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ABSTRACT
Scene-based image semantic extraction and its precise sentiment expression signifi-
cantly enhance artistic design. To address the incongruity between image features and
sentiment features caused by non-bilinear pooling, this study introduces a generative
adversarial network (GAN) model that integrates visual relationships with sentiment
semantics. The GAN-based regularizer is utilized during training to incorporate
target information derived from the contextual information into the process. This
regularization mechanism imposes stronger penalties for inaccuracies in subject-object
type predictions and integrates a sentiment corpus to generate more human-like
descriptive statements. The capsule network is employed to reconstruct sentences and
predict probabilities in the discriminator. To preserve crucial focal points in feature
extraction, the Convolutional Block Attention Mechanism (CBAM) is introduced.
Furthermore, two bidirectional long short-term memory (LSTM) modules are used to
model both target and relational contexts, thereby refining target labels and inter-target
relationships. Experimental results highlight the model’s superiority over comparative
models in terms of accuracy, BiLingual Evaluation Understudy (BLEU) score, and text
preservation rate. The proposed model achieves an accuracy of 95.40% and the highest
BLEU score of 16.79, effectively capturing both the label content and the emotional
nuances within the image.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Social Computing, Neural Networks
Keywords GAN, LSTM, CBEAM, Art design, Visual communication

INTRODUCTION
Thanks to the extensive digitization of a vast array of historical human visual art-works,
computer technologies, notably artificial intelligence, particularly deep learning, have been
boldly and remarkably employed within the realm of art in recent years (Zhao et al., 2023;
Kolesnyk et al., 2022). On one hand, research pertaining to art analysis has been able to
leverage extensive collections of digitized images and image metadata, introducing data-
driven principles encompassing mathematics, statistics, data mining, and visualization
techniques into the domain of art analysis. On the other hand, data-driven computer
technology has also inscribed a magnificent chapter within the realm of art creation, with
computers assuming the role of creative agents (Wang, SB & Lim, 2020).
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In the realm of art history, digital technology has revolutionized the way scholars conduct
research and analyze artworks. One of the key advancements in this field is the construction
of bespoke art databases that are tailored to the specific research inquiries within specialized
domains. These databases are designed to cater to the distinct requirements of scholars,
providing them with a wealth of information and tools to enhance their understanding
and analysis of artworks.

The utilization of database technology enables art historians to engage in quantitative
analysis of data. By quantitatively calculating and organizing data within the databases,
scholars can cluster diverse attributes of artworks. These attributes encompass various
aspects such as the physical characteristics of the artwork, including materials used and
dimensions, the brushwork genres employed by the artists, as well as the temporal and
spatial attributes of the artworks. Furthermore, the content depicted within artwork images
can also be analyzed and categorized within the databases (Powell, Gelich & Ras, 2021; Kim
& Kang, 2022). This quantitative analytical approach has emerged as a novel research
paradigm in the field of digital art history. It goes beyond the traditional methods of art
analysis and introduces a more systematic and data-driven approach. The construction of
comprehensive art databases not only involves the aggregation of digital images but also
encompasses image metadata, previous research findings, artists’ biographies, and genres.
Moreover, these databases capture the intricate interplay and inheritance relationships
between artists, shedding light on the influences, collaborations, and artistic lineages that
shape the development of art over time.

The enhanced visual comprehension and reasoning prowess facilitated by these digital
art databases offer a wealth of design elements for further reference (Hudson & Manning,
2019). Scholars can delve into the intricate details of artworks, examining the relationships
between objects within a given scene and unraveling the symbolism andmeaning behind the
artistic choices. This comprehensive analysis not only benefits the scholars themselves but
also contributes to the broader field of art history by uncovering new insights, challenging
existing interpretations, and paving the way for innovative research directions.

In conclusion, the utilization of digital technology and the construction of bespoke
art databases have transformed the field of art history. These databases enable scholars to
engage in quantitative analysis, clustering diverse attributes of artworks, and providing a
comprehensive understanding of the artistic landscape.

