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ABSTRACT
The integration of Internet of Things (IoT) and artificial intelligence (AI) technologies
into modern agriculture has profound implications on data collection, management,
and decision-making processes. However, ensuring the security of agricultural data
has consistently posed a significant challenge. This study presents a novel evaluation
metric titled Latency Aware Accuracy Index (LAAI) for the purpose of optimizing data
security in the agricultural sector. The LAAI uses the combined capacities of the IoT
and AI in addition to the latency aspect. The use of IoT tools for data collection and AI
algorithms for analysis makes farming operation more productive. The LAAI metric is
a more holistic way to determine data accuracy while considering latency limitations.
This ensures that farmers and other end-users are fed trustworthy information in a
timely manner. This unified measure not only makes the data more secure but gives
farmers the information that helps them to make smart decisions and, thus, drives
healthier farming and food security.

Subjects Artificial Intelligence, Security and Privacy, Internet of Things
Keywords Internet of things (IoT), Artificial intelligence (AI), Latency Aware Accuracy Index
(LAAI), Agricultural data security

INTRODUCTION
In the ever-evolving landscape of agriculture, it has become crucial to incorporate state-of-
the-art technologies in order to enhance production, optimize resource utilization, increase
efficiency, and guarantee the implementation of sustainable practices. The digitization in
agricultural sectors is experiencing rapid exponential growth. Digitization is the term
used to describe the procedure by which data acquired physically (e.g., from sensors) is
converted into a format that can be read by a computer (Mondejar et al., 2021). This rate
of digitization in the agricultural sector leads to an exponential increase in the quantity
of sensitive data that is generated, processed, and stored. The increase in the volume of
data emphasizes the evident need for comprehensive safety measures in order to protect
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sensitive agricultural data linked to soil conditions, weather patterns, and agricultural
productivity, etc. However, due to computational constraints of existing systems, they
lack the capacity to effectively analyze vast amounts of data within a limited timeframe.
As a result, they become more susceptible to a range of attacks, including Distributed
Denial of Service (DDoS), SQL attack, MITM attack, backdoor attack, port scanning, and
ransomware attack, among others (Tomer & Sharma, 2022; Ramadan, 2022).

Agriculture is vital for the survival, expansion, and progress of the human race as it
supplies the vast majority of their food (Timmis & Ramos, 2021). It is a critical sector
that significantly influences and sustains the economy of a country (Adekoya et al., 2022).
Agriculture exhibits an extensive effect on the economy, incorporating various dimensions
including the generation of income, employment, foreign exchange earnings, and food
security. The convergence of technology and agriculture has led to the emergence of a
paradigm in which artificial intelligence (AI) and the Internet of Things (IoT) are utilized to
strengthen agricultural defenses against potential cyber threats (Seng, Ang & Ngharamike,
2022). By utilizing this collaborative strategy, stakeholders are not only empowered to
make well-informed decisions, but the integrity of agricultural data is also ensured, which
contributes to the development of a more sustainable and resilient agricultural ecosystem.

Despite considerable effort invested in agricultural IoT security, a significant amount of
prior research is based on either a restricted dataset or a relatively narrow spectrum of IoT
attacks. Furthermore, the latency component of the system has been neglected in the vast
majority of prior studies. The term latency refers to the potential delay (Lakhan et al., 2021)
that can occur during data processing or task execution (Kishor, Chakraborty & Jeberson,
2021). It quantifies the time interval between the initiation and completion of the process.
This study proposes a state-of-the-art evaluation metric, Latency Aware Accuracy Index
(LAAI), capable of identifying themost suitable AI subdomainmodel incorporating latency
factor for classifying and detecting various types of malicious attacks in the agricultural
IoT domain utilizing EdgeIIoTset. The proposed research utilizes machine learning (ML)
models (i.e., naïve Bayes and Decision Tree) and deep learning (DL) model (i.e., artificial
neural network) for IoT traffic multi-class classification. Therefore, the objective is to
connect computationally intensive artificial intelligence methods with resource limited
agricultural IoT devices in order to enhance the security and efficiency of the system, while
also taking system’s latency into consideration.

The organizational specifics of the article are as follows. ‘Literature Review’, examines
previous research on detection and classification of malicious IoT activities using ML and
DL models. In ‘Methodology’, the implementation specifics are discussed in further depth,
and in ‘Results & Discussion’, the study’s key findings are presented. Finally, ‘Conclusion’,
concludes the paper by specifying the most suitable AI model for the EdgeIIoTset, based
on the evaluations in the study.

