
Flood algorithm: a novel metaheuristic
algorithm for optimization problems
Ramazan Ozkan1,2 and Ruya Samli2

1 Department of Computer Engineering, National Defence University, Istanbul, Turkey
2 Department of Computer Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey

ABSTRACT
Metaheuristic algorithms are an important area of research that provides significant
advances in solving complex optimization problems within acceptable time periods.
Since the performances of these algorithms vary for different types of problems,
many studies have been and need to be done to propose different metaheuristic
algorithms. In this article, a new metaheuristic algorithm called flood algorithm (FA)
is proposed for optimization problems. It is inspired by the flow of flood water on the
earth’s surface. The proposed algorithm is tested both on benchmark functions and
on a real-world problem of preparing an exam seating plan, and the results are
compared with different metaheuristic algorithms. The comparison results show that
the proposed algorithm has competitive performance with other metaheuristic
algorithms used in the comparison in terms of solution accuracy and time.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Metaheuristic algorithm, Flood algorithm, Optimization, Exam seat planning

TERMS AND CONDITIONS
The terms and definitions used in this study are given in Table 1.

INTRODUCTION
Optimization can be defined as the attempt to achieve the best result by making choices on
the inputs of an objective function within the framework of certain criteria. It is a
frequently encountered problem in almost every field of science and real-world problems.
Solving complex optimization problems (e.g., the NP-complete problems) with
conventional gradient-based methods is a time-consuming process (Chen, Cai & Wang,
2018). The complexity of the problem makes it impossible to search for all possible
solutions or combinations in an acceptable time frame (Yang, 2010b).

Metaheuristic algorithms are an impressive area of research that has made significant
advances in solving challenging optimization problems (Dokeroglu et al., 2019). They use
random operators, trial-and-error processes and random scanning of the problem solving
space to generate efficient solutions to optimization problems (Dehghani et al., 2023). The
optimization process in meta-heuristic algorithms starts by generating a certain number of
random feasible solutions in the problem space. In an iterative process, candidate solutions
are updated and improved according to the algorithm instructions. After the algorithm is
fully implemented, the best solution among the candidate solutions is presented as the
solution to the problem (Dehghani et al., 2020).

How to cite this article Ozkan R, Samli R. 2024. Flood algorithm: a novel metaheuristic algorithm for optimization problems. PeerJ
Comput. Sci. 10:e2278 DOI 10.7717/peerj-cs.2278

Submitted 14 March 2024
Accepted 30 July 2024
Published 2 October 2024

Corresponding authors
Ramazan Ozkan,
rozkan@hho.msu.edu.tr
Ruya Samli, ruyasamli@iuc.edu.tr

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.2278

Copyright
2024 Ozkan and Samli

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2278
mailto:rozkan@�hho.�msu.�edu.�tr
mailto:ruyasamli@�iuc.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2278
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Simple concepts, easy implementation, no need for a derivation process, efficiency in
high-dimensional problems, efficiency in non-linear and non-convex environments are
some of the advantages that lead to the popularity and widespread use of metaheuristic
algorithms (Cavazzuti, 2013). These advantages and their ability to solve problems in a
wide variety of domains without knowing the details and definitions of the problems, and
to provide near-optimal solutions, gives them an advantage over traditional techniques
(Rajpurohit et al., 2017). Therefore, in recent decades, a number of metaheuristic
algorithms have been proposed and successfully applied to solve complex optimization
problems in various scientific domains and real-world problems. According to the number
of related studies, well-known and most used algorithms are: Genetic Algorithm (GA)
(Holland, 1992), Simulated Annealing (SA) (Kirkpatrick, Gelatt & Vecchi, 1983), and
Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995). There are numerous

Table 1 Terms and definitions.

Term Definition

Metaheuristic algorithm A high-level procedure or heuristic based on a heuristic designed to provide a sufficiently good solution to optimization
problems that are difficult to solve with traditional gradient-based methods.

Metaheuristic parameter Algorithm-specific inputs to reflect the nature of the phenomena that metaheuristics are inspired by.

Decision variable Variables whose values can be changed over the set of feasible alternatives to increase or decrease the value of the objective
function in an optimization problem.

Solution Each set of decision variables formed by the values of the decision variables on the set of feasible alternatives.

Neighbour solution The set of decision variables formed by changing the value of any variable in the decision variable set of an existing solution.

Fitness value The value of the objective function corresponding to any set of values of the decision variables.

Operator The manipulations that metaheuristic algorithms make on the solutions that emerge during the search process in order to
efficiently scan the search space and converge on the best solutions.

Local optimization Finding the optimal solution for a specific region of the search space.

Global optimization Finding the global minimum or maximum of a function or set of functions on a given set.

Convergence The tendency of the solutions obtained in each iteration to get closer to the desired solution.

Exploration Exploring the global solution space by generating different solutions.

Exploitation The search of the neighbourhood of a promising region.

Complexity The amount of resources (such as time or memory) required to solve a problem or perform a task.

Population-based
metaheuristic

The metaheuristics that use a group of points, called a population, to explore the search space.

Trajectory-based
metaheuristic

The metaheuristics that start the search process from a single starting point and move through the search space with a
single solution.

Evolutionary algorithms The metaheuristics follow the natural evolutionary process found in nature.

Swarm intelligence
algorithms

The metaheuristics that mimic the social behavior of groups of insects or animals.

Benchmark function The functions used to test the performance of any optimization algorithm.

Wilcoxon Rank-Sum
Test

A non-parametric statistical test used to compare two independent measurements set to assess whether their population
mean ranks differ.

Rank The value given to each sample to determine if one group has higher or lower scores than another group.

Exam seating problem The process of allocating seats efficiently with minimal resource usage under certain conditions in an exam.

Exam session A set of exams conducted at the same time.

Traceability matrix A matrix representing all possible classrooms and seat locations and providing access to seat location neighbours through
index information in the solution vector.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 2/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

studies in the literature where these algorithms, improved versions, or hybrid versions of
these algorithms are proposed or applied to a problem.

Although metaheuristic algorithms show strong optimization ability in solving
nonlinear global optimization problems, some of them fall into local optima when faced
with different optimization problems (Yang, 2010b). Moreover, a metaheuristic may
perform well on one set of optimization problems but poorly on another (Wolpert &
Macready, 1997).

These fundamental gaps encourage the discovery and development of new
metaheuristic algorithms with satisfactory performance. For this reason, there is an
increasing amount of work in the literature to propose new metaheuristic algorithms. In
line with these motivations, this article proposes a new metaheuristic algorithm called the
flood algorithm.

The contributions of this study can be expressed as follows:

. A new optimization algorithm called Flood Algorithm (FA) is developed to model the
flow of flood water.

. Fifteen standard benchmark functions, eight of them from the CEC2022 test suite, and
three engineering design problems were used to evaluate the performance of FA in
solving optimization problems.

. The performance of FA in real-world applications is tested by solving an exam seating
problem, which is a permutation problem and consists of eleven sessions.

. The performance of FA is validated against the three well-known metaheuristic
algorithms.

The main advantage of the proposed FA approach for global optimization problems is
that it has a single basic parameter and thus can be easily adapted to different optimization
problems. The second advantage of FA is its highly effective efficiency in dealing with high-
dimensional optimization problems. The third advantage of the proposed method is its
strong performance in handling real-world optimization applications.

The rest of the article is organized as follows: “Literature Review” section presents a
literature review about metaheuristic algorithms. “Flood Algorithm” section describes the
proposed flood algorithm. “Flood Algorithm Validation” section presents the application
and results of the proposed algorithm and three other algorithms on benchmark functions
and a real-world problem and compares the results, and “Conclusion” section concludes
this article and provides suggestions for future work.