A scene graph constitutes a graphical data structure responsible for delineating the
interconnections among objects within an image. Specifically, this structure employs nodes
to represent the objects present in the scene, while the edges symbolize the relationships
existing between diverse entities within the graph framework (Chang et al., 2021). Scene
graphs facilitate the acquisition of comprehensive insights concerning a given image’s
context. Furthermore, incorporating techniques of image sentiment semantic description to
enable computer systems in discerning emotional content within an image and articulating
such information through textual means becomes imperative when considering the
requirements of artistic analysis within a digital humanistic milieu. It enables a profound
exploration of the emotional resonance shared between the designer and the viewer. The
art-work titled ‘‘Portrait of Edmund Bellamy’’, crafted by the talented Robbie, stands as a
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remarkable manifestation achieved through the utilization of GAN. Robbie, a prodigious
AI savant, pushes the boundaries of neural networks and the conventional art realm (Wu,
Seokin & Zhang, 2021). Barratt, the mastermind behind this feat, furnished the GAN with
an extensive assortment of nude portraits and artistic creations sourced from diverse
historical eras. This vast repository served as the foundation for training the GAN’s
neural network, thereby engendering exquisitely surreal depictions of nude portraits and
landscape paintings. In anticipation of New York Fashion Week in September 2018,
Barratt meticulously compiled a myriad of visual materials, encompassing the House
of Paris’ designs procured from brochures, advertising campaigns, runway exhibitions,
and online catalogs. These meticulously curated resources constituted the training data
for the pix2pix neural network, culminating in the birth of an entirely new collection of
AI-generated artworks—the Parisienne collection (Dennis, 2019).

In the domains of computer vision and sentiment analysis, feature extraction plays
a crucial role. Images are typically processed through convolutional neural networks
(CNNs) to extract visual features, while sentiment features are derived from textual
data using sentiment analysis techniques. However, nonlinear pooling operations, such
as max pooling or average pooling, introduce complex transformations during feature
extraction that can lead to discrepancies between image features and sentiment features.
This inconsistency arises from several key issues. Firstly, nonlinear pooling can distort
feature maps by compressing the information, which may result in the loss of important
details. Consequently, this information loss can misalign visual features with emotional
semantics. Secondly, pooling operations may lead to the loss of crucial details that are
essential for accurately capturing the emotional state conveyed by the image. Lastly, when
combining image and sentiment features for multimodal analysis, such inconsistencies can
impair the effectiveness of the finalmodel, potentially affecting tasks such as emotion-driven
image classification.

Scene graph generationmodels employing the bottom-upmethodology have emerged as
a prominent research direction in the realm of scene graph generation (Liu et al., 2021;Guo
et al., 2021). This approach enhances the metrics associated with target detection within
scene graph generation by initially pre-training target detection using Faster-R-CNN. This
preliminary step ensures the precision and accuracy of target detection. Subsequently,
a relationship learning model is employed to acquire knowledge and rationalize the
relationships between pairs of targets in the image, leveraging statistical insights. Within
the bottom-up paradigm, contextual learning of targets and relationships in images has
gained considerable popularity. The prevailing context-based approach incorporates
local context, encompassing image features corresponding to the targets. However, this
approach tends to reason based on statistical relationships, thus downplaying the influence
of crucial image features on the inference capabilities of the final scene graph generator.
In this article, we propose a novel approach, which takes into account both low-level and
high-level semantic features. This integration allows the extracted features to effectively
represent both intricate image details and higher-level semantic information. Additionally,
we train the model using feature matching techniques to enhance the performance of both
the generator and discriminator.
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RELATED WORKS
Following the remarkable achievements of AlexNet in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) challenge, deep artificial neural networks have
demonstrated unparalleled accuracy across a multitude of tasks, owing to their remarkable
learning capabilities and their aptitude for generating robust representations of input
data (Manessi & Rozza, 2018). These deep artificial neural networks have emerged as a
cornerstone in diverse domains of computer vision, including image recognition, object
recognition, and image processing. Their utilization facilitates the creation of artistic
designs characterized by visually diverse renderings, imbued with intuitive representations
and profound insights surpassing the limitations of textual interpretations.