LITERATURE REVIEW
This section examines previous research on the security of IoT data and networks, with a
particular focus on the identification and categorization of harmful IoT network activity.
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Fu et al. (2023) proposed an approach aiming to secure agricultural information systems.
The study proposed a Double Deep Q-Network (DDQN) algorithm utilizing the geography
position information to quickly optimize UAV deployment positions without complicated
derivations and improve security-checking efficiency in agriculture environments. In
addition to that, the inclusion of convolutional neural network-long short-term memory
(CNN-LSTM) lead towards developing a new pattern for intrusion detection system not
only in IoT but also for other fields as well. Thus, by controlling the data transmission and
network structure construction using long short-term memory (LSTM) and convolutional
neural network (CNN) respectively security of precision agriculture was ensured. In order
to evaluate the performance of the algorithms under a variety of parameter configurations,
the experiments were complemented with simulation that further inform how to deploy
UAVs efficiently. The IoT intrusion detection system based on the CNN-LSTM algorithm
achieved an accuracy of 93.5% and a detection rate of 94.4% utilizing the KDD-CUP99
dataset.

Aldhyani & Alkahtani (2023) utilized DL models to reduce the escalating challenge of
DDoS attacks on Agriculture 4.0 networks. The research presented an adaptive intrusion
detection system (IDS) that used architectures like LSTM, combination of CNN and LSTMs
CNN–LSTM for DDoS detection. To develop and evaluate the developed system, the study
used the CIC-DDoS2019 dataset which has been generated from a network monitored
by CRCFlowMeter-V3. The authors used frequently studied standard network traffic
datasets (NetBIOS, Portmap, Syn, UDPLag and benign packets) to train and evaluation
the model. Performance metrics such as precision, recall, F1-score and accuracy highlight
the high-performance capabilities of CNN–LSTM model and achieved both almost 100%
accuracy score.

Javeed et al. (2023) presented an IDS for the edge-based smart agriculture in extreme
conditions. Using the CIC-IDS2018, ToN-IoT, and Edge-IIoT datasets, they incorporated
edge computing for providing real-time intrusion detection. The objective of the study
was to enhance security in smart agricultural systems, which is critical for ensuring that
they remain operationally resilient in adverse environmental settings. The necessity of
intrusion detection to safeguard agricultural infrastructure from cyber threats, which was
emphasized by the authors and their advanced algorithms combined with edge computing
capabilities The accuracy rate of their system also showed satisfaction with a record between
99.51% and 99.91%, which proves the importance of this model as an extra layer protecting
security in smart agriculture.

Saha et al. (2021) conducted a study focused on the security aspect of smart agriculture.
The authors delved into IoT applications such as real time crop monitoring, precision
farming and data analytics by using sensors for soil moisture estimation and weather
monitoring. Despite technological advancements, challenges such as software simplicity
and secure data transmission were noted. Seamless integration with agriculture, skilled
workforce, low power sensors were some of thematters that they brought out in their study.
They also emphasized better connectivity, remote management, and enhanced security
measures. The team suggested that future research should focus on the importance of
security in IoT enabled agricultural systems for uninterrupted services.
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Setiadi, Kesiman & Aryanto (2021) described a way to find Denial-of-Service (DoS)
attacks on an IoT platform using the NSL-KDD and KDD’99 datasets and the naïve Bayes
method. DoS attacks are very dangerous to computer networks because they break down
PCs or servers that are linked to the internet. The main goal of intrusion detection study is
to find the best way to choose features so that IoT attacks and intrusions do not hurt the
effectiveness of IDS. The study produced results with a 99% recall rate, 50% precision, and
64% accuracy rate.

Manimurugan (2021) developed an IoT-Fog-Cloudmodel using the UNSW-NB dataset,
incorporating PCA and improving naïve Bayes for anomaly detection. This study explored
the feasibility of integrating cloud and fog computing with the IoT, laying the foundation
for securing IoT-enabled smart city applications. Fog computing provides a wide range of
services as it provides IoT services, while cloud computing provides storage management.
This work uses PCA-based improved naïve Bayes (INB) method to detect anomalies in
network based intrusion detection systems (NIDS). INB-PCA performed well on the
UNSW-NB15 data set, achieving 92.48% accuracy and 95.35% detection rates.

Douiba et al. (2023) proposed to monitor IoT systems for inconsistencies. This study
used gradient boosting (GB) and CatBoost to improve IoT security IDS models. The model
scored well on the NSL-KDD, BoT-IoT, IoT-23 and Edge-IIoTset datasets. It achieved
about 99.9% accuracy, recall and accuracy in record discovery and computation time. This
anomaly-based IDS contributes significantly to the enhanced security of the Internet of
Things, especially when combined with dark computing costs. The paper emphasizes the
effectiveness of the model and credits GPU usage, gradient boosting, and CatBoost for its
performance.

