Submitted 14 March 2024
Accepted 29 July 2024
Published 18 September 2024

Corresponding author
Zhongyuan Yuan,
1289994390@qq.com

Academic editor
Paulo Jorge Coelho

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.2273

© Copyright
2024 Yuan

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

SPCANet: congested crowd counting
via strip pooling combined attention
network

Zhongyuan Yuan

College of Information and Intelligence, Hunan Agricultural University, Changsha, Hunan Province, China

ABSTRACT

Crowd counting aims to estimate the number and distribution of the population in
crowded places, which is an important research direction in object counting. It is
widely used in public place management, crowd behavior analysis, and other scenarios,
showing its robust practicality. In recent years, crowd-counting technology has been
developing rapidly. However, in highly crowded and noisy scenes, the counting effect of
most models is still seriously affected by the distortion of view angle, dense occlusion,
and inconsistent crowd distribution. Perspective distortion causes crowds to appear
in different sizes and shapes in the image, and dense occlusion and inconsistent
crowd distributions result in parts of the crowd not being captured completely. This
ultimately results in the imperfect capture of spatial information in the model. To
solve such problems, we propose a strip pooling combined attention (SPCANet)
network model based on normed-deformable convolution (NDConv). We model long-
distance dependencies more efficiently by introducing strip pooling. In contrast to
traditional square kernel pooling, strip pooling uses long and narrow kernels (1 xN or
Nx1) to deal with dense crowds, mutual occlusion, and overlap. Efficient channel
attention (ECA), a mechanism for learning channel attention using a local cross-
channel interaction strategy, is also introduced in SPCANet. This module generates
channel attention through a fast 1D convolution to reduce model complexity while
improving performance as much as possible. Four mainstream datasets, Shanghai Tech
Part A, Shanghai Tech Part B, UCF-QNRF, and UCF CC 50, were utilized in extensive
experiments, and mean absolute error (MAE) exceeds the baseline, which is 60.9, 7.3,
90.8, and 161.1, validating the effectiveness of SPCANet. Meanwhile, mean squared
error (MSE) decreases by 5.7% on average over the four datasets, and the robustness is
greatly improved.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Crowd counting, Convolutional neural network, Spatial pooling, Channel attention

INTRODUCTION

Crowd counting is a vital landing direction for computer vision. Crowd counting involves
estimating the number, density, and distribution of people in an image (Chen et al., 2013;
Lempitsky ¢ Zisserman, 2010; Zhang et al., 2016) or video (Ge ¢ Collins, 2009; Chen, Fern

& Todorovic, 2015). It is a core issue, and research focuses on intelligent video surveillance.
With the global population explosion and accelerated urbanization, high-density gatherings
have become more frequent. Coupled with improper site management, this can quickly lead
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to crowd stampede accidents (Abdelghany et al., 2014; Almeida, Rosseti ¢ Coelho, 2013),
such as the Itaewon stampede on October 29, 2022, in Seoul, South Korea (Ha, 2023). The
importance of crowd counting is becoming more and more prominent. Good counting
algorithms can also be extended to other related fields, such as traffic management to
achieve better flow control (Guerrero-Gémez-Olmedo et al., 2015) and ecological detection
to protect the environmental balance. Therefore, studying crowd-counting methods has
important practical significance and application value.

Currently, there are two main mainstream counting methods, tracking-based
methods (Dollar et al., 2011; Topkaya, Erdogan & Porikli, 20145 Li et al., 2008) and feature
regression-based methods (Chen et al., 2012; Chan & Vasconcelos, 2009), which have certain
limitations and cannot accomplish the task well in the face of complex scenes, dense crowds,
and mutual occlusion, efc. They are gradually replaced by convolutional neural network
(CNN)-based methods (Wang et al., 2015; Zhang et al., 2016; Sam, Surya ¢ Babu, 2017,
Sindagi & Patel, 2017; Li, Zhang ¢ Chen, 2018), which can extract features from raw image
data through end-to-end learning and make counting predictions without manually
designing features or complex pre-processing. This makes the model more adaptive and
generalized. Crowd counting tasks usually involve complex scenes, such as crowd density,
occlusion, overlapping, etc. CNN can automatically learn and adapt to these complex
scenes when processing images, while tracking and regression methods may require more
manual adjustments and scene-specific designs. CNNs perform better when dealing with
scale-varying and cross-scene problems, and in comparison, CNNs are far superior to
their predecessors in terms of performance, efficiency, and robustness. Thus, they have
become the focus of research nowadays. Although CNN-based crowd-counting solutions
have achieved remarkable results, it has been found that simply increasing the depth of the
network model brings new problems. The network model has many parameters, making it
difficult to train; the multi-branch structure learns features with high similarity, efc. These
constraints limit the improvement of counting accuracy.