With the advancement of artificial intelligence, the prowess of deep learning has become
increasingly evident, propelling image description into an entirely new era. Raju et al.
(2019) introduced the Google Neural Image Caption model, which leverages Google Net
for encoding and employs the long short-term memory (LSTM) model for decoding,
yielding impressive outcomes. This encoding-decoding framework has since served as a
foundation for image semantic description. Subsequently, the attention mechanism gained
prominence and foundwidespread adoption inneural networks (Manieniyan, Senthilkumar
& Sukumar, 2021). However, the encoding-decoding framework is susceptible to issues
such as gradient explosion and gradient disappearance (Yang et al., 2020; Jin, Hu & Zhang,
2020). Furthermore, the prevailing method for generating utterances in the decoding stage
relies on maximum likelihood estimation, wherein each subsequent word is contingent on
the previous word. This approach is susceptible to biases, and if a bias emerges in one word,
it can accumulate and adversely impact subsequent words. Consequently, the quality of the
generated output deteriorates over time. To address these concerns, the application of GAN
for image semantic description has proven effective. Li, Jang & Sung (2019) introduced
the conditional GAN model, which facilitates the generation of multiple descriptions for
images by controlling the variance of the hidden layer vector in the initialized generator
LSTM. Similarly, Ma et al. (2022) incorporated conditional GANs into image description
by incorporating target detection features in the input domain. Tan et al. (2022) proposed
a network composed of two GAN—one mapping the background distribution to produce
an image and the other amalgamating description statements. Despite the application of
GAN in image descriptions, there remains a need to enhance the semantic richness and
accuracy of these approaches. Further research is required to achieve these objectives.

In the domain of visual phrase-guided convolutional neural networks, a notable
contribution was made by the authors through the introduction of a phrase-guided
message passing structure. This innovative approach facilitates themodeling of dependency
information between local visual features by employing an aggregated broadcast message
passing mechanism. A relevant work in this context is the fully convolutional scene graph
generation model (FCSGG) proposed by Jin et al. (2023) which employs relational affinity
fields to encode semantic and spatial features in images. FCSGG explicitly represents the
relationships between pairs of objects by pointing to integral subregions from subjects
to objects, resulting in efficient inference speed. Another significant contribution is
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the Visual Translation Embedding (VTransE) model, which explores the modeling of
visual relationships by learning mappings of object and relationship features in a low-
dimensional space (Xu et al., 2020). Building upon VTransE, Hung, Mallya & Lazebnik
(2020) introduced joint visual translation embedding, which incorporates subject and
object features and employs a bidirectional GRU-enhanced semantic embedding model
to capture rare relations within a scene. The joint visual translation embedding combines
scores from both visual and linguistic modules to rank predictions of triads. In the realm
of GANs, several variants have been proposed, including RTT-GAN (Liang et al., 2017),
LS-GAN (Qi, 2020), W-GAN (Gulrajani et al., 2017), and CGAN (Bian et al., 2019). In this
article, we adopt the concept of CGAN to control the generator modality by utilizing target
location information in the image, along with target kind information obtained from the
scene graph inference. Additionally, to enhance the linguistic richness of the generated
image utterances, we incorporate the Senticap corpus for model training (Mathews, Xie
& He, 2016). Furthermore, to ensure the adequacy of the extracted image features, we
integrate an attention mechanism model.

METHODOLOGY
Visual relationship fusion model
The article commences by providing a detailed analysis of the bias issue prevalent in existing
scene graph generation algorithms. Subsequently, a comprehensive examination of the
problem is undertaken, with the structure of this analysis illustrated in Fig. 1.

The model architecture proposed in this chapter focuses on enhancing the common
sense-based models, specifically the Structured Neural Model (SNM) and the VTransE
model. In the architecture diagram, solid thick arrows represent modules comprised of
neural networks, while dashed thick arrows depict the network responsible for inferring
the relationship between targets based on fused features and synthesizing target pair labels.
Prior to scene graph generation, the chapter initiates a target detection pre-training process.
This process utilizes Faster-R-CNN as the underlying target detector. For each image (i),
the detector employs a backbone network for extracting image features. Subsequently, an
RPN network with inherent anchors is utilized to learn potential target locations and their
corresponding object types. Relationship sampling is then performed as part of the process.

The proposed model consists of several key modules. Firstly, there is the target context
extraction module, which is responsible for capturing contextual features associated
with individual targets. Next, the visual relationship modeling module extracts visual
relationship features from subject-object pairs. The label prediction module performs two
tasks: predicting the object categories and modeling the relationships, leveraging semantic
a priori features. Finally, the relationship context feature extraction module is responsible
for extracting relationship context features based on the previously extracted individual
object features. The overall algorithm follows the sequence mentioned above, transforming
and processing the features accordingly.

