN behave compared to the existing state-of-the-art
baseline models?

2) Which part of FEGNN contributes to better performance?

3) What is the influence of the parameter settings on the effectiveness of the proposed
FEGNN method?
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Dataset and preprocessing
The Machine Learning Dataset (Cao et al., 2021) utilized in this article includes machine
learning-related datasets, methods, attributes, and relevant entities sourced from open
academic platforms such as Paperswithcode and GitHub. Actually, 19 areas are involved in
the dataset, such as computer vision, natural language processing, reinforcement learning,
and so on. The detailed messages about the dataset are listed in Table 1. Descriptive
information for the datasets and methods is extracted from the context of the tasks using
the datasets, the titles or abstracts of articles related to the methods. Table 2 presents the
fundamental statistics of the dataset.

Baselines
This article evaluates the proposed FEGNN approach with various existing strong
baselines.

. BPR (Rendle et al., 2009). This approach utilizes Bayesian analysis on the traditional
factorization machine model for optimization.

. KGCN (Wang et al., 2019b). This approach utilizes the similarity of the relationship of
different users to assign varying weights to neighbors to obtain a higher-order
representation of the entity.

. KGNN-LS (Wang et al., 2019c). This approach generates personalized embeddings for
each item by introducing label smoothing regularization based on KGCN.

.KGAT (Wang et al., 2019a). This approach employs the graph attention mechanism to
evaluate the importance of different neighbors and derives entity representations for
recommendation through graph neural networks.

. CKE (Zhang et al., 2016). This approach integrates collaborative filtering with
structural, text, and visual knowledge into a unified recommendation framework.

Table 1 The detailed messages about the Machine Learning Dataset.

Name Amount

Machine learning dataset 2,093

Machine learning method 7,644

Types of machine learning task 517

Academic article 4,338

Open-source repository 2,872

Table 2 Statistics of data in the Machine Learning Dataset.

Knowledge graph Extracted dataset

# Entities 17,483 # Datasets 2,092

# Relations 23 # Methods 6,239

# Triples 117,245 # Interactions 13,732

Avg.# descriptive words 8.1 # Density 0.00105
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. MKGAT (Sun et al., 2020). This approach performs the multimodal graph attention
mechanism in multimodal graphs to obtain a better embedding representation.

. DEKR (Cao et al., 2021). This approach constructs a description-enhanced knowledge
graph and combines knowledge graph-based and text-based approaches.

. CKGC (Cao et al., 2022). This approach achieves cross-modal knowledge graph
contrastive learning by maximizing the agreement between the descriptive view
representations and structural view representations.

Experiments setup
Evaluation Metrics: In this experiment, Precision@K, Recall@K, and NDCG@K are used
as Top-K recommendation metrics. Additionally, the evaluation metrics of click-through-
rate (CTR) prediction are assessed through area under curve (AUC), Accuracy (ACC) and
F1-score.

Parameter settings: The proposed FEGNN approach is implemented by using
PyTorch. The dimensions for graph structure embedding and text embedding are set to 64,
with each node having eight neighbors. Moreover, the number of graph convolution
iterations is set to 2. The Adam optimizer (Kingma & Ba, 2017) is employed for all the
methods to optimize the training process, and a batch size of 128 is chosen. A grid search is
conducted for the learning rate and regularization factor, with values {10−4, 5 × 10−4, …,
10−1, 5 × 10−1} and {10−6, 10−5, …, 10−2, 10−1}, respectively. The embedding size for all
baseline models is set to 64. For KGCN, KGNN-LS and KGAT methods, the number of
propagation hops is set to 2 and CKGC is set to 3. Specifically, for the KGCN method, the
number of neighborhood samples is set to 8, and the sum aggregator is chosen as the
aggregation method. For the KGAT method, the bi-interaction aggregator is employed for
aggregation, and node drop is applied, just as KGAT suggested.

Comparison of results (Q1)
Table 3 presents the Top-K recommendation results and Table 4 shows the results of CTR
prediction, respectively. From these experimental results, the article makes the following
observations:

• In most cases, FEGNN behaves the best both in the Top-K recommendation and CTR
prediction. To validate the significance of the experimental results, the Unpaired Two
Sample t-test (Mishra et al., 2019) with p < 0.05 is conducted on the CTR prediction results
of DEKR and FEGNN. The significant results indicate that a notable improvement of over
40% in the Top-10 recommendation is observed, and over 55% in the Top-20
recommendation is captured by applying the proposed FEGNN method on the Machine
Learning Dataset.

• Among the baseline methods, the hybrid recommendation models based on
knowledge graphs, including MKGAT, DEKR, CKGC and FEGNN, achieve superior
performances. In these hybrid recommendation models, the multimodal knowledge is
believed to bring benefits for enhancing the recommendation performance. The
performance of CKE also benefits from its consideration of multimodality, but the simple
embedding of knowledge may hurt the effectiveness of the recommendation.
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• Both CKGC and FEGNN perform significantly better than DEKR. DEKR obtains a
comprehensive representation of entities by combining knowledge graph-based and text-
based approaches. CKGC achieves contrastive knowledge learning by maximizing the
agreement between the descriptive view representations and structural view
representations. FEGNN captures a more comprehensive graph structure representations
through the feature-enhanced graph neural network.