LITERATURE REVIEW
Metaheuristic algorithms are inspired by nature and mimic biological and physical
processes such as the behavior of animals, insects, birds, living things, physical laws,
biological sciences, human activities, rules of the games, and any other evolution-based
process to solve optimization problems (Tanhaeean, Tavakkoli-Moghaddam & Akbari,
2022; Dehghani et al., 2023). For example, the GA (Holland, 1992) mimics evolutionary
processes in nature, PSO (Eberhart & Kennedy, 1995) mimics swarmmovement of birds or

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 3/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

fish while the SA (Kirkpatrick, Gelatt & Vecchi, 1983) mimics physical metal annealing
processes. Based on the development of various metaheuristic algorithms in the last
decades, Metaheuristic algorithms can be divided into three main categories: Evolutionary
Algorithms (EA), which follow the natural evolutionary process found in nature. Swarm
Intelligence Algorithms (SI), which include swarm-based techniques that mimic the social
behavior of groups of insects or animals. And other metaheuristic algorithms that mimic
principles of physics, chemistry, gaming and human behavior (Azizi, Talatahari &
Gandomi, 2023; Hashim et al., 2022; Ayyarao et al., 2022).

EA are based on the mechanism of natural selection. They mimic the way natural
evolution and genetic mechanisms works. GA and Differential Evolution (Storn & Price,
1997) are among the most widely used evolutionary algorithms designed based on the
modeling of the reproductive process, natural selection, Darwin’s theory of evolution, and
the use of random operators of selection, crossover, and mutation (Dehghani et al., 2023).
Some other algorithms in this group are: Genetic Programming (Koza, 1992), Evolution
Strategy (Bäck, 1995), Covariance Matrix Adaptation Evolutionary Strategy (Hansen &
Ostermeier, 2001), Wild Horse Optimizer (Naruei & Keynia, 2022) and, Biogeography-
Based Optimization (Simon, 2008).

SI algorithms have been developed inspired by natural swarming phenomena, the
collective and self-organizing behavior of birds, fishes and, other living things in nature.
Some of the known meta-heuristic algorithms are: PSO (Eberhart & Kennedy, 1995), Ant
Colony Optimization (Dorigo, Maniezzo & Colorni, 1996), Firefy Algorithm (Yang,
2010a), Gray Wolf Optimization (Mirjalili, Mirjalili & Lewis, 2014), Whale Optimization
Algorithm (Mirjalili & Lewis, 2016), White Shark Optimizer (Braik et al., 2022), Harris
Hawks Optimizer (Heidari et al., 2019), War Strategy Optimization Algorithm (Ayyarao
et al., 2022), Shrimp and Goby Association Search Algorithm (Sang-To et al., 2023),
Orchard Algorithm (Kaveh, Mesgari & Saeidian, 2023), Gannet Optimization Algorithm
(Pan et al., 2022), Dung Beetle Optimizer (Xue & Shen, 2023) and Honey Badger
Algorithm (Hashim et al., 2022).

The third group algorithms are developed based on mathematical modeling of various
events, concepts, laws, and forces in physics, chemistry, games, and human behavior. Some
of the well-known metaheuristic algorithms are: SA (Kirkpatrick, Gelatt & Vecchi, 1983),
Gravitational Search Algorithm (Rashedi, Nezamabadi-Pour & Saryazdi, 2009), Group
Teaching Optimization Algorithm (Zhang & Jin, 2020), Henry Gas Solubility
Optimization (Hashim et al., 2019), Fireworks Algorithm (Tan & Zhu, 2010), Chaos Game
Optimization (Talatahari & Azizi, 2021), Harmony Search Algorithm (Yang, 2009),
Hunger Games Search (Yang et al., 2021), Boxing Match Algorithm (Tanhaeean,
Tavakkoli-Moghaddam & Akbari, 2022), Atomic Orbital Search (Azizi, 2021).

From another perspective, metaheuristics can be classified into two groups: trajectory-
based metaheuristics and population-based metaheuristics. The main difference between
these two types of methods is based on the number of solutions used at each step of the
algorithm. Trajectory-based algorithms use a single agent or solution that moves through
the design space or search space. Population-based algorithms, on the other hand, use a
large number of agents or solutions at each search step. Population-based algorithms are

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 4/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

much more popular in the literature than trajectory-based algorithms. For example, EA
and SI are all population-based algorithms. The most common examples of trajectory-
based algorithms are: SA (Kirkpatrick, Gelatt & Vecchi, 1983), Tabu Search (Glover, 1989),
Iterated Tabu Search (Misevicius, Lenkevicius & Rubliauskas, 2006), Guided Local Search
(Davenport et al., 1994) and Variable neighbourhood Search (Mladenović & Hansen,
1997).

FLOOD ALGORITHM
In this section, a new metaheuristic algorithm called the flood algorithm is discussed in
detail. The FA is a metaheuristic algorithm for optimization problems that can be used to
approach global optimization in a large search space within an acceptable time frame.
Metaheuristic algorithms are divided into two groups according to their search
mechanisms: trajectory-based algorithms, which work on a single solution at each
iteration, and population-based algorithms, which work on a collection of solutions. The
FA is a trajectory-based algorithm. It starts with a random solution and searches for a
global optimum by manipulating that solution at each iteration.

Inspiration
The design of the FA was inspired by the movement of floodwaters on the earth’s surface.
It mimics the gravity-driven movement of flood waters toward lower elevations and
overcoming obstacles with the kinetic energy they gain from this movement. The
movement of flood waters follows two basic rules. The first rule is the natural flow of water,
which means that water always flows toward lower elevations under the influence of
gravity. The second rule is that when water encounters an obstacle, it accumulates at that
point and continues to flow by overcoming the obstacle at its lowest point.

Mathematical model
This section describes the mathematical formulation of the proposed FA. Since the FA
includes both exploration and exploitation processes, it can be considered a global
optimization algorithm. The pseudo-code of the FA including the initialization, search and
evaluation, and the termination steps is presented in Algorithm 1, and the flowchart is
presented in Fig. 1. Mathematically, the steps of the proposed algorithm are detailed as
follows.

Initialization
The FA is a trajectory-based algorithm starting from a single starting point Xinit as defined
in Eq. (1) and with a starting speed Vinit of 1.

Xinit : ½x1;…; xi;…; xn�; i ¼ 1; 2;…; n;

n is the number of decision variables
(1)

This point represents a candidate solution to the problem for which the values of the
decision variables are randomly determined using Eq. (2) and represents the location
where the flood starts.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 5/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Xinit : xi ¼ lbi þ r � ðubi � lbiÞ (2)

where xi is the value of the ith decision variable, r is a random real number in the range [0,
1], and lbi and ubi are the lower and upper bounds of the ith decision variable, respectively.
After evaluating the fitness of the starting point, the FA runs in iterations until the
termination condition is met. The starting point Xinit is used as the current solution Scur
and starting speed Xinit is used as the current speed of the first iteration with Eq. (3).

Scur ¼ Xinit

Vcur ¼ Vinit
(3)

Finding a neighbour solution
The search process of the FA involves finding a certain number of neighbours of the
current solution and checking their fitness values in each iteration. A neighbour solution is
generated by randomly updating the value of one of the variables of the current solution
within the bounds of that variable. Suppose the optimization problem has n variables. The
current solution is X ¼ x1;…; xk;…; xn and the variable xk (whose lower and upper
bounds are lbk and ubk) is selected for variation. The new value of the selected variable is
randomly determined by using Eq. (4) and the neighbour solution is obtained as seen in
Eq. (5).

x0k ¼ lbk þ r � ðubk � lbkÞ (4)

Snew : ½x1;…; x0k;…; xn� (5)

Algorithm 1 Pseudo-code of the flood algorithm.

m maximum number of neighbours to �in every iteration

vinit 1; vmin 0:1; v vinit

s s0 ⊳ initial state

sbest s0

while v > vmin do

for k = 1 to m do

snew get a random neighbour of s

if f ðsnewÞ < f ðsÞ then ⊳ fitness value comparison

v v � ðf ðsÞ=f ðsnewÞÞ ⊳ speed update

s snew

if f ðsÞ < f ðsbestÞ then
sbest s

break

neighbours½k� snew

v v � ðf ðsÞ=f ðminðneighboursÞÞÞ ⊳ speed update

s min ðneighboursÞ

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 6/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Search process
The search mechanism of the FA is based on the two rules of flood movement. It is
designed to search the solution space by scanning a predetermined number of neighbour
points as defined in Eqs. (4) and (5) of the current solution in each iteration. The current
solution Scur is used as the reference point in each iteration and updated at the end of each
iteration. When a neighbour with a better (smaller) fitness value than the current solution
is found in an iteration as seen in Fig. 2A, it stops scanning the neighbours and continues

Figure 1 Flow chart of the flood algorithm. Full-size DOI: 10.7717/peerj-cs.2278/fig-1

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 7/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-1
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

searching the solution space over that point (modeling the flow of water towards lower
elevations) in the next iteration as seen in Eq. (6).