Target contextual feature extraction encompasses two main objectives: determining the
object label and encoding object features within their context. To achieve effective target
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Figure 1 Structure of visual relation fusionmodel.
Full-size DOI: 10.7717/peerjcs.2274/fig-1

feature extraction and transfer target relationship knowledge, it is essential to refine the
training process of target detection by back-propagating the relationship loss to the target
detection network. However, the commonly used RoI pooling layer in Faster R-CNN does
not employ a differentiable function for coordinate interpolation, as it relies on discrete
grid partitioning of proposal regions. This characteristic makes the feature extraction layer
susceptible to gradient disappearance. To address this issue, the proposed approach in this
chapter replaces the RoI pooling layer with bilinear interpolation, which helps mitigate the
problem of gradient vanishing. It is a smoothing function with two inputs, one input is the
shape of W′×H′×C of the feature mapping M, the other input is the object bounding box
projected onto M, the output is the object bounding box of size X*Y*C. Each input value
can be efficiently interpolated from the map F in a convolutional fashion, as shown in Eq.
(1).

fi,j,c =
W ′∑
i′=1

H ′∑
j ′=1

Mi′,j ′,ck
(
i′−Gi,j,1

)
k
(
j ′−Gi,j,2

)
. (1)

The visual relation modeling module is primarily utilized to extract image features of
objects within an image, specifically the appearance features between pairs of objects
that correspond to relations in the image. This module initiates by extracting the
proposal regions associated with the target pair and subsequently computes their joint
representation. Following this, feature extraction operations such as 2D convolution and
batch normalization are applied to the joint representation, which are commonly employed
for processing image features. Finally, a pooling operation is conducted in conjunction
with bilinear interpolation to facilitate gradient backpropagation. This is illustrated in Eq.
(2):

ve =Convs
(
RoIAlign

(
M ,Convs

(
bi∪bj

)))
(2)

where bi∪bj indicates a joint region consists of the proposal area i and the proposal area j.
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Improved GAN networks
Once the scene layout of the image is obtained, the image generation process is performed
using the generative network G, which is structured as shown in Fig. 2. The generative
network comprises a cascaded refinement network, which is a series of convolutional
refinement modules organized in a cascade fashion. Each subsequent layer of the network
has twice the spatial resolution of the previous layer, enabling a coarse-to-fine image
generation process. The inputs of the model are paired element-wise based on the number
of channels, and then a 3x3 convolution operation is applied. The output of each submodule
is upsampled using the nearest-neighbor upper-left (UL) operation before being passed to
the next submodule. The output from the final module is fed into two convolutional layers
to generate the final composite image output.

To better regularize the overall network and improve the learning capability of the
model, especially for target samples that occur less frequently in the dataset, this article
introduces a GAN module in the network’s training process. The GAN consists of a
generator that utilizes a cascaded refinement network and a discriminator that employs
a fully connected layer. Convolutional neural networks typically have a large number of
parameters and deep network layers, which may lack local isovariance properties and
suffer from reduced generalization ability with an increasing number of layers. To address
this, the article incorporates capsule networks in the discriminator for reconstructing and
probabilistically predicting sentences. These reconstructed sentences are expected to be
semantically consistent with the images, thereby helping encode the relationship between
features. The reconstructed sentences generate reward values under the discriminator and
provide feedback to the generator.

The GAN-based regularizer can incorporate target information derived from the target
context to ensure that the generated features align well with the target data distribution.
This is achieved through a process where the target context is embedded into the GAN
framework, influencing both the Generator and the Discriminator. Specifically, target
context information is used to:

Guide the Generator: Adjust the Generator’s output to better match the target context’s
characteristics, ensuring that synthetic data or features generated are relevant and realistic.

Refine the Discriminator: Modify the Discriminator’s criteria to focus on distinguishing
between data points that are not only synthetic or real but also contextually aligned with
the target.

Attention mechanism
Despite the significant advantages of neural networks in image processing, they often lack
the ability to differentiate between specific attention and general attention during feature
extraction. It is crucial to retain features of certain objects and regions that require focused
attention. To address this limitation, this article incorporates the Convolutional Block
Attention Module (CBAM), which combines both channel attention and spatial attention
mechanisms. This integration allows for better feature representation and preservation of
important object and region details.
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Figure 2 Structure diagram based on GAN.
Full-size DOI: 10.7717/peerjcs.2274/fig-2

The scene graph construction module in this article employs two bidirectional long
short-term memory (BiLSTM) modules. These modules are utilized to model target
contexts and relational contexts, generating refined pairs of target labels and relationships
between targets. Specifically, it first organizes the proposal region B into a linear sequence[(
b1,f1,l′1

)
,...,

(
bn,fn,l′n

)]
, where fi is the feature extracted for each proposal region bi is

the extracted feature. l′1 is the corresponding label, and then it is fed into the BiLSTM to
obtain the object context H , whereH= [h1,...,hn] , contains the final state of the linearized
sequence elements of each proposal region in the BiLSTM, and then each element of the
context is decoded according to the previously decoded labels using the LSTM as a decoder
to obtain the labels of the target species. L= [l1,...,ln] .