Guezzaz et al. (2021) proposed an approach for network intrusion detection utilizing
Decision Tree with improved data quality, employing the NSL-KDD and CICIDS2017
datasets. Through preprocessing and entropy Decision Tree based feature selection,
the method boosted detection rates and data quality, validated on the NSL-KDD and
CICIDS2017 datasets. This approach showcased advantages and heightened accuracy,
setting the stage for future integration of additional machine learning techniques. The
suggestedmodel, demonstrated an accuracy rate of 99% forNSL-KDD, while the evaluation
on the CICIDS2017 dataset attests to an accuracy level of 98%.

Jamal, Hayat & Nasir (2022) proposed a method for the identification and classification
ofmalware in IoT networks by utilizing artificial neural networks with the Ton_IoT dataset.
This research investigated the efficacy of neural networks in identifying and classifying
malware inside an IoT network. The utilized Ton_IoT dataset consisting of 461,043 records,
with 300,000 benign occurrences and 161,043 malicious incidents. Based on the traffic
on the IoT network, the proposed method achieves an accuracy of 94.17% in detecting
malware and 97.08% in classifying classes of malware families.

Al-Zewairi, Almajali & Ayyash (2020) used shallow and deep artificial neural network
classifiers to identify undetected security breaches. To find the best datasets for unusual
attacks, the authors examined and standardized novel attack classification. They evaluated
new anomaly-based intrusion detection techniques for detecting unknown threats using
two datasets and artificial neural network models for binary and multi-class classification.
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The study claimed to have produced encouraging results. The malware detection accuracy
was 94.17%, and the malware family classification accuracy was 97.08%.

Gopi et al. (2021) proposed refining an artificial neural network based model for
identifying DDoS assaults on multimedia IoT devices. An artificial neural network
(ANN) learns to recognize feature vector patterns and predict output. This is critical
for multimodal IoT DDoS attack detection. Training minimizes the loss function by
employing one dimensional search spaces and mathematical procedures. The system
classifies packets as normal or malicious by collecting signatures and behavior patterns
using the IDS. The model uses the ML training technique and data dimension reduction
to detect DDoS attempts, and it separates compromised packets incredibly well to protect
network capacity and utilization.

Osman et al. (2021) developed anANNmodel to detect instances of lower-rank attacks in
RPL-based IoT networks. After pre-processing a dataset of RPL protocol control messages
with a Random Forest classifier to discover the most essential features, an ANN model is
trained to categorize messages as benign or malignant. The model is having an input layer,
including one or more hidden layers, and the layer of output, with each layer consisting
of many neurons. The model is trained using a specific dataset and then evaluated using a
different dataset. The suggested model is assessed in comparison to other machine learning
methods and shows positive results in detecting reduced rank attacks in RPL-based IoT
networks. The article claims an accuracy rate of 97.01%.

The literaturementioned above regarding IoT security pertains to either a restricted range
of IoT attacks or a meager quantity of data. Additionally, almost all of previous research
overlooked the latency aspect of the system. Furthermore, comparing and ranking the
performance of different ML and DL classifiers using diverse datasets is not a reasonable
approach. The proposed work will tackle all of these concerns. This research aims to
determine the best AI model for detecting various IoT attack classes in agricultural
applications using different data volumes from the same dataset, while also considering
latency factor crucial for optimizing the performance and security of IoT systems.

METHODOLOGY
At present, various ML and DL methods specifically developed for identifying and
categorizing both normal and malicious data traffic in agricultural IoT are claiming
their effectiveness. Nevertheless, evaluating their performance and efficacy in a wide
range of scenarios, which include different datasets with varying amounts of training and
testing records, as well as various types of IoT attacks, continues to be a challenging task.
Furthermore, while latency is a crucial metric for assessing the performance of IoT systems,
prior studies has predominantly overlooked its impact on performance evaluation. To
address this gap and support these claims, the proposed research aims to lay a robust
groundwork for the optimal selection of AI model incorporating latency factors. This will
be accomplished by comparing the naïve Bayes, Decision Tree, and ANN models on a
specific dataset designed exclusively for agricultural applications in the IoT domain. These
three models, have been purposefully chosen for their application to the diversified and
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Figure 1 Intendedmethodology.
Full-size DOI: 10.7717/peerjcs.2276/fig-1

cutting-edge dataset known as the Edge-IIoTset which is publicly available for research
purposes. The objective of this research is to contribute to the understanding of AI domain
by introducing a cutting-edge evaluation metric called the Latency Aware Accuracy Index
(LAAI) that can determine the most appropriate AI subdomain model through integrating
the achieved accuracy and latency factor. This will enable prompt and essential responses to
be taken. The intent of this study is to establish a foundational reference that will indicate
the most effective model for classifying agricultural IoT traffic within the specified dataset.
The Fig. 1 represents the proposed pipeline of an intended methodology.
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Table 1 ML-Edge-IIoTset details (Ferrag et al., 2022).