Scur ¼ Si; f ðSiÞ < f ðScurÞ

Si is the first neighbour found with a better fitness value than the current solution

(6)

If a given number of neighbours are scanned and no neighbour with a better fitness
value is found as seen in Fig. 2B, in the next iteration it continues to search the solution
space over the point with the best fitness value among the neighbours (modeling the flow
of water by overflowing from the weakest point of the obstacles it encounters) as defined in
Eq. (7).

Scur ¼ Si;Si 2 fS1 . . . Smg ^ f ðSiÞ : minff ðS1Þ . . . f ðSmÞg

m is the maximum number of neighbours

(7)

In both cases, the speed is updated in proportion to the ratio of the fitness values of the
current solution and the new solution which is selected as the current solution for the next
iteration as seen in Eq. (8).

Vtþ1
cur ¼ Vt

cur �
f ðScurÞ
f ðSnewÞ ;

t refers the current iteration

(8)

The speed increases when the new solution has a better fitness value and decreases when
the new solution has a worse fitness value. Also; as part of the search mechanism, the FA

Figure 2 Search cases of the Flood algorithm. (A) ith neighbour has a better fitness value than the
current solution (B) none of the neighbours has a better fitness value than the current solution.

Full-size DOI: 10.7717/peerj-cs.2278/fig-2

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 8/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-2
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

maintains the best solution (Sbest) found so far by repeatedly updating it during the search
process.

Termination
The termination process of FA mimics the stopping of a flood by decreasing its speed in
areas where the slope decreases or there is a reverse slope. The FA starts the search from a
randomly chosen starting point with an initial speed (vinit) of 1. It maintains the speed v by
repeatedly updating it at each iteration based on the ratio of the fitness value of the current
solution f ðScurÞ and the fitness value of the solution selected for the next iteration f ðSnewÞ
as defined in Eq. (8). If the fitness value of the solution selected for the next iteration is
better than the current solution, the speed is increased, and if it is worse, the speed is
decreased. The algorithm stops when the speed falls below the minimum speed (vmin) of
0.1.

The most commonly used stopping conditions for metaheuristics in the literature are
the maximum number of iterations and the maximum number of consecutive iterations
without improving the current solution (Corominas, 2023). These conditions can be easily
applied to the FA as well as to many other metaheuristics. In particular, the maximum
number of iterations is a fair way to compare metaheuristics. Therefore, the maximum
number of iterations is used as a stopping condition in the FA to compare it with other
algorithms.

Parameters
Metaheuristic algorithms have algorithm-specific parameters to reflect the nature of the
phenomena they are inspired by. For example, the GA is a metaheuristic algorithm
inspired by the process of natural evolution. It has parameters such as the number of
individuals in the population, the crossover rate, the mutation rate, the number of
generations, and so on to reflect the evolutionary process. In metaheuristic algorithms, the
solution is sensitive to the parameters of the algorithm in most cases (Jones, Mirrazavi &
Tamiz, 2002). Finding the optimal parameter values is a laborious task that requires
expertise and knowledge about the algorithm, its parameters, and the problem (Neumüller
et al., 2012). To determine the appropriate parameter values for the problem, the algorithm
must be run many times with different sets of parameters. Tuning problem-specific
parameter values is an optimization problem in itself. As the number of parameters
increases, the permutations of the parameter sets increase, and parameter optimization of
the algorithm becomes more time-consuming. This makes it difficult to use the
metaheuristic algorithm when time or other constraints allow only a single run.

The only parameter that needs to be tuned in the FA is the number of neighbours to
scan in each step, referred to as m in the Algorithm 1. This parameter has no direct effect
on the way solutions are generated or the acceptance process of the generated solutions. Its
main effect is on the running time of the algorithm. Increasing the value of this parameter
helps to scan the solution space on a global scale by generating more different solutions,
but causes the algorithm to finish in a longer time. The fact that the FA has a single basic

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 9/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

parameter makes it easily adaptable to different problems, and parameter optimization
processes are quite simple.

Exploitation and exploration
The main components of any metaheuristic algorithm are exploitation and exploration or
intensification and diversification (Blum & Roli 2003). The efficient searchability of a
metaheuristic algorithm heavily relies on these two components (Liu et al. 2013). A widely
accepted principle among researchers is that metaheuristic search methods can achieve
better performance when an appropriate balance between exploration and exploitation of
solutions is achieved (Xu & Zhang, 2014). Although several criteria have been proposed in
the literature, such as measuring the diversity in the current population, which is
recommended for population-based algorithms, there is no definitive way to objectively
measure the rate of exploration/exploitation provided in a metaheuristic scheme (Morales-
Castañeda et al., 2020).

Exploration refers to searching the global solution space by generating different
solutions, including solutions that are even worse than the available solutions, while
exploitation refers to searching in a local region by exploiting a good solution.
Metaheuristic algorithms are expected to use these two mechanisms in a balanced and
efficient way to achieve the best results. If there is an imbalance in favor of exploitation, the
system may get stuck in the local optimum and not be able to reach the global optimum.
On the contrary, if there is an imbalance in favor of exploration, it may turn into a random
search and be difficult to converge.

The FA is a trajectory-based algorithm and the balance between exploration and
exploitation is exploitation-prone due to the nature of the flood flow it is inspired by.
Solutions with better fitness values are always accepted. This can manifest as local (greedy)
search steps early in the search process. However, the discovery of better solutions
increases the speed value, allowing the search process to continue, and avoiding getting
stuck in a local optimum by accepting the bad results that will come in the ongoing
process. As mentioned in the “Mathematical model” section the FA has two basic rules for
selecting the new solution for the next iteration. While the first rule aims to converge to
better solutions by using the information on a good solution in a local area as the
exploitation, the second rule aims to avoid getting stuck at local optimums by accepting an
even worse solution than the current one as the exploration. These rules provide a balance
between exploitation and exploration. The FA balances exploration and exploitation
through the speed parameter. The speed parameter of the algorithm, which increases with
better solutions, allows the algorithm to accept worse solutions in subsequent iterations
and to explore different regions of the solution space. The search mechanism, which is
prone to exploitation, can move to other regions by accepting worse solutions after the best
solution it has reached locally. The search patterns in the solution space of the benchmark
functions of the FA are examined in the “Flood Algorithm Validation” section. It is seen
that the FA has a successful search propagation around the local and global minima of the
functions.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 10/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Selection of the solution to be used for the next iteration is accomplished by comparing
the fitness values of the generated solutions to the current solution or to each other. There
are no special operators or time-consuming complex position calculations that need to be
tailored to the problem. If there is a solution among the neighbours with a better fitness
value than the current solution, it is selected; if not, the best solution among the neighbours
is selected. This simple structure makes it easy to apply the flooding algorithm to various
types of optimization problems, including permutation problems.