For the relationship construction, another BiLSTM is used to propose regions B
and object labels L as the input to the relational context C that can be represented as
C= [c1,...,cn] , which contains the state of the final layer of each proposal region. Finally,
combining the target i with the target j together with the contextual features fi,j , the
corresponding relational contexts ci with cj and the common knowledge information
in the dataset to model the final relation ri,j ∈ R using another LSTM for modeling, the
relation R can therefore be constructed in the following way (Hameed & Garcia-Zapirain,
2020;Wei et al., 2022).

H =BiLSTM
([
fi;W1li

]
i=1,...,n

)
(3)

ki= LSTMi

([
hi;li−1

]
i=1,...,n

)
(4)

li= arg max(Woki)∈R|G| (5)

C =BiLSTM
([
fi;W1li

]
i=1,...,n

)
(6)

ce = (Whci)◦
(
Wt cj

)
◦ fi,j (7)
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ri,j = softmax
(
Wr ce+Woi,j

)
(8)

where Wi is the corresponding mapping matrix for each module, The network architecture
incorporates a fully connected layer to implement the sentiment-guided decoding process.
During decoding, the input consists of completed sentiment statements, which are learned
to guide the LSTM in generating sentiment-infused descriptive statements. In this decoding
phase, the output of the encoded LSTM, known as the context vector, is combined with
the previously generated words through summation. This process yields the output words
for the sentiment description statement.

After obtaining attention weights from both channel and spatial modules, the feature
maps are scaled accordingly. This results inmore informative features being passed through
the network, which can improve the overall performance on tasks such as object detection
and classification.

Loss function
To enhance the optimization process of the generative adversarial network (GAN) for image
generation, we propose incorporating perceptual loss and adversarial loss in addition to
the conventional pixel reconstruction losses. Traditional GAN training involves alternating
between optimizing the discriminator D and the generator G, as described by Eqs. (9) and
(10).

LD= EI∼prad [logD(I )] (9)

LG= EîpG[log(1−D(Î ))]+λLi (10)

whereλ is the adjustable parameter, for the loss of the generative network, for better gradient
performance, we maximize logD

(
G
(
z|Slayout

))
. For the loss of the reconstructed image

comparing the reconstructed image with the original image Li, the distance between the
real image I and the synthetic image Î is calculated, which can be expressed as Li=‖ I− Î‖1.

To further refine the quality of the generated images, we introduce perceptual loss
and adversarial loss into the optimization process. Perceptual loss focuses on capturing
high-level features and textures by comparing feature maps extracted from a pretrained
network, such as VGG. This loss function operates at the feature level rather than pixel
level, ensuring that the generated images preserve high-level details similar to the reference
images. The perceptual loss Lp can be formulated as:

Lp=
∑

l∈ layers

∥∥φl(I )−φl(Î )∥∥2 (11)

where φl represents the feature maps extracted from layer l of the pretrained network.
Adversarial loss, on the other hand, enhances realism by training the generator and

discriminator in tandem. The adversarial loss encourages the generator to produce images
that are indistinguishable from real images by the discriminator. The total adversarial loss
Ladv can be expressed as:

Ladv =EI∼pG[logD(Î )]. (12)

Shen and Wang (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2274 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2274


By combining these additinal losses, the updated total loss function for the generator G
is:

LG=EI∼pG[log(1−D(Î ))]+λ1Li+λ2Lp (13)

where λ1 and λ2 are adjustable parameters that control the influence of the reconstruction
loss and perceptual loss, respectively. Incorporating perceptual loss and adversarial loss not
only improves the fidelity of the generated images but also enhances their overall visual
quality and feature accuracy. This refined approach effectively combines the strengths
of pixel-based and feature-based losses, leading to more realistic and high-quality image
generation.