S# Class Data records

1 Normal_IoT_Data 24,301
2 Backdoor_Attack 10,195
3 DDoS_HTTP_Attack 10,561
4 DDoS_ICMP_Attack 14,090
5 DDoS_TCP_Attack 10,247
6 DDoS_UDP_Attack 14,498
7 Fingerprinting_Attack 1,001
8 MITM_Attack 1,214
9 Password_Attack 9,989
10 Port_Scanning_Attack 10,071
11 Ransomware_Attack 10,925
12 SQL_Injection_Attack 10,311
13 Uploading_Attack 10,269
14 Vulnerability_Scanner_Attack 10,076
15 Cross-site_Scripting_(XSS)_Attack 10,052

Total records 157,800

Dataset
In the context of the agricultural IoT, the identification and classification of intrusions and
attacks are significantly influenced by the selection of an appropriate dataset.

The EdgeIIoTset (Ferrag et al., 2022), a cutting-edge public IoT security dataset, was
intentionally selected for this particular objective. The dataset contains extensive statistics
on IoT traffic, consisting of a total of 15 categories. The classes consist of 14 categories
that represent different sorts of IoT attacks, along with one class that represents regular
IoT data. In the proposed investigation, the utilization of this public dataset is paramount,
as public datasets provide a valuable platform for researchers to compare and benchmark
their contributions against the work of others in the field. The dataset is obtained from
sensors that measure variables including temperature, humidity and water level, among
other things, and is suitable for IoT security application in agriculture. Edge-IIoTset is
composed of two subsets, namely ML-Edge-IIoTset and DNN-Edge-IIoTset, provided by
the developers of the dataset (see Tables 1 and 2).

The Edge-IIoTset dataset encompasses diverse IoT data traffic classifications, which are
outlined as follows:
1. Normal_IoT_Data: Authentic data and legitimate requests.
2. Backdoor_Attack: Installs backdoors in IoT networks by taking control of the

vulnerable system components.
3. DDoS_HTTP_Attack: Executes theHTTPmanipulation and sending the spam queries.
4. DDoS_ICMP_Attack: Bombards the target device with a disproportionate amount of

Internet Control Message Protocol (ICMP) echo requests, commonly called pings.
5. DDoS_TCP_Attack: Overloads the target device with a disproportionate amount of

SYN requests to ensure it is unable to accept any new connections.
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Table 2 DNN-Edge-IIoTset details (Ferrag et al., 2022).

S# Class Data records

1 Normal_IoT_Data 1,615,643
2 Backdoor_Attack 24,862
3 DDoS_HTTP_Attack 49,911
4 DDoS_ICMP_Attack 116,436
5 DDoS_TCP_Attack 50,062
6 DDoS_UDP_Attack 121,568
7 Fingerprinting_Attack 1,001
8 MITM_Attack 1,214
9 Password_Attack 50,153
10 Port_Scanning_Attack 22,564
11 Ransomware_Attack 10,925
12 SQL_Injection_Attack 51,203
13 Uploading_Attack 37,634
14 Vulnerability_Scanner_Attack 50,110
15 Cross-site_Scripting_(XSS)_Attack 15,915

Total records 2,219,201

6. DDoS_UDP_Attack: Overwhelms the target device with a vast amount of User
Datagram Protocol (UDP) packets to disrupt the processing and responses.

7. Fingerprinting_Attack:Analyze IoT data packets in examining IoT devices and servers.
8. MITM_Attack: Eavesdrops on the communication between two IoT devices or between

the IoT device and the server.
9. Password_Attack: Decodes the password of an IoT device to gain illegal entry.
10. Port_Scanning_Attack: Aids hackers in determining vulnerabilities inside the IoT

network.
11. Ransomware_Attack: Encrypts the IoT data or systems to disable access until a ransom

is paid.
12. SQL_Injection_Attack: Utilizes the SQL queries to read, insert, update and delete the

sensitive information from the database.
13. Uploading_Attack:Uploads themalware infected file that spreads infectious command,

thus takes control of the device.
14. Vulnerability_Scanner_Attack: Scans and notifies the security flaws present inside the

IoT network.
15. Cross-site_Scripting_(XSS)_Attack: Compromises the confidential information

through deploying the vicious scripts to the victims.
It is recommended by the Edge-IIoTset developers that ML-Edge-IIoTset be utilized

when applying ML techniques, whereas DNN-Edge-IIoTset be utilized when applying
deep learning techniques. In order to meet the needs of investigators, each of these subsets
comprises varying quantities of data while still encompassing all classes from the entire
dataset. This study employs both ML-EdgeIIoTset and DNN-EdgeIIoTset to evaluate the
performance of three selected classifiers/ models (i.e., naïve Bayes, Decision Tree, and
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ANN). The objective is to investigate the impact of varying data quantities on classifier’s
performance and latency.