Complexity
This subsection investigates the computational complexity of the proposed algorithm. In
order to evaluate the computational complexity of a novel metaheuristic algorithm, the
“Big O notation” can be used, which is a mathematical notation that represents the
required running time and memory space of an algorithm by considering the growth rate
in dealing with different inputs. The main factors that affect the computational complexity
of the FA in solving an optimization problem are the number of iterations (i.e., N), the
number of neighbour solutions generated in each iteration (i.e., kmax), and the cost of the
problem’s objective function (i.e., OðffitnessÞ) calculated for each neighbor. In this context,
the worst-case computational complexity of the FA is OðN kmax OðffitnessÞÞ.

The complexity of the fitness function OðffitnessÞ increases depending on the number of
decision variables (i.e., D) in the optimization problems. In this context, we can use the
number of decision variables as a multiplier instead of the complexity of the fitness
function in overall complexity and update the overall complexity as seen in Eq. (9).

OðN kmax DÞ: (9)

FLOOD ALGORITHM VALIDATION
To determine the performance of a metaheuristic algorithm, a sufficient number of
experiments and case studies should be performed. As part of the verification of the FA, 15
benchmark functions, three engineering design problems and a real-world problem of
preparation of an exam seating plan were used. In order to verify the search capability of
the FA, GA, SA, and PSO algorithm are executed on the same benchmark function set,
engineering design problems and the real-world problem. The results obtained are
compared to the FA. These algorithms were chosen because they are the most widely used
algorithms in the literature on optimization problems as shown in Fig. 3.

Benchmark functions
In this subsection, FA is investigated on a set of 15 benchmark functions, eight of which are
from the CEC2022 test suite. The range, dimension, type, and formulation of functions are
listed in Table 2. The list contains unimodal, multimodal, separable, and non-separable
functions with different dimensions. The main goal is to evaluate the performance of the
FA by using the difficulty of the different benchmark problems.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 11/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Experimantal results
For benchmark functions, the FA, GA, SA, and PSO algorithm were run 100 times on a
64-bit computer with 16 GB RAM and Intel Core i5 CPU, with the parameter values given

Figure 3 The number of related articles on Google Scholar for metaheuristic algorithms.
Full-size DOI: 10.7717/peerj-cs.2278/fig-3

Table 2 Benchmark functions used in experiments.

Function Range D Type Formulation

Ackley −32, 32 30 MN f ðxÞ ¼ �20expð�0:2PD
i¼1 x

2
i Þ � expð1=dPD

i¼1 cos2pxiÞ þ expð1Þ þ 20

Beale −4.5, 4.5 2 UN f ðxÞ ¼ ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x22Þ2 þ ð2:625� x1 þ x1x32Þ2
Easom −100, 100 2 UN f ðxÞ ¼ � cos x1 cos x2expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ
Michalewicz 0, p 10 MS f ðxÞ ¼ �PD

i¼1 sinxisin
20ix2i =p

Quartic −1.28, 1.28 30 US f ðxÞ ¼PD
i¼1 ix

4
i þ Rand

Rastrigin −5.12, 5.12 30 MS f ðxÞ ¼ 10DþPD
i¼1½x2i � 10 cos 2pxi�

Shubert −10, 10 2 MN f ðxÞ ¼P5
i¼1 i cosððiþ 1Þx1 þ iÞP5

i¼1 i cosððiþ 1Þx2 þ iÞ
Six hump camel back −5, 5 2 MN f ðxÞ ¼ ð4� 2:1x21 þ ðx41=3ÞÞx132þ x1x2 þ ð�4þ 4x22Þx22
Sphere −100, 100 30 US f ðxÞ ¼Pd

i¼1 x
2
i

Bent Cigar −100, 100 30 UN f ðxÞ ¼ x21 þ 106
Pn

i¼2 x
2
i

HGBat −15, 15 30 MN
f ðxÞ ¼ PD

i¼1 x
2
i

� �2 � PD
i¼1 xi

� �2���
���
1
2 þ 0:5

PD

i¼1 x
2
i þ
PD

i¼1 xi
D þ 0:5

Griewank −100, 100 30 MN
f ðxÞ ¼ 1

4;000

Pn
i¼1 x

2
i �

Qn
i¼1

cos xiffi
i
p

� �
þ 1

Rosenbrock −10, 10 30 MN f ðxÞ ¼PD�1
i¼1 100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2

� �

Levy −10, 10 30 MN f ðxÞ ¼ sin2ðpx1Þ þ
Pn�1

i¼1 ðxi � 1Þ2½1þ 10sin2ðpxiþ1Þ� þ ðxD � 1Þ2
Zakharov −5, 10 30 UN f ðxÞ ¼Pn

i¼1 x
2
i þ 1

2

Pn
i¼1 ixi

� �2 þ 1
2

Pn
i¼1 ixi

� �

Note:
D, dimension; M, multimodal; U, unimodal; S, separable; N, non-seperable.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 12/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-3
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

in Table 3. To ensure the fairness of the experiment, the population-based GA and PSO
algorithm were run for 100 generations/cycle on a population of 100 individuals which
means 10,000 function evaluations, and the trajectory-based FA and SA were run for
10,000 steps which also means 10,000 function evaluations. The algorithms were compared
in terms of fitness value and convergence performance on benchmark functions.

The minimum, maximum, average, and standard deviation of fitness values obtained for
each algorithm are given in Table 4. When the results are analyzed, it is seen that the FA
produces better results than the other algorithms in 31 out of 60 different comparison
areas (especially on multi-dimensional functions), including best, worst, average, and
standard deviation for each benchmark function. In addition to these comparisons, the
Wilcoxon Ranksum Test (Wilcoxon, 1992), a non-parametric statistical test, was used to
evaluate the results statistically. The ranks and p-values (for statistically significance level at
a = 0.05) of the results obtained by the FA against the results obtained by the other three
algorithms for 15 benchmark functions are presented in Table 5. According to the
Wicoxon Ranksum Test results, the FA outperformed the GA in 12 out of 15 functions, the
PSO in 11 out of 15 functions, and the SA in nine out of 15 functions.

The convergence comparison graphs of the algorithms are given in Fig. 4. These graphs
clearly show the better final result as well as the better convergence trend of the proposed
FA compared to GA, SA, and PSO.

Another investigation on the benchmark functions was the search patterns of the flood
algorithm. The search patterns of the flood algorithm on the solution space of the
benchmark functions are given in Figs. 5 and 6. In the graphs in Figs. 5 and 6, the number
of neighbours, which is the only parameter of the FA that needs to be determined in
advance, is considered as 30 and the benchmark functions are considered as two-
dimensional. It can be seen that the flood algorithm has a successful search propagation
around the local and global minimum points of the functions. When the effect of the
number of neighbours on the search propagation is examined, it is seen that as the number
of neighbours increases, as expected the search propagation becomes sharper towards the
regions with minimum points, as seen in Fig. 7. Increasing the number of neighbours leads
to better results, but increases the execution time of the algorithm at the same rate. The

Table 3 Parameter values of algorithms.

Algorithm Parameter Value

FA Neighbour count 30

SA kmax 10,000

PSO c1 2

c2 2

Inertia weight 0.8

GA Crossover rate 0.8

Mutation rate 0.05

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 13/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Table 4 Comparative results of FA with GA, PSO, and SA (bolded numbers represent the best values).