To address the aforementioned challenges, strategies such as modifying the receptive
field have been commonly adopted (Li, Zhang ¢ Chen, 2018; Dai et al., 2017; Zhu et
al., 2019; Zhong et al., 2022). Li, Zhang & Chen (2018) utilized the dilated convolution
technique to expand the receptive field, preserving image resolution and thus retaining
more detailed image information. Zhu et al. (2019) introduced a deformable convolution
(deformable conv) that adaptively adjusts the receptive field based on the input data’s
shape characteristics, minimizing the information loss inherent in traditional convolution
methods. Furthermore, Zhong et al. (2022) developed a novel approach, normed-
deformable convolution (NDConv), powered by normed deformable loss (NDloss).
This method enhances the network through a geometric transformation operator, where
the offset is controlled by NDConv, enabling a more comprehensive capture of head
features for uniform head sampling. Improving the quality of density map generation has
also been a focus, with optimization of loss functions playing a pivotal role (Cao et al.,
2018b; Goodfellow et al., 20145 Ma et al., 2019). Scale aggression network (SANet) assesses
density map quality using an image quality evaluation criterion, the Structural Similarity
Index (SSIM), as proposed by Cao et al. (2018b). Meanwhile, general adversarial networks
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(GANs) have been employed to produce high-quality density maps through adversarial
loss derived from a continuous interaction between the generative and discriminative
networks. The Bayesian loss approach also models the density contribution probability
from annotated points, comparing this probability with the estimated density at each pixel.
The multiplication of the contribution probability with the estimated density for each pixel
is aggregated to compute the expected count for each annotation point.

However, the aforementioned techniques often struggle with accurately capturing
spatial information, hindered by challenges such as perspective distortion, dense occlusion,
and inconsistent crowd distribution. These factors significantly impair the precision of
model-based counts, especially with varying crowd densities and obstacles. To solve the
above problems, this article introduces strip pooling (Hou et al., 2020), on top of the
basic model architecture of NDConv, as a novel spatial pooling strategy to cope with the
aberration problem caused by the distortion of viewpoints and the diversity of crowd
distribution. Compared with traditional square kernel pooling, strip pooling uses long and
narrow kernels (1 xN or Nx 1) to model long-range dependencies more efficiently and is
suitable for dealing with dense crowds, mutual occlusion, and overlapping. By introducing
the strip pooling module, this article aims to improve the ability to model human-body
boundary relationships, thus enhancing crowd counting in highly crowded and noisy
scenes. In addition, since strip pooling is designed as a lightweight and efficient spatial
pooling strategy, its introduction does not cause a significant increase in the computational
burden of the model, which helps to improve the computational efficiency in large-scale
crowd scenarios. Since the strip pooling module is designed for pixel-level prediction tasks,
its introduction into the crowd-counting network can make the network more adapted to
handle data with pixel-level annotations, which will be more advantageous than the original
model in dense scenarios. Additionally, this study integrates the efficient channel attention
module (ECA) (Wang et al., 2020), which uses quick 1D convolution to generate channel
attention. ECA significantly boosts performance with minimal parameter involvement as a
streamlined channel attention mechanism, underscoring the model’s enhanced efficiency
and effectiveness in crowd-counting endeavors.

To summarize, this article makes three main contributions.

(1) Compared with traditional neural networks, strip pooling combined attention
(SPCANet) has introduced a novel spatial pooling strategy, the strip pooling module, which
makes the backbone network more effective in modeling long-distance dependencies in a
lightweight yet efficient way.

(2) SPCANet introduced a channel attention module (ECA) into the model to maximize
model performance with few parameters.