Data preprocessing
The Edge-IIoTset comprises 63 features in total. A total of 20 out of 63 are classified as object
type, and 17 of them haveNull values, zero values, ormixed data types. The object attributes
consist of integer, floating-point, and string data labeled as Not a Number (NaN), which
hold no importance in the application of machine learning and deep learning models. The
datasets ML-Edge-IIoTset and DNN-Edge-IIoTset have been preprocessed by eliminating
attributes with only zero, null, and NaN values, resulting in 46 attributes available for
classification. The datasets exhibit a notable degree of imbalance, as illustrated in Tables 1
and 2. An imbalance in the distribution of classes within the training dataset is the root cause
of the imbalanced classification issue. A data augmentation technique known as Synthetic
Minority Oversampling Technique (SMOTE) is employed to balance these unbalanced
datasets, thereby resolving the imbalance issue and producing balanced datasets. In order
to achieve classification parity, SMOTE produces synthetic samples that represent the
minority class. This is achieved through the process of arbitrarily selecting instances from
the minority class, identifying their k-nearest neighbors (which are frequently members of
the same class), and generating synthetic examples by combining the selected instance with
its neighbors in a linear fashion. This process is repeated iteratively until the desired degree
of class equilibrium is achieved. An equal portion of both datasets, i.e., 70% is allocated for
training and the remaining 30% is designated for testing.

AI subdomains model
The proposed study settled on naïve Bayes (Nababan, 2024; Listiyono et al., 2024; Zhang,
Jiang & Webb, 2023), Decision Tree (Zhuang et al., 2024; Coscia et al., 2024; Samin et
al., 2023), and ANN (Mustaqim, Fadil & Tyas, 2023; Muñoz-Zavala et al., 2024; Yaman,
Karakaya & Köküm, 2024) as the selected methods. Naïve Bayes and Decision Tree are
categorized as machine learning models, whereas ANN is classified as a deep learning
model. Each of these models will be employed for IoT traffic multi-class classification.

Evaluation metrics
Evaluation metrics are used to measure the efficiency of statistics, machine learning,
and deep learning models. Four assessment metrics, namely accuracy (Gao et al., 2021;
Sharma & Guleria, 2023), precision (Fränti & Mariescu-Istodor, 2023; Mulla & Gharpure,
2023), recall (Fränti & Mariescu-Istodor, 2023; Alkaissy et al., 2023), and F1-score (Obi,
2023; Fourure et al., 2021), are used to evaluate and compare the performances of naïve
Bayes, Decision Tree and ANN on both sub datasets (i.e., ML-Edge-IIoTset and DNN-
Edge-IIoTset). The mathematical formulas for all employed evaluation metrics are as
follows:

Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn
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Precision=
Tp

Tp+Fp

Recall =
Tp

Tp+Fn

F1−Score= 2∗
Precission∗Recall
Precission+Recall

where, Tp represents true positive, Tn represents true negative, Fp represents false positive
and Fn represents false negative. An instance of Tp is an outcome in which the model
accurately anticipates the positive class. A Tn is an equivalent outcome in which the model
accurately anticipates the negative class. An incorrect positive class prediction by the model
is denoted by Fp outcome, while an incorrect negative class prediction is denoted by Fn
outcome.

Latency
In the field of computing, latency refers to the potential delay (Lakhan et al., 2021) that
can occur during data processing or task execution (Kishor, Chakraborty & Jeberson, 2021).
It quantifies the time interval between the initiation and completion of the process. This
indicator has been developed specifically to quantify the level of responsiveness exhibited
by the system (Khayat et al., 2023). The latency can be calculated as:

Latency =
Total Time

Number of Predictions
where, Total Time is the sum duration of the system in analyzing a certain number of
predictions and Number of Predictions is the population of the predictions.

LAAI
Although, the current evaluation measures adequately address the specific objectives,
however, they fail to prioritize a key element, latency during the evaluation of IoT devices.
The proposed LAAI is a novel and comprehensive evaluation measure that incorporates
accuracy and latency in evaluating the performance of a model in a practical application
and real world scenario. The LAAI is expressed as:

LAAI =
Accuracy
1+Latency

where, Accuracy is the ratio of the correct predictions to the total number of predictions
made about the system (Gao et al., 2021; Sharma & Guleria, 2023) and Latency quantifies
the potential input–output delay experienced during processing (Kishor, Chakraborty &
Jeberson, 2021). To normalize the results, Accuracy is divided by 1 + Latency. LAAI is the
hence normalized term that represents a balance between latency and accuracy. Higher
LAAI scores indicate that the system operates more efficiently in terms of both accuracy
and latency. Conversely, a low LAAI score means that the model might not be processing
the prediction data quickly enough, which is not viable in scenarios that require a fast
response, despite the high accuracy of the system.
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RESULTS & DISCUSSION
In this study, we examined the Edge-IIoTset open-access dataset of IoT data traffic to
build the training and testing datasets. This study compares three approaches: naïve Bayes,
Decision Tree and ANN, in order to classify agricultural IoT data traffic into benign and
malicious categories using the selected dataset. The Decision Tree has been set up with a
maximum depth of 7, and the structure of the ANN is expressed by the whole 4 layers,
1 input layer, 2 dense layers and 1 output layer (see Figs. 2 and 3). Evaluation metrics
including accuracy, precision, recall, F1-score, and latency are used to forecast and evaluate
the performance of the three selected models for the selected datasets (see Table 3 for the
detailed results).

In Figs. 2 and 3, the first layer is an input layer that represents input data (i.e., 255,160
× 45 for ML-EdgeIIoT-set and 16,964,251 × 45 for DNN-EdgeIIoT-set) to the model.
The second layer is a fully connected layer abbreviated as Dense Layer 1 and consists
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Table 3 Evaluationmetrics with latency.

AI model Dataset Accuracy Precision Recall F1-Score Latency (ms)

Naïve Bayes ML-Edge-IIoTset 0.460 0.490 0.462 0.434 0.00030
Decision tree ML-Edge-IIoTset 0.720 0.681 0.720 0.682 0.00011
ANN ML-Edge-IIoTset 0.975 0.976 0.975 0.975 0.00765
Naïve Bayes DNN-Edge-IIoTset 0.450 0.467 0.448 0.410 0.00046
Decision tree DNN-Edge-IIoTset 0.730 0.701 0.728 0.691 0.00031
ANN DNN-Edge-IIoTset 0.980 0.983 0.980 0.981 0.00938

of 128 units/neurons (i.e., 0 to 127). It takes the input from the first layer, applies a
linear transformation, and then applies the ReLU activation function. This layer derives
128 distinct features from the input data. The third layer is also a fully connected layer
abbreviated as Dense Layer 2 and consists of 64 units/neurons (i.e., 0 to 63). It takes the
input from the output of second layer, applies another linear transformation, and then
applies the ReLU activation function. This layer derives 64 distinct features from the input
data. The last layer is an output layer and consists of 15 units/neurons, corresponding to
the 15 output classes. It takes the input from the output of third layer and transforms it
into a 15 dimensional vector, where each element represents the probability of the input
belonging to a particular class.

The findings and results of this study investigation provide critical insights into the
effectiveness of the models used to detect and classify malicious IoT data. Importantly,
the results conclusively indicate that the ANN performed better compared to the naïve
Bayes and Decision Tree classifiers, with the exclusion of latency. This could be attributed
to the powerful capabilities of ANNs as they can identify non-linear relationships in the
data, extract relevant features from raw data by itself, and manage large datasets effectively.
Moreover, the public available dataset Edge-IIoTset played an important role as a highly
usable and feasible data source for researchers, and industries to navigate the difficulty
caused by infectious IoT data flow.

The Figs. 4, 5 and 6 represent precision, recall, and F1-score of the selected three
classifiers, calculated for ML-Edge-IIoTset, while the Figs. 7, 8 and 9 represent precision,
recall, and F1-score of the selected three classifiers, calculated for DNN-Edge-IIoTset,
respectively. The following figures encompass 15 distinct IoT data traffic classes pertaining
to cybersecurity, represented on the x-axis. The y-axis represents the precision (in dark
blue), recall (in gray), and F1-score scores (in light blue).

The performance of naïve Bayes in classifying various classes tends to vary, as depicted
in Fig. 4. Naïve Bayes exhibits commendable performance in accurately classifying various
types of data, such as DDoS_UDP with a high recall and F1-score and Normal with
a low recall and F1-score. DDoS_ICMP recall and precision metrics are satisfactory,
however, the F1-score exhibits a comparatively insignificant value, indicating the possible
existence of an asymmetry between recall and precision. Additionally, DDoS_TCP and
Vulnerability_Scanner are two classes that demonstrate a moderate level of performance.
The metrics for the Port_Scanning class are zero, indicating that the model lacks the
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Figure 4 Evaluationmetrics for Naïve Bayes (ML-EdgeIIoTset).
Full-size DOI: 10.7717/peerjcs.2276/fig-4
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Figure 5 Evaluationmetrics for decision tree (ML-EdgeIIoTset).
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Figure 6 Evaluationmetrics for artificial neural network (ML-EdgeIIoTset).
Full-size DOI: 10.7717/peerjcs.2276/fig-6
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Figure 7 Evaluationmetrics for naïve Bayes (DNN-EdgeIIoTset).
Full-size DOI: 10.7717/peerjcs.2276/fig-7