Function FA GA PSO SA

Ackley Best 0.630264721 0.030177472 6.037359303 0.615644664

Worst 1.081308917 9.852174721 15.00098476 1.890181228

Mean 0.840619763 4.827023494 9.887241081 1.21125692

StdDev 0.102621848 2.458913203 1.485300744 0.284202246

Beale Best 8.1218E−09 1.50587E−05 5.32812E−15 2.57522E−06

Worst 0.763954554 0.017210748 0.735040539 9.542461754

Mean 0.243985461 0.004337761 0.007350405 0.646968955

StdDev 0.357440055 0.003958047 0.073504054 1.522015766

Easom Best −0.999984745 −0.999733691 −1 −0.999989072

Worst −8.0573E−05 −6.48809E−05 −0.999999997 −5.71945E−09

Mean −0.559012012 −0.486018129 −1 −0.895178564

StdDev 0.497941702 0.336835486 4.53634E−10 0.295969316

Michalewicz Best −9.655901223 −5.42823829 −9.035137456 −9.657388029

Worst −9.628734725 −3.154691032 −5.024521985 −9.590041807

Mean −9.644992901 −4.157626983 −6.958815078 −9.641043957

StdDev 0.004907447 0.387775307 0.805336095 0.013817348

Quatric Best 7.11854E−07 1.04821E−06 0.033055868 0.000210782

Worst 1.43489E−05 3.265309166 1.620159254 0.001263889

Mean 6.29445E−06 0.41820625 0.36219887 0.000661741

StdDev 2.80352E-06 0.719218 0.287628592 0.000220706

Rastrigin Best 0.924309115 0.044107217 70.95627643 1.041741143

Worst 2.358124187 38.83575726 197.9559435 5.304766346

Mean 1.526722464 13.23619498 116.5297821 2.621956417

StdDev 0.317304598 8.777635217 24.5573117 0.834267081

Shubert Best −186.7308897 −186.7248143 −186.7309088 −186.7309027

Worst −186.7163675 −177.2558732 −184.7264808 −186.6764707

Mean −186.7289436 −185.1291998 −186.7108645 −186.7263416

StdDev 0.002344217 1.682359271 0.200442803 0.007494791

Sixhump camelback Best −1.031628452 −1.031470545 −1.031628453 −1.031628351

Worst −1.031566413 −0.980048867 −1.031628452 −1.031261734

Mean −1.031617878 −1.022595193 −1.031628452 −1.031582382

StdDev 1.18116E−05 0.009334517 4.09659E−12 6.57447E−05

Sphere Best 1.88159E-05 0.005840427 622.3560198 1.803937595

Worst 0.007377774 4,378.884757 8,637.558451 5.282826775

Mean 0.001233648 798.8495789 2,180.258882 3.533097216

StdDev 0.00141772 901.084707 1142.749793 0.734131596

Bent Cigar Best 1,662,639.001 52,208.38673 306,655,833.9 1,852,577.25

Worst 11,315,660.86 3,904,504,464 3,968,514,125 12,610,546.22

Mean 5,132,787.392 718,352,211.1 1,836,472,254 5,456,679.957

StdDev 1,991,141.08 705,159,229.7 790,638,188.1 2,221,453.951

HGBat Best 0.273985563 0.580532757 11.37543708 0.309354292

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 14/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Table 4 (continued)

Function FA GA PSO SA

Worst 1.490868581 121.6640925 115.6925306 1.248709457

Mean 0.680847783 24.20371437 45.2520308 0.622166672

StdDev 0.355691216 25.01670369 20.00026061 0.292947893

Griewank Best 0.070946968 0.010918879 1.181959635 0.171126239

Worst 0.444453243 2.303547801 2.288771959 0.736621856

Mean 0.234341341 0.717726596 1.511488535 0.387217392

StdDev 0.069850661 0.415042013 0.228033621 0.092241659

Rosenbrock Best 4.984522855 29.01762542 75.22963067 7.060738999

Worst 141.1286931 373.1991982 236.5369623 141.876423

Mean 57.07679761 69.06191623 133.5588939 62.7984998

StdDev 31.50056937 50.00424247 35.83975214 37.44949298

Levy Best 0.030788386 2.710117694 2.552523385 0.008846786

Worst 0.141272967 9.097557631 29.71448051 0.057414966

Mean 0.069551636 4.171587424 10.68035128 0.026914693

StdDev 0.022433369 1.281362725 5.429156246 0.010534223

Zakharov Best 155.825532 0.046912753 236.0268778 166.4557122

Worst 538.0403138 81.9534772 945.6585919 565.4200336

Mean 332.1240272 26.33974406 494.4301908 339.3193892

StdDev 75.9756031 17.76458461 147.9450299 76.08398062

Table 5 Wilcoxon rank-sum test results.

FA vs. GA FA vs. PSO FA vs. SA

Function R+ R− p-value R+ R− p-value R+ R− p-value

Ackley 14,370 5,730 4.86E−26 15,050 5,050 2.56E−34 13,972 6,128 9.54E−22

Beale 11,832 8,268 1.34E−05 5,118 14,982 1.95E−33 12,693 7,407 1.07E−10

Easom 10,705 9,395 1.10E−01 5,050 15,050 2.56E−34 9,571 10,529 2.42E−01

Michalewicz 15,050 5,050 2.56E−34 15,050 5,050 2.56E−34 10,259 9,841 6.10E−01

Quatric 14,771 5,329 8.89E−31 15,050 5,050 2.56E−34 15,050 5,050 2.56E−34

Rastrigin 14,621 5,479 5.88E−29 15,050 5,050 2.56E−34 14,095 6,005 4.97E−23

Shubert 15,045 5,055 2.98E−34 5,150 14,950 5.02E−33 11,162 8,938 6.60E−03

Six hump camel back 15,050 5,050 2.56E−34 5,050 15,050 2.56E−34 12,607 7,493 4.20E−10

Sphere 15,048 5,052 2.72E−34 15,050 5,050 2.56E−34 15,050 5,050 2.56E−34

Bent Cigar 14,758 5,342 1.29E−30 15,050 5,050 2.56E−34 10,475 9,625 3.00E−01

HGBat 14,609 5,491 8.18E−29 15,050 5,050 2.56E−34 10,056 10,044 9.89E−01

Griewank 13,985 6,115 7.01E−22 15,050 5,050 2.56E−34 14,241 5,859 1.33E−24

Rosenbrock 10,656 9,444 1.39E−01 14,743 5,357 1.96E−30 10,338 9,762 4.82E−01

Levy 15,050 5,050 2.56E−34 15,050 5,050 2.56E−34 5,250 14,850 9.26E−32

Zakharov 5,050 15,050 2.56E−34 13,394 6,706 3.10E−16 10,298 9,802 5.45E−01

Note:
Bold values represent the values better than the level of significance a = 0.05.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 15/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Figure 4 Comparison of convergence. Full-size DOI: 10.7717/peerj-cs.2278/fig-4

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 16/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-4
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Figure 5 Flood algorithm search history with 30 neighbours-1.
Full-size DOI: 10.7717/peerj-cs.2278/fig-5

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 17/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-5
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Figure 6 Flood algorithm search history with 30 neighbours-2. Full-size DOI: 10.7717/peerj-cs.2278/fig-6

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 18/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-6
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

graphs in Fig. 7 show the results of the analysis on two benchmark functions (Rastrigin and
Michalewicz) for three different numbers of neighbours (10, 30 and 100).

Engineering design problems
The FA has been applied to three of the classic engineering design problems that have been
widely studied in the literature. These three engineering problems are the three-bar truss
design problem, the pressure vessel design problem and the tension/compression spring
design problem. The objective function and constraints of the three-bar truss design
problem are described by the Formula (10).

f ðxÞ ¼ ð2 ffiffiffi
2
p

x1 þ x2Þ X l

with restrictions :

g1ðxÞ ¼ 2
ffiffiffi
2
p

x1 þ x2
2

ffiffiffi
2
p

x21 þ 2x1x2
p� r � 0

g2ðxÞ ¼ x2
2

ffiffiffi
2
p

x21 þ 2x1x2
p� r � 0

g3ðxÞ ¼ 1

2
ffiffiffi
2
p

x2 þ x1
p� r � 0

0 � x1; x2 � 1; l ¼ 100; p ¼ 2; r ¼ 2:

(10)

The objective function and constraints of the pressure vessel design problem are
described by the Formula (11).