EXPERIMENT AND ANALYSIS
Formatting of mathematical components
The MSCOCO dataset (DOI: 10.5281/zenodo.7517539) was utilized in the experiment,
which includes a minimum of five captions for each image. For the experimental setup,
the longest caption in terms of length was selected as the reference. The sentence length
was fixed at 40, and any captions shorter than 40 were padded with ‘‘<pad>’’. The training
process involved starting the captions with ‘‘<start>’’ and ending them with ‘‘<end>’’.
Data augmentation techniques such as ‘‘rotation’’ and ‘‘hue transformation’’ were applied
to enhance the dataset. For the augmented dataset, 89% of the images were used for
training, while the remaining 11% were used for testing. Additionally, the Senticap corpus,
which provides objective and descriptive sentiment-based image utterances derived from
MSCOCO, was incorporated. The Senticap corpus contains 1,027 adjective-noun pairs for
positive emotions and 436 adjective-noun pairs for negative emotions.

In this article, the evaluation of text sentiment conversion was measured using the
accuracy (ACC) metric. The preservation of textual content between the generated text and
the original text was assessed using the content preservation rate (CON). The readability of
the generated text was evaluated using BELU, where a higher BLEU score indicates better
readability and a smaller difference from the original text.

Results and discussion
Model comparison
In this article, several models are used for comparison with the proposed approach. These
models include:

VCTree (Tang et al., 2019): VCTree utilizes a scoring function to compute the task-
dependent validity between each pair of objects, forming a tree structure. It employs
a bidirectional tree-like LSTM to encode visual relations and a task-specific model for
decoding.

IMP (Xu et al., 2017): IMP addresses the scene graph inference problem using a standard
recurrent neural network (RNN). It improves prediction performance by incorporating
contextual message passing.

SNM+TDE (Tang et al., 2020): SNM+TDE generates the final inference by subtracting
the probability distribution of direct inferences from the scene graph model from the
probability distribution of counterfactual inferences from the same model.
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VTransE (Xu et al., 2020): VTransE is the pioneering approach that applies knowledge
representation learning concepts to scene graph generation. It represents relations as
embeddings of subject and object differences.

These models serve as baselines to evaluate and compare the performance of the
proposed approach in the article. The training process of different models and their
accuracy comparison results are presented in Fig. 3. It can be observed that VCTree, IMP,
VTransE, and SNM+TDE models reach convergence in approximately 25-30 rounds for
VCTree and IMP, and 35-40 rounds for SNM+TDE. In contrast, the proposed model in
this article achieves convergence in approximately 10 rounds. Moreover, the accuracy of
each data group is significantly improved compared to the other models. This suggests that
the proposed model performs better in terms of convergence speed and accuracy on the
given dataset.

In addition, performance comparisons of the different models are shown in Figs. 4
and 5.

The proposed model demonstrates superior performance compared to the baseline
models in terms of accuracy, BLEU score, and text preservation rate. With an accuracy
of 95.42% and a BLEU score of 16.79, the proposed model exhibits enhanced capabilities
in visual semantic mining. In contrast, the baseline models achieve high accuracy rates
exceeding 85%, but their BLEU scores are significantly lower. This discrepancy can be
attributed to training conditions that lack an adequate parallel corpus, causing these
models to focus on isolating semantic feature words in the text without considering the
coherence of semantic information. Consequently, the generated text from these models
outputs sentences with the target sentiment but lacks overall coherence. In contrast, the
proposed model employs a self-attentive mechanism to identify sentiment words with
extensive sentiment lexicons in the sentences, storing them in the memory network. This
approach enables the model to better consider the semantic context, thereby enhancing
the text preservation rate and readability of the generated text.

Figure 6 portrays a fortuitous illustration of sentence generation for eachmodel procured
through a specific modeling approach. The model introduced in this manuscript showcases
a heightened level of semantic cohesion, while exhibiting remarkable similarity to the
original text.