Samin et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2276 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2276/fig-6
https://doi.org/10.7717/peerjcs.2276/fig-7
http://dx.doi.org/10.7717/peerj-cs.2276


0

0.25

0.5

0.75

1

Sc
or
e

Attack Types

Decision Tree (DNN-EdgeIIoTset)
Precision Recall F1-score

Figure 8 Evaluationmetrics for Decision Tree (DNN-EdgeIIoTset).
Full-size DOI: 10.7717/peerjcs.2276/fig-8
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Figure 9 Evaluationmetrics for artificial neural network (DNN-EdgeIIoTset).
Full-size DOI: 10.7717/peerjcs.2276/fig-9
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capability to precisely identify instances that belong to these classes. Figure 5 depicting
evaluations ofDecision Tree, demonstrates substantial improvements inmultiple categories
when compared to Fig. 4. However, certain classes, including XSS and Port_Scanning
demonstrate minimal or nonexistent metrics, indicating that the model lacks the capability
to precisely identify instances that belong to these classes. Figure 6 depicting evaluations
of ANN, exhibits outstanding performance in the majority of classes on a consistent basis.
Outstanding precision, recall, and F1-scores are demonstrated by the Normal, Backdoor,
DDoS_HTTP, DDoS_ICMP, DDoS_TCP, DDoS_UDP, Fingerprinting, MITM, Password,
Ransomware, Uploading and XSS classes. However, despite being slightly lower, the ratings
for Port_Scanning and SQL_Injection remain within acceptable ranges. In summary, ANN
consistently surpasses in terms of performance, naïve Bayes and Decision Tree in nearly all
categories for ML-EdgeIIoTset.

Like Fig. 4, Fig. 7 shows variation in the performance of naïve Bayes across different
classes. For instance, DDoS_TCP has perfect precision, recall, and F1-score, indicating a
flawless classification for this class. However, classes like DDoS_HTTP, Fingerprinting, and
Vulnerability_Scanner have relatively balanced scores, with moderate to high values for
precision, recall, and F1-score. On the contrary, classes like Backdoor and Port_Scanning
have very low scores across all metrics, indicating poor performance in identifying
these classes. Figure 8 depicting evaluations of Decision Tree, demonstrates substantial
improvements as compared to Fig. 7, notably in classes like Backdoor, DDoS_HTTP, and
Fingerprinting where precision, recall, and F1-score have increased significantly. However,
classes like Password and Port_Scanning still have poor performance, with precision, recall,
and F1-score all being zero, indicating that the model fails to identify these classes at all. For
ANN, in Fig. 9, there is a significant improvement across the board, with almost all classes
achieving perfect or near-perfect scores in precision, recall, and F1-score. In summary,
ANN surpasses in terms of performance, naïve Bayes and Decision Tree in all categories
for DNN-EdgeIIoTset.

It can be seen in Table 4, that in terms of IoT attack detection, ANN demonstrates
superior performance compared to both naïve Bayes and Decision Tree; however, with
regard to latency, Decision Tree surpasses both naïve Bayes and ANNmodels. Therefore, it
is not possible to designate any of these techniques as the optimal AImethod, given that their
performance varies across domains. To mitigate this issue, the proposed state-of-the-art
evaluation metric LAAI is utilized to calculate a solitary outcome that comprehensively
represents both performance and latency (see Table 4). Let us consider a hypothetical
situation wherein AI Model-A attains an accuracy rate of 90% with a detection latency of
1 ms, whereas AI Model-B attains an accuracy rate of 75% with a detection latency of 0.1
ms. It is not feasible to determine an optimal model solely based on accuracy or latency
in IoT domain due to the significance of both metrics. The proposed LAAI is preferable
since it integrates both Accuracy and Latency. In the provided situation, the LAAI value for
Model A is estimated to be 0.45, whereas, for Model B it is estimated to be 0.68. Therefore,
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Table 4 Proposed evaluationmetric: latency aware accuracy index (LAAI).

AI model Dataset Accuracy Latency (ms) LAAI

Naïve Bayes ML-Edge-IIoTset 0.460 0.00030 0.459
Decision tree ML-Edge-IIoTset 0.720 0.00011 0.719
ANN ML-Edge-IIoTset 0.975 0.00765 0.967
Naïve Bayes DNN-Edge-IIoTset 0.450 0.00046 0.449
Decision tree DNN-Edge-IIoTset 0.730 0.00031 0.729
ANN DNN-Edge-IIoTset 0.980 0.00938 0.971

Table 5 ML-Edget-IIoTset sub datasets.

Dataset Records

ML-Edget-IIoTset sample 1 52,600
ML-Edget-IIoTset sample 2 52,600
ML-Edget-IIoTset sample 3 52,600

Table 6 DNN-Edget-IIoTset sub datasets.