Figure 7 Search history of different neighbour rates. Full-size DOI: 10.7717/peerj-cs.2278/fig-7

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 19/28

http://dx.doi.org/10.7717/peerj-cs.2278/fig-7
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

f ðxÞ ¼ 0:6224 x1 x3 x4 þ 1:7781 x2 x
2
3 þ 3:1661 x21 x4 þ 19:84 x21 x3

with restrictions :

g1ðxÞ ¼ �x1 þ 0:0193 x3 � 0

g2ðxÞ ¼ �x2 þ 0:00954 x3 � 0

g3ðxÞ ¼ �p x23 x4 �
4
3
p x33 þ 1296000 � 0

g4ðxÞ ¼ x4 � 240 � 0

0 � x1; x2 � 99; 10 � x3; x4 � 200:

(11)

The objective function and constraints of the tension/compression spring design
problem are described by the Formula (12).

f ðxÞ ¼ ðx3 þ 2Þ x2 x21
with restrictions :

g1ðxÞ ¼ 1
x32 x3

71;785 x41
� 0

g2ðxÞ ¼ 4 x22 � x1 x2
12;566 ðx2 x31 � x41Þ

þ 1
5;108 x21

� 1 � 0

g3ðxÞ ¼ 1 � 140:45 x1
x22 x3

� 0

g4ðxÞ ¼ x1 þ x2
1:5

� 1 � 0

0:05 � x1 � 2; 0:25 � x1 � 1:3; 2 � x1 � 15;

(12)

Experimantal results
To solve these problems, all of the compared algorithms were run 100 times. The
minimum, maximum, average, and standard deviation of fitness values obtained for each
algorithm are given in Table 6. As seen in Table 6, the FA produces better results than the
other algorithms in nine out of 12 comparison areas for three design problems.

Exam seating problem
In addition to the benchmark functions and engineering design problems, we tested the FA
on the exam seating problem of a university as a real-world problem with the other three
metaheuristics. In an examination session, one of the main concerns is the successful
distribution of seats in examination halls (Chaki & Anirban, 2016). In this real-world
problem, the goal is to minimize the number of students taking the same exam and sitting
side by side or back to back in an exam session by using the minimum number of
classrooms (without leaving any empty seats). The solutions must include all students
taking an exam in the session, and each student must be included in the solutions only
once. Under these conditions, the exam seating problem becomes an NP-complete
permutation problem similar to the Travelling Salesman Problem (TSP), where the student

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 20/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

seating order corresponds to the order of cities to visit. In the modeling phase of the
problem, the structure of the possible solutions is considered as a vector as shown in
Table 7, where the indices represent the seats and the values in the indices represent the
students. A traceability matrix, seen in Table 8, was created representing all possible
classrooms and seat locations, including side-by-side and back-to-back seat location
neighbours, allowing access to seat location neighbours through index information in the
solution vector. Eleven exam session data from one exam period of the university were
used as the data set. For each exam session, a student-course matrix containing the student
numbers and the course information was created and access to the course information was
provided through the student number.

Experimantal results
For the exam seating problem, the FA, SA, GA, and PSO algorithm were run 50 times for
each exam session with the parameter values given in Table 3. The number of courses and
number of students in the exam sessions are given in Table 9.

The minimum, maximum, average, and standard deviation of fitness values obtained for
each algorithm are given in Table 10. A seen in Table 10, the FA produces better results
than the other algorithms in 42 out of 44 comparison areas for 11 exam sessions. In

Table 6 Comparative results of FA with GA, PSO, and SA (bolded numbers represent the best
values).

Problems FA GA PSO SA

Three-bar truss Min 159.1 159.1336 159.099 159.1129

Max 159.181 165.5675 160.329 279.4735

Average 159.124 161.2898 159.1129 184.5323

StdDev 0.014192 1.258395 0.123407 31.61629

Pressure vessel Min 1,253.023 3,562.545 1,089.464 1,857.01

Max 1,755.822 63,852.54 541,954.3 5,883.714

Average 1,471.384 24,629.07 33,416.63 4,525.2

StdDev 95.21283 14,010.81 91,308.28 782.6464

Tension spring Min 0.012689 0.013098 0.012667 0.012706

Max 0.014842 0.044247 0.042496 0.0222

Average 0.012999 0.018458 0.017713 0.016947

StdDev 0.000429 0.004857 0.005221 0.002598

Table 7 Structure of solution vector.

Seat indexes

1 2 3 4 5 6 7 8 9 10

Solution -> S2 S8 S6 S10 S4 S7 S1 S5 S3 S9 …

Student numbers

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 21/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Table 8 Location traceability matrix view.

Of seat Classroom Name Row Column Side Back

1 1 D-301 1 1 2 6

2 1 D-301 1 2 −1 7

3 1 D-301 1 3 −1 8

4 1 D-301 1 4 5 9

5 1 D-301 1 5 −1 10

6 1 D-301 2 1 7 11

Note:
A total of −1 in side or back columns means that there is no adjacent seat location in that direction.

Table 9 Course and student numbers of exam sessions.

Exam sessions

1 2 3 4 5 6 7 8 9 10 11

Of courses 12 8 9 9 8 11 8 4 4 7 13

Of students 827 830 821 869 775 584 712 434 643 833 879

Table 10 Comparative results of FA with GA, PSO, and SA (bolded numbers represent the best
values).

Sessions FA GA PSO SA

1 Min 1 11 48 1

Max 6 27 87 10

Average 3.42 19.34 67.22 5.34

StdDev 1.485851642 4.697416 11.57635 2.076201398

2 Min 0 16 53 1

Max 9 38 92 11

Average 3.14 28.12 74.18 5.72

StdDev 2.060414066 6.610567 12.12804 2.138471703

3 Min 1 17 46 2

Max 7 39 84 11

Average 3.48 27.3 67.22 6.92

StdDev 1.606618962 6.609363 11.3034 2.257323682

4 Min 1 25 55 2

Max 7 47 94 12

Average 3.98 36.4 76.76 6.64

StdDev 1.634949915 7.645193 11.51496 2.310225716

5 Min 4 11 64 6

Max 17 36 102 21

Average 9.88 24.9 84.6 13.24

StdDev 2.760065069 7.707007 9.822922 2.924631496

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 22/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

addition to these comparisons, theWilcoxon rank-sum test was used to evaluate the results
statistically. The ranks and p-values (for statistically significance level at a = 0.05) of the
results obtained by the FA against the results obtained by the other three algorithms for
exam seating problem are presented in Table 11. According to the Wilcoxon rank-sum test
results, the FA outperformed the GA and PSO in 11 out of 11 exam sessions and the SA in
10 out of 11 exam sessions.

In summary, the experimental results clearly show that FA significantly outperforms the
other three algorithms on benchmark functions, engineering design problems, and the
problem of preparing an exam seating plan. It produces very successful results, especially
when the solutions are multidimensional (with a large number of variables). The success in
mean, standard deviation and, Wilcoxon ranks-sum test values shows the stability and
robustness of FA. The appearance of convergence and search patterns show that FA can
successfully scan the solution space and converge to the global optimum.