(3) SPCANet incorporates a simple yet effective spatial pooling strategy and an attention
mechanism that outperforms other methods on four datasets for dense scene counting,
providing new perspectives and solutions to the task of dense scene counting.
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Figure 1 Structure of the SPCANet.
Full-size & DOI: 10.7717/peerjcs.2273/fig-1

RELATED WORK

Detection-based methods

Early research on crowd counting focused on detection-based methods that use sliding
windows (Dollar et al., 2011) to detect pedestrians or ecological parts of a scene and count
the corresponding number of people. Detection-based methods are mainly categorized into
whole-based detection and part-body-based detection. Whole-based detection methods
extract low-level behavioral features from the whole of a person, such as Haar wavelets
(Viola & Jones, 2004) and histogram-oriented gradients (HOG) (Dalal & Triggs, 2005),
and the learning algorithms for the classifiers are mainly support vector machine (SVM),
boosting, and Random Forest methods. Since whole-based detection methods are only
suitable for sparse populations, methods based on partial body detection have been used
to deal with denser population counting problems. The detection is mainly performed
by localized body structures such as head, arms, etc. (Felzenszwalb et al., 2009; Wu &
Nevatia, 2007); the results are slightly improved compared to the overall detection. Overall,
the detection-based approach performs well in sparse crowd-counting tasks but is not
applicable in dense scenes with multi-scale and severe occlusion.

Regression-based methods

When detection-based methods cannot satisfy the counting task in dense scenes, researchers
began to accomplish counting by extracting low-level features from localized image
blocks and then establishing mapping relationships with regression models. The main
idea is to learn a mapping from a feature to a crowd count (Chan & Vasconcelos, 2009;
Ryan et al., 2009; Chen et al., 2012). The low-level features include foreground features,
edge features (Chan, Liang ¢ Vasconcelos, 2008; Chan & Vasconcelos, 2011; Chen et al.,
2012), texture, and gradient features; the regression models are mainly, for example,
linear regression (Paragios ¢» Ramesh, 2001), segmented linear regression (Chan, Liang ¢»
Vasconcelos, 2008), ridge regression (McDonald, 2009), and Gaussian process regression.
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The regression method effectively alleviates the limitations in high-density scenes when
based on the detection method and eliminates the dependence on detectors. The counting
in dense scenes has been substantially improved, but at the same time, it exacerbates the
computational complexity.

CNN-based methods

In recent years, convolutional networks have demonstrated powerful capabilities in deep-
level feature extraction in images, so they have been widely used in crowd-counting tasks.
Wang et al. (2015) introduced CNN into crowd counting for the first time and constructed
an end-to-end CNN regression model. Zhang et al. (2016) proposed a multicolumn
convolutional neural network (MCNN) to solve the multi-scale problem in 2016 and
introduced the crowd-counting classical dataset, Shanghai tech. In 2017, Sam, Surya ¢
Babu (2017) improved on the multicolumn convolutional neural network and proposed
SWITCH-CNN, which improves the model’s ability to adapt under drastic scale changes.
In the same year, Sindagi ¢ Patel (2017) proposed a context-aware counting network
CP-CNN to enhance the quality of generated density maps.

In 2018, Li, Zhang & Chen (2018) proposed the dilated convolutional neural network
CSRNet, which for the first time applies dilated convolution to the model, enlarges the
sensory field, better understands highly congested scenarios, performs accurate counting
estimation, and provides high-quality density maps. Cao et al. (2018a) proposed a novel
encoder—decoder network, called scale aggregation network (SANet), to generate high-
quality density maps.

In 2019, Liu et al. (2019) proposed a variable convolutional network for crowd
understanding attention mapping, introducing an attention mechanism to emphasize
crowd location, achieving the ability to capture crowd features more efficiently and with
more robust resistance to various noises. In the same year, Zhong et al. (2022) proposed
a new convolution network, which is capable of handling continuous scale variations
of individual pedestrians. With spatially varying Gaussian smoothing, the perspective
guided convolution (PGC) can adaptively use different sizes of receptive fields for various
scales of people. In the same starting point as PGC, context-aware network, proposed
by Liu, Salzmann & Fua (2019), captures contextual information at different scales using
multi-scale feature pyramids. Each scale corresponds to a different receptive field size, and
then the features are combined and passed to subsequent convolutional layers.

Recently, Cheng et al. (2022) proposed a network structure called GauNet, which suggests
a low-rank approximation with translation invariance to realize well the approximation of
large-scale Gaussian convolution to speed up the computation. Ma, Zhang & Wei (2024)
introduced an end-to-end model, FGENet, for precise human pose estimation. Unlike
other methods that estimate density maps, FGENet directly learns the original coordinate
points, minimizing the impact of labeling noise. The model performs better than previous
methods on various datasets. Table 1 lists the models and features that have emerged in
recent years.
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Table 1 Overview of mainstream models.