• Compared with CKGC, FEGNN behaves better when Top-K recommendation is
taken as the evaluation measure. The click-through-rate prediction by applying both
CKGC and FEGNN, are comparable. It is suggested that the graph structure representation
obtained through the traditional graph neural network limits the recommendation
performance of CKGC, while more comprehensive graph structure representations are
captured in FEGNN through a novel feature-enhanced graph neural network.

Table 3 Overall comparison in Top-K recommendation.

Top-10 recommendation Top-20 recommendation

Models Precision Recall NDCG Precision Recall NDCG

BPR 0.0360 (−158.33%) 0.1132 (−243.29%) 0.1107 (−147.88%) 0.0205 (−256.10%) 0.1552 (−250.84%) 0.1227 (−162.18%)

KGCN 0.0298 (−212.08%) 0.0896 (−333.71%) 0.0736 (−272.83%) 0.0232 (−214.66%) 0.1364 (−299.19%) 0.0904 (−255.86%)

KGNN-LS 0.0309 (−200.97%) 0.0526 (−638.78%) 0.0374 (−633.69%) 0.0225 (−224.44%) 0.0724 (−652.07%) 0.0469 (−585.93%)

KGAT 0.0591 (−57.36%) 0.1431 (−171.56%) 0.1209 (−126.96%) 0.0373 (−95.71%) 0.1932 (−181.83%) 0.1381 (−132.95%)

CKE 0.0511 (−82.00%) 0.1178 (−229.88%) 0.0995 (−175.78%) 0.0342 (−113.45%) 0.1438 (−278.65%) 0.1135 (−183.44%)

MKGAT 0.0615 (−51.22%) 0.1786 (−117.58%) 0.1317 (−108.35%) 0.0416 (−75.48%) 0.2601 (−109.34%) 0.1672 (−92.40%)

DEKR 0.0642 (−44.86%) 0.2155 (−80.32%) 0.1598 (−71.71%) 0.0462 (−58.01%) 0.3268 (−66.62%) 0.1946 (−65.31%)

CKGC 0.0860 (−8.14%) 0.3603 (−7.85%) 0.2527 (−8.59%) 0.0715 (−2.10%) 0.5267 (−3.38%) 0.3097 (−3.87%)

FEGNN 0.0875 0.3886 0.2744 0.0730 0.5445 0.3217

Table 4 Overall comparison in click-through-rate prediction.

CTR prediction

Models AUC Accuracy F1-score

BPR 0.7518 (−23.31%) 0.6466 (−30.17%) 0.6862 (−26.22%)

KGCN 0.8112 (−17.37%) 0.7366 (−21.17%) 0.7435 (−20.49%)

KGNN-LS 0.8231 (−16.18%) 0.7221 (−22.62%) 0.7506 (−19.78%)

KGAT 0.8394 (−14.55%) 0.7396 (−20.87%) 0.7598 (−18.86%)

CKE 0.7684 (−21.65%) 0.6535 (−29.48%) 0.6966 (−25.18%)

MKGAT 0.8829 (−10.20%) 0.7638 (−18.45%) 0.7897 (−15.87%)

DEKR 0.9687 (−1.62%) 0.9172 (−3.11%) 0.9197 (−2.87%)

CKGC 0.9851 (+0.02%) 0.9472 (−0.11%) 0.9453 (−0.31%)

FEGNN 0.9849 0.9483 0.9484
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Ablation experiment (Q2)
To verify whether node feature enhancement and the anti-smoothing aggregation network
can improve the performance of recommendation, ablation experiments are conducted.
Two variants of FEGNN are devised: FEGNN-anti (only the anti-smoothing network
contained) and FEGNN-fea (only feature enhancement contained).

Based on the results in Fig. 2 and Table 5, it is evident that FEGNN-fea brings notable
advantages in improving the recommendation performance while FEGNN-anti has
minimal impact on the recommendation performance. It is attributed to the limited
number of model iterations and neighborhood samples, making them less susceptible to
embedding smoothing. Nevertheless, as the propagation aggregation process relies on the
feature-enhanced nodes, the entity embedding contains more information and is more
susceptible to embedding smoothing issues. Therefore, the effectiveness of the proposed
FEGNN method is further improved by combining feature enhancement and the anti-
smoothing network.

Study of parameters (Q3)
This section examines the effects of different numbers of sampled neighbors, propagation
layers, and embedding dimensions.