Table 10 (continued)

Sessions FA GA PSO SA

6 Min 0 3 46 0

Max 2 17 82 2

Average 0.12 10.26 62.78 0.32

StdDev 0.385449645 4.503106 11.3969 0.512695956

7 Min 0 36 63 4

Max 11 72 101 15

Average 6.02 53.4 83.36 8.82

StdDev 2.453568829 10.66752 10.54197 2.404842054

8 Min 39 54 87 41

Max 60 109 148 60

Average 50.3 83.26 113.06 50.2

StdDev 4.315373562 17.44778 21.67643317 4.412412918

9 Min 51 79 84 54

Max 77 138 160 82

Average 60.98 122.38 120.3 68.78

StdDev 6.267799145 18.00441 22.10817 6.42472901

10 Min 1 27 60 3

Max 13 63 99 18

Average 7.08 46.26 79.04 10.08

StdDev 2.671390374 11.43894 12.4249 3.439506372

11 Min 0 6 69 1

Max 5 19 106 9

Average 2.06 12.94 87.34 3.92

StdDev 1.300078491 3.935241 11.93795 2.17443401

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 23/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

CONCLUSION
Optimization problems are problems that we encounter in many different fields such as
engineering, finance, and health. It is often not feasible to produce solutions to these
problems in polynomial time using deterministic algorithms, due to reasons such as the
size of the solution set increasing exponentially according to the number of variables in the
objective function and/or the solution space not being convex. In recent decades, many
studies have been carried out proposing metaheuristic algorithms that produce intuition-
based solutions to solve these optimization problems within an acceptable time frame. The
works are largely inspired by natural phenomena. The applications of these highly flexible
algorithms in the modeling of complex optimization problems in the engineering world
are increasing. In this article, a new meta-heuristic optimization algorithm, called the
Flood Algorithm, is proposed. FA is a trajectory-based algorithm inspired by the
movement of flood waters on the ground. By scanning the neighbouring points of a
randomly determined starting point, when it finds a neighbour with a better fitness value
than itself, it passes through that point (modeling the flow of water towards lower points),
and when a predetermined number of neighbours are scanned and a neighbour with a
better fitness value cannot be found, it passes between neighbours. It is designed to scan the
solution space over the point with the best fitness value (modeling the passage of water
overflowing from the weakest point of the obstacles it encounters). Experimental results
show that the proposed algorithm has stronger search and convergence ability than GA,
SA and PSO in most of the comparisons. Currently, the authors are working to compare
FA with a larger number of metaheuristic algorithms on a larger pool of problems. The
authors look forward to seeing applications of FA on different real-world problems in the
future.

Table 11 Wilcoxon rank-sum test results.

FA vs. GA FA vs. PSO FA vs. SA

Session R+ R− p-value R+ R− p-value R+ R− p-value

1 3,775 1,275 5.82E−18 3,775 1,275 5.93E−18 3,171.5 1,878.5 6.29E−06

2 3,775 1,275 6.10E−18 3,775 1,275 6.14E−18 3,309.5 1,740.5 4.83E−08

3 3,775 1,275 5.68E−18 3,775 1,275 5.77E−18 3,481.0 1,569.0 3.27E−11

4 3,775 1,275 5.90E−18 3,775 1,275 5.96E−18 3,312.5 1,737.5 4.29E−08

5 3,700 1,350 4.94E−16 3,775 1,275 6.34E−18 3,276.0 1,774.0 1.96E−07

6 3,775 1,275 1.57E−19 3,775 1,275 1.62E−19 2,770.0 2,280.0 1.52E−02

7 3,775 1,275 6.26E−18 3,775 1,275 6.27E−18 3,265.0 1,785.0 2.86E−07

8 3,746 1,304 3.75E−17 3,775 1,275 6.64E−18 2,480.0 2,570.0 7.58E−01

9 3,775 1,275 6.83E−18 3,775 1,275 6.84E−18 3,301.5 1,748.5 8.43E−08

10 3,775 1,275 6.52E−18 3,775 1,275 6.53E−18 3,147.5 1,902.5 1.65E−05

11 3,775 1,275 4.95E−18 3,775 1,275 5.14E−18 3,170.0 1,880.0 6.22E−06

Note:
Bold values represent the values better than the level of significance a = 0.05.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 24/28

http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Ramazan Ozkan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Ruya Samli conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Source code files including “bf” in their names are the source codes of algorithms for
benchmark functions. Source code files including “esp” in their names are the source codes
of algorithms for exam seating problem. Adjacency and students excel files are the dataset
for exam seating problem. Results files are the raw results of algorithms for benchmark
functions and exam seating problem. The source code and data is available in the
Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2278#supplemental-information.

REFERENCES
Ayyarao TS, Ramakrishna N, Elavarasan RM, Polumahanthi N, Rambabu M, Saini G, Khan B,

Alatas B. 2022. War strategy optimization algorithm: a new effective metaheuristic algorithm
for global optimization. IEEE Access 10(4):25073–25105 DOI 10.1109/ACCESS.2022.3153493.

Azizi M. 2021. Atomic orbital search: a novel metaheuristic algorithm. Applied Mathematical
Modelling 93(1):657–683 DOI 10.1016/j.apm.2020.12.021.

Azizi M, Talatahari S, Gandomi AH. 2023. Fire hawk optimizer: a novel metaheuristic algorithm.
Artificial Intelligence Review 56(1):287–363 DOI 10.1007/s10462-022-10173-w.

Bäck T. 1995. Evolution strategies: an alternative evolutionary algorithm. In: European Conference
on Artificial Evolution. Cham: Springer, 1–20.

Blum C, Roli A. 2003. Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Computing Surveys (CSUR) 35(3):268–308 DOI 10.1145/937503.937505.

Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA. 2022. White shark optimizer: a
novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowledge-Based
Systems 243(7):108457 DOI 10.1016/j.knosys.2022.108457.

Cavazzuti M. 2013. Deterministic optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 77–
102.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 25/28

http://dx.doi.org/10.7717/peerj-cs.2278#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2278#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2278#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2022.3153493
http://dx.doi.org/10.1016/j.apm.2020.12.021
http://dx.doi.org/10.1007/s10462-022-10173-w
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.knosys.2022.108457
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Chaki PK, Anirban S. 2016. Algorithm for efficient seating plan for centralized exam system. In:
2016 International Conference on Computational Techniques in Information and
Communication Technologies (ICCTICT). Piscataway: IEEE, 320–325.

Chen J, Cai H, Wang W. 2018. A new metaheuristic algorithm: car tracking optimization
algorithm. Soft Computing 22(12):3857–3878 DOI 10.1007/s00500-017-2845-7.

Corominas A. 2023. On deciding when to stop metaheuristics: properties, rules and termination
conditions. Operations Research Perspectives 10:100283 DOI 10.1016/j.orp.2023.100283.

Davenport A, Tsang E, Wang CJ, Zhu K. 1994. Genet: a connectionist architecture for solving
constraint satisfaction problems by iterative improvement. In: AAAI. 325–330.

Dehghani M, Montazeri Z, Dehghani A, Samet H, Sotelo C, Sotelo D, Ehsanifar A, Malik OP,
Guerrero JM, Dhiman G, Ramirez-Mendoza RA. 2020. Dm: Dehghani method for modifying
optimization algorithms. Applied Sciences 10(21):7683 DOI 10.3390/app10217683.

Dehghani M, Montazeri Z, Trojovská E, Trojovskỳ P. 2023. Coati optimization algorithm: a new
bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based
Systems 259(1):110011 DOI 10.1016/j.knosys.2022.110011.

Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A. 2019.A survey on new generation metaheuristic
algorithms. Computers & Industrial Engineering 137(5):106040 DOI 10.1016/j.cie.2019.106040.

Dorigo M, Maniezzo V, Colorni A. 1996. Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26(1):29–41
DOI 10.1109/3477.484436.

Eberhart R, Kennedy J. 1995. A new optimizer using particle swarm theory. In: MHS’95.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 39–43.

Glover F. 1989. Tabu search—part i. ORSA Journal on Computing 1(3):190–206
DOI 10.1287/ijoc.1.3.190.

Hansen N, Ostermeier A. 2001. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation 9(2):159–195 DOI 10.1162/106365601750190398.

Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W. 2022. Honey badger
algorithm: new metaheuristic algorithm for solving optimization problems. Mathematics and
Computers in Simulation 192(2):84–110 DOI 10.1016/j.matcom.2021.08.013.

Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S. 2019. Henry gas solubility
optimization: a novel physics-based algorithm. Future Generation Computer Systems
101(4):646–667 DOI 10.1016/j.future.2019.07.015.

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. 2019.Harris hawks optimization:
algorithm and applications. Future Generation Computer Systems 97:849–872
DOI 10.1016/j.future.2019.02.028.