Dataset Records

DNN-Edget-IIoTset sample 1 739,733
DNN-Edget-IIoTset sample 2 739,733
DNN-Edget-IIoTset sample 3 739,733

confidently asserting that Model B is the superior choice for selection when compared to
Model A in terms of accuracy and speed.

Latency is a critical element for IoT security because of resource limitations in IoT
devices. In light of both performance and latency, the results obtained from employing
LAAI indisputably indicate that the ANN exhibits superior performance in comparison to
both the naïve Bayes and Decision Tree classifiers. To validate the accuracy and reliability
of the acquired results (see Table 4), the datasets ML-Edge-IIoTset and DNN-Edge-IIoTset
are each partitioned into three sub-datasets (see Tables 5 and 6). These sub datasets act as
six distinct datasets with distinct data records, and are used to evaluate the performance of
three selected classifiers/models (i.e., naïve Bayes, Decision Tree and ANN) (see Tables 7
and 8).

Tables 7 and 8 show the extensive testing results and depicts the segmentation of the
both datasets into three respective subsets of distinct records, which are used to assess
the performance of the chosen models. It is evident that when it comes to detecting IoT
attacks, ANN outperforms both naïve Bayes and Decision Tree. However, in terms of
latency, Decision Tree performs better than both naïve Bayes and ANN models. The
proposed LAAI evaluation metric asserts that ANN are the most advantageous choice in
terms of both accuracy and latency. The obtained outcomes demonstrate that the results
obtained from segmenting both datasets are nearly identical to the results obtained from the
original ML-Edge-IIoTset and DNN-Edge-IIoTset. Hence, the results obtained from the
original datasets are being used as a benchmark for comparing the results of the segmented
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Table 7 Evaluationmetrics with latency for samples of ML-Edge-IIoTset.

AI model Samples Accuracy Latency (ms) LAAI

Naïve Bayes Sample 1 0.460 0.00030 0.459
Naïve Bayes Sample 2 0.460 0.00029 0.459
Naïve Bayes Sample 3 0.460 0.00032 0.459

Mean 0.460 0.00030 0.459
Decision tree Sample 1 0.720 0.00011 0.719
Decision tree Sample 2 0.724 0.00014 0.723
Decision tree Sample 3 0.716 0.00013 0.715

Mean 0.720 0.00012 0.719
ANN Sample 1 0.972 0.00762 0.964
ANN Sample 2 0.976 0.00768 0.968
ANN Sample 3 0.978 0.00766 0.970

Mean 0.975 0.00765 0.967

Table 8 Evaluationmetrics with latency for samples of DNN-Edge-IIoTset.

AI model Samples Accuracy Latency (ms) LAAI

Naïve Bayes Sample 1 0.449 0.00050 0.448
Naïve Bayes Sample 2 0.448 0.00048 0.447
Naïve Bayes Sample 3 0.453 0.00041 0.452

Mean 0.450 0.00046 0.449
Decision tree Sample 1 0.730 0.00034 0.729
Decision tree Sample 2 0.710 0.00030 0.709
Decision tree Sample 3 0.750 0.00029 0.749

Mean 0.730 0.00031 0.729
ANN Sample 1 0.984 0.00934 0.974
ANN Sample 2 0.982 0.00933 0.972
ANN Sample 3 0.979 0.00929 0.969

Mean 0.981 0.00934 0.972

datasets. These results additionally serve as a foundation for verifying the reliability of the
achieved LAAI.

CONCLUSIONS
This research primarily focuses on the importance and role of latency, which holds
significant importance among various other issues specifically in IoT devices, including
applications in smart agriculture. This study investigates two machine learning classifiers
and one deep learningmodel on two subsets of the EdgeIIoTset dataset, with varying record
volumes between the subsets. The ML-Edge-IIoTset contains a smaller number of records
compared to the DNN-Edge-IIoTset. It is clear from the results that naïve Bayes works
better for ML-Edge-IIoTset than for DNN-Edge-IIoTset, while Decision Tree and ANN
work better for DNN-Edge-IIoTset. In this study, ANN technique demonstrated superior
accuracy compared to the other two methods, namely naïve Bayes and Decision Trees.
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However, Decision Tree exhibited superior speed as compared to all selected techniques. In
order to determine the best appropriate method that achieves a balance between speed and
performance, a novel approach called the Latency Accuracy Assessment Index (LAAI) was
introduced. The analysis utilizing LAAI indicates that ANN consistently performs better
than both naive Bayes and Decision Trees in any given instance. Hence, when dealing
with IoT classification tasks, especially in the field of agriculture, it is crucial to extensively
evaluate both latency and accuracy metrics. ANN is showing promise as a suitable option
according to the suggested evaluation metric by achieving an optimal LAAI of 0.971.
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