Impact of neighbor sampling size: We assess the model’s performance by varying the
number of neighbor samples. Table 6 indicates that the optimal results can be fetched
when the number of neighbor samples is set to eight or 16. It is believed that each entity
and relationship is relatively condensed in the machine learning knowledge graph

Figure 2 The impact of anti-smoothing networks and feature enhancement on model performance.
Full-size DOI: 10.7717/peerj-cs.2284/fig-2

Table 5 Ablation experimental results.

Models AUC Accuracy F1-score

FEGNN-anti 0.9684 0.9139 0.9141

FEGNN-fea 0.9805 0.9374 0.9372

FEGNN 0.9849 0.9483 0.9484
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compared to other knowledge graphs. Specifically, a too-small value for K lacks the
capacity to collect sufficient neighborhood information, while a huge K introduces noise,
which may lead to a decline in recommendation performance. K is set to eight in the
experiments to strike a balance between effectiveness and efficiency.

Impact of receptive field depth: The number of iterations H is varied from 1 to 4. The
results in Table 7 indicate that the optimal performance occurs with two and three
iterations. However, when the iteration is set to 4, the recommendation performance
declines significantly, accompanied by a substantial increase in training time. This decline
is attributed to insufficient graph structure information. In the process of inter-item
similarity inference, excessively long connectivity relationships between entities are almost
meaningless (Wang et al., 2019b). Based on these experimental results, the number of
iterations is set to 2 in the experiments.

Impact of embedding dimension: The dimensions of entity embedding are varied to
analyze experimental results in Table 8. Initially, the recommendation performance is
enhanced by increasing d. However, an excessively high value for d becomes sensitive,
which negatively impacts the recommendation performance.

DISCUSSION
Figure 3 plots the trends of AUC curve with different numbers of iteration by utilizing
FEGNN, CKGC and DEKR. It is obvious that the best results of CKGC are obtained when
the iteration number is set to 3. For FEGNN and DEKR, the best recommendation
effectiveness is achieved when the iteration number is 2. In GNN, expensive computations
in batched training and inference are caused by the recursive expansion of neighborhoods
across layers, which indicates that when the layers of GNN increase, the time cost of
inference increases almost exponentially (Yan et al., 2020). The same components of GNN
are adopted to learn the graph structure information in the three methods, thus the
method with fewer iterations is believed to consume less time and computations.
Therefore, FEGNN achieves a comparable recommendation effectiveness with less time
when compared with CKGC. Although the trend of AUC curve for DEKR is consistent
with that of FEGNN, FEGNN behaves significantly better than DEKR in Top-K
recommendation and CTR prediction.

In addition, CKGC uses extra loss functions for contrastive learning and more
parameter settings, which is another time-consuming process. Therefore, compared with

Table 6 Experiments results with different number of neighborhood samples.

K AUC ACC F1-score

2 0.9792 0.9321 0.9328

4 0.9802 0.9335 0.9340

8 0.9849 0.9483 0.9484

16 0.9824 0.9434 0.9434

32 0.9805 0.9402 0.9393
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CKGC, FEGNN achieves comparable recommendation effectiveness with less space and
time in CTR prediction, while achieving notable advantages in Top-K recommendation.

CONCLUSION AND FUTURE WORK
This article proposes a knowledge graph-based recommendation framework that
integrates two novel components: a feature-enhanced graph neural network and an anti-
smoothing aggregation network. The rich entity connections in the text-enhanced
machine learning knowledge graph are leveraged to recommend suitable machine learning
methods for a given dataset. To mind the rich latent representation for each entity, the
representation of nodes involved in the propagation process of the target entity is
enhanced by aggregating the direct neighbor information. Also, an anti-smoothing

Table 7 Experiments results with different number of iterations.

H AUC ACC F1-score

1 0.9608 0.9057 0.9070

2 0.9849 0.9483 0.9484

3 0.9826 0.9397 0.9404

4 0.9791 0.9383 0.9382

Table 8 Experiments results of different dimension sizes.

d AUC ACC F1-score

4 0.8847 0.8022 0.8160

8 0.9460 0.8726 0.8779

16 0.9660 0.9015 0.9046

32 0.9756 0.9219 0.9227

64 0.9849 0.9483 0.9484

128 0.9797 0.9403 0.9406

Figure 3 AUC obtained by applying different methods with different number of iterations.
Full-size DOI: 10.7717/peerj-cs.2284/fig-3

Zhang and Guo (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2284 17/21

http://dx.doi.org/10.7717/peerj-cs.2284/fig-3
http://dx.doi.org/10.7717/peerj-cs.2284
https://peerj.com/computer-science/


aggregation network is designed to reduce the impact of over-smoothing with the increase
in the number of iterations.

In the future, it is worth striking a balance between utilizing auxiliary information in the
knowledge graph and avoiding over-smoothing issues, which is an area of exploration. In
addition, considering the diverse types of tasks in machine learning, such as clustering,
classifying, and so on, recommending more relevant machine learning methods based on
the class of the machine learning task is a challenge.
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