Holland JH. 1992. Genetic algorithms. Scientific American 267(1):66–73
DOI 10.1038/scientificamerican0792-66.

Jones D, Mirrazavi S, Tamiz M. 2002.Multi-objective meta-heuristics: an overview of the current
state-of-the-art. European Journal of Operational Research 137(1):1–9
DOI 10.1016/S0377-2217(01)00123-0.

Kaveh M, Mesgari MS, Saeidian B. 2023. Orchard algorithm (oa): a new meta-heuristic algorithm
for solving discrete and continuous optimization problems. Mathematics and Computers in
Simulation 208(3):95–135 DOI 10.1016/j.matcom.2022.12.027.

Kirkpatrick S, Gelatt CD Jr, Vecchi MP. 1983. Optimization by simulated annealing. Science
220(4598):671–680 DOI 10.1126/science.220.4598.671.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 26/28

http://dx.doi.org/10.1007/s00500-017-2845-7
http://dx.doi.org/10.1016/j.orp.2023.100283
http://dx.doi.org/10.3390/app10217683
http://dx.doi.org/10.1016/j.knosys.2022.110011
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1016/j.matcom.2021.08.013
http://dx.doi.org/10.1016/j.future.2019.07.015
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1016/S0377-2217(01)00123-0
http://dx.doi.org/10.1016/j.matcom.2022.12.027
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Koza J. 1992. Genetic programming: on the programming of computers by means of natural
selection. Cambridge, MA: MIT Press.

Liu S-H, Mernik M, Hrnčič D, Črepinšek M. 2013. A parameter control method of evolutionary
algorithms using exploration and exploitation measures with a practical application for fitting
sovova’s mass transfer model. Applied Soft Computing 13(9):3792–3805
DOI 10.1016/j.asoc.2013.05.010.

Mirjalili S, Lewis A. 2016. The whale optimization algorithm. Advances in Engineering Software
95(12):51–67 DOI 10.1016/j.advengsoft.2016.01.008.

Mirjalili S, Mirjalili SM, Lewis A. 2014. Grey wolf optimizer. Advances in Engineering Software
69:46–61 DOI 10.1016/j.advengsoft.2013.12.007.

Misevicius A, Lenkevicius A, Rubliauskas D. 2006. Iterated tabu search: an improvement to
standard tabu search. Information Technology and Control 35(3):187–197
DOI 10.5755/j01.itc.35.3.11770.

Mladenović N, Hansen P. 1997. Variable neighborhood search. Computers & Operations Research
24(11):1097–1100 DOI 10.1016/S0305-0548(97)00031-2.

Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A. 2020. A better balance in
metaheuristic algorithms: does it exist? Swarm and Evolutionary Computation 54(1):100671
DOI 10.1016/j.swevo.2020.100671.

Naruei I, Keynia F. 2022. Wild horse optimizer: a new meta-heuristic algorithm for solving
engineering optimization problems. Engineering with Computers 38(Suppl 4):3025–3056
DOI 10.1007/s00366-021-01438-z.

Neumüller C, Wagner S, Kronberger G, Affenzeller M. 2012. Parameter meta-optimization of
metaheuristic optimization algorithms. In: Computer Aided Systems Theory–EUROCAST 2011:
13th International Conference, Las Palmas de Gran Canaria, Spain, February 6–11, 2011, Revised
Selected Papers, Part I 13. Cham: Springer, 367–374.

Pan JS, Zhang LG, Wang RB, Snášel V, Chu SC. 2022. Gannet optimization algorithm: a new
metaheuristic algorithm for solving engineering optimization problems. Mathematics and
Computers in Simulation 202(4):343–373 DOI 10.1016/j.matcom.2022.06.007.

Rajpurohit J, Sharma TK, Abraham A, Vaishali. 2017. Glossary of metaheuristic algorithms.
International Journal of Computer Information Systems & Industrial Management Applications
9:181–205.

Rashedi E, Nezamabadi-Pour H, Saryazdi S. 2009. Gsa: a gravitational search algorithm.
Information Sciences 179(13):2232–2248 DOI 10.1016/j.ins.2009.03.004.

Sang-To T, Le-Minh H, Wahab MA, Thanh CL. 2023. A new metaheuristic algorithm: shrimp
and goby association search algorithm and its application for damage identification in large-
scale and complex structures. Advances in Engineering Software 176(1):103363
DOI 10.1016/j.advengsoft.2022.103363.

Simon D. 2008. Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation 12(6):702–713 DOI 10.1109/TEVC.2008.919004.

Storn R, Price K. 1997. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11(4):341–359
DOI 10.1023/A:1008202821328.

Talatahari S, Azizi M. 2021. Chaos game optimization: a novel metaheuristic algorithm. Artificial
Intelligence Review 54(2):917–1004 DOI 10.1007/s10462-020-09867-w.

Tan Y, Zhu Y. 2010. Fireworks algorithm for optimization. In: Advances in Swarm Intelligence:
First International Conference, ICSI 2010, Beijing, China, June 12–15, 2010, Proceedings, Part I 1.
Cham: Springer, 355–364.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 27/28

http://dx.doi.org/10.1016/j.asoc.2013.05.010
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.5755/j01.itc.35.3.11770
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.swevo.2020.100671
http://dx.doi.org/10.1007/s00366-021-01438-z
http://dx.doi.org/10.1016/j.matcom.2022.06.007
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.advengsoft.2022.103363
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s10462-020-09867-w
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

Tanhaeean M, Tavakkoli-Moghaddam R, Akbari AH. 2022. Boxing match algorithm: a new
meta-heuristic algorithm. Soft Computing 26(24):13277–13299
DOI 10.1007/s00500-022-07518-6.

Wilcoxon F. 1992. Individual comparisons by ranking methods. In: Breakthroughs in Statistics:
Methodology and Distribution. Cham: Springer, 196–202.

Wolpert DH, Macready WG. 1997. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1):67–82 DOI 10.1109/4235.585893.

Xu J, Zhang J. 2014. Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In:
Proceedings of the 33rd Chinese Control Conference. Piscataway: IEEE, 8633–8638.

Xue J, Shen B. 2023. Dung beetle optimizer: a new meta-heuristic algorithm for global
optimization. The Journal of Supercomputing 79(7):7305–7336
DOI 10.1007/s11227-022-04959-6.

Yang XS. 2009. Harmony search as a metaheuristic algorithm. In: Geem ZW, ed. Music-Inspired
Harmony Search Algorithm. Studies in Computational Intelligence. Vol. 191. Berlin, Heidelberg:
Springer DOI 10.1007/978-3-642-00185-7_1.

Yang XS. 2010a. Firefly algorithm, stochastic test functions and design optimisation. International
Journal of Bio-Inspired Computation 2(2):78–84 DOI 10.1504/IJBIC.2010.032124.

Yang XS. 2010b. Nature-inspired metaheuristic algorithms. United Kingdom: Luniver Press.

Yang Y, Chen H, Heidari AA, Gandomi AH. 2021. Hunger games search: visions, conception,
implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems
with Applications 177(8):114864 DOI 10.1016/j.eswa.2021.114864.

Zhang Y, Jin Z. 2020. Group teaching optimization algorithm: a novel metaheuristic method for
solving global optimization problems. Expert Systems with Applications 148(2):113246
DOI 10.1016/j.eswa.2020.113246.

Ozkan and Samli (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2278 28/28

http://dx.doi.org/10.1007/s00500-022-07518-6
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s11227-022-04959-6
http://dx.doi.org/10.1007/978-3-642-00185-7_1
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1016/j.eswa.2021.114864
http://dx.doi.org/10.1016/j.eswa.2020.113246
http://dx.doi.org/10.7717/peerj-cs.2278
https://peerj.com/computer-science/

	Flood algorithm: a novel metaheuristic algorithm for optimization problems
	Terms and conditions
	Introduction
	Literature review
	Flood algorithm
	Flood algorithm validation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