The adverse depictions encompass a range of negative human emotions, such as the
chilling air, desolate mountain, and solitary street, all characterized by negative adjectives.
Conversely, the affirmative portrayals involve pleasant weather, bustling streets, and
incorporate neutral terms alongside positive and optimistic adjectives. The VCTree model
represents sentence vectors through training that eschews the use of parallel corpora and
unrelated content, thereby ensuring the preservation of semantic style within the text.
Meanwhile, the SNM+TDE model enhances text fidelity by eliminating specific words that
signify textual features, thereby diverting the model’s focus from generating sentiment akin
to the original text. Furthermore, if the sentiment expressions within the text are cryptic,
these models lack the ability to effectively extract the semantic information required to
train samples that accurately mirror the original text. The experimental outcomes not
only explicate the image content but also manifest emotional nuances, encompassing both
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Figure 3 Accuracy comparison results.
Full-size DOI: 10.7717/peerjcs.2274/fig-3

Figure 4 BLEU and ACC comparison results.
Full-size DOI: 10.7717/peerjcs.2274/fig-4

negative and positive human emotions. This serves as compelling evidence of the model’s
substantial improvement in terms of emotional richness and performance.

Discussion
Learning with contextual features tends to outperform non-bilinear pooling in various
applications. Non-bilinear pooling, which incorporates image features, often negatively
impacts the performance of networks such as SNM and VTransE. This is because non-
bilinear pooling separates the ‘‘style’’ component of image features from the ‘‘content’’
component of contextual features, which include crucial information for modeling object
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Figure 5 Cond comparison results.
Full-size DOI: 10.7717/peerjcs.2274/fig-5

Input

VCTree

SNM+TDE

Ours

Moving past the shape, they were dry 
and truly tasteless.

Moving past the shape, they were 
tasty and truly delicious

Moving past the shape is, they will be 
wonderful truly.

Everyone on the fish, they were fresh 
and filling

A man is standing on top of mountain while 
looking at something far away

 On top of mountain, a man is looking at 
something far away

Looking at the cold mountains in the 
distance, he felt lonely

A man is Looking at the mountains in the 
distance

This place kicks some serious ass

Worst service ever.

It's nice weather here

Very  nice here and beat.

Figure 6 Example of emotion generation.
Full-size DOI: 10.7717/peerjcs.2274/fig-6

relationships, such as object labels. The combination of these two components forms the
basis for determining object relationships.

It is important to note that the same content can be expressed in different styles. For
example, different images depicting a ‘‘man near a bird’’ may have similar contextual
features, as they both contain elements of ‘‘bird’’ and ’’man’’, indicating a ‘‘close’’
relationship. However, the bird may not always be in a fixed position relative to the
person, and it may not always be depicted flying in the sky, resulting in variations in image
features. Non-bilinear pooling approaches disregard the correspondence between these
factors, leading to reduced effectiveness compared to baseline approaches that solely focus
on content.

In the field of art design, accurate generation and expression of emotional semantics can
greatly enhance the interactive experience between viewers and artworks. It bridges the gap
between the viewer and the artwork, enabling a deeper understanding and engagement with
the artistic piece. The innovation of artificial intelligence image creation lies in the ability
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to deviate from the original style within a specific range, while adhering to art identification
standards and learning fromdeviations. This involves pushing the boundaries of established
artistic styles within a given art category.

By leveraging big data to build relational networks and employing data analysis models
and deep learningmodels developed by data scientists, valuable knowledge can be extracted
from existing data. These advanced techniques enable the exploration of new possibilities
in art creation and contribute to the evolution and advancement of the field.

CONCLUSIONS
In this research, we propose a improved GAN model that integrates visual relations
with sentiment semantics. The expression of statements conveying positive and negative
emotions is accomplished through adversarial training of the generator and discriminator.
The generator part of the model extracts image features while incorporating the CBAM
attention mechanism, enabling better focus on specific visual regions of interest. On
the other hand, the discriminator in this model employs multi-feature map fusion to
extract image features, enabling representation of both image details and high-level
semantic information. Additionally, a self-coding network is incorporated to downscale
the features after the multi-feature map fusion layer, mitigating potential issues related to
feature dimensionality. The integration of multi-feature map fusion and GAN modeling
in scene graph generation profoundly impacts both image understanding and artistic
design. For image understanding, this combined approach achieves a deeper and more
accurate interpretation of visual data, which facilitates advancements in applications such
as autonomous driving, visual question answering, and content-based image retrieval.
However, it is worth noting that this study would benefit from the inclusion of more
balanced sampling functions. An intuitive approach to enhance the scene graph generation
model involves designing a sampling strategy that corresponds to the long-tail distribution
of the entire dataset, as opposed to the current random sampling strategy. Such a strategy
would reduce training complexity compared to modifying the model itself.
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