Network structure ~ Representative =~ Advantage Shortcoming Dataset Result
model (MAE)
Single branch CrowdCNN Can handle scenes with varying Limited adaptability to density WorldExpo’10 12.9
structure densities. variations.
Multi-branch MCNN Multi-column architecture can High number of parameters and ShanghaiTechPartB 26.4
structure handle various density changes. complex training.
CP-CNN Combines contextual informa- High computational complexity. ~ ShanghaiTechPartB 20.1
tion, leading to high accuracy.
Switch-CNN Dynamically switches sub- Complex switching mechanism ShanghaiTechPartA 90.4
networks to handle different and difficult training.
density scenes.
Special structure CSRNet Uses dilated convolutions to effi- ~ Highly dependent on training ShanghaiTechPartA 68.2
ciently capture multi-scale infor-  data.
mation.
ACSCP Adaptive scheme, effective in Poor real-time performance. UCF_CC_50 291.0
high-density crowd scenarios.
GauNet Uses Gaussian filters to improve Sensitive to outliers, less robust. UCF_CC_50 186.3

density estimation accuracy.

METHODS

This section first introduces the model architecture, then reviews NDloss (Zhong et al.,
2022), introduces strip pooling, and finally, efficient channel attention (ECA).

Net architecture
In designing the model architecture, we focused on the following three aspects:

(1) Feature hierarchy: Strip pooling and ECA modules are typically used to introduce
higher-level feature representations and capture global information in deep networks.
Therefore, placing them in the deeper layers of the model can better utilize deep features
for feature enhancement and global attention.

(2) Information fusion: The strip pooling module enhances the model’s ability to
perceive information at different scales through multi-scale pooling and feature fusion. For
the original model, the NDloss module effectively aggregates head information. Placing the
strip pooling module immediately after the NDloss module allows for better information
fusion and pooling operations at higher-level feature representations. The primary function
of the ECAAttention module is to enhance the model’s focus on essential features while
suppressing unimportant ones. Placing it in the deeper layers leverages global information
to adjust feature weights more effectively, enhancing the model’s feature representation
capability. We put it just before the final feature output.

(3) Computational efficiency: Integrating these modules at deeper layers inevitably
increases computational load. It is crucial to effectively utilize lower-level feature
representations while maintaining computational efficiency. In the ablation experiments,
we discussed the impact of the number of strip pooling layers on model performance and
concluded that adding strip pooling after two NDConv layers yields the best results.
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Figure 2 Diagram of NDloss.
Full-size G4l DOI: 10.7717/peerjcs.2273/fig-2

As shown in Fig. 1, our model is built on top of NDConv. Compared to CSRNet, the
authors added a batch normalization layer after each convolutional layer for enhanced
training robustness on cropped images. They replaced the last null convolution layer
with NDConv, creating a model (backbone) denoted as NDConv. We improve on this
by adding an ECA module with kernel size = 3 between the original model VGG16_BN
(frontend) and deformable-conv (backend), which improves the model’s ability to sense
between channels and involves very few parameters. Between the backend and the final
output_layer, a new lightweight strip pooling module with 64 input channels and a pooling
size of (20, 12) is inserted to enable the backbone network to model remote dependencies
efficiently.

Additionally, in choosing the backbone, we considered the simplicity of the VGG16
network structure, which mainly consists of convolutional layers, max-pooling layers, and
fully connected layers. This simple structure makes it easy to understand and implement
for crowd-counting tasks. VGG16 achieved excellent results in the ImageNet competition,
demonstrating its strong performance in image classification tasks. Since crowd counting
also involves complex feature extraction and classification problems, VGG16’s outstanding
performance makes it an ideal choice. In recent years, VGG16 has been particularly favored
by researchers in the field of crowd counting, as evidenced by studies such as CSRNet (Li,
Zhang & Chen, 2018) and context-aware network (CAN) (Liu, Salzmann ¢ Fua, 2019). We
used VGG16_BN instead of VGG16 as the backbone. Compared to VGG16, VGG16_BN
incorporates batch normalization, which makes the network more stable, speeds up
convergence, and effectively prevents overfitting.
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Normed-deformable loss
As shown in Fig. 2, Zhong et al. (2022) used four parallelograms R;R;RsR4, RyR3RgRy,
R4R5RgR7, RsRgR9Rg to simplify the prior. We know that if for deformable convolution, the
sampling point will correspondingly move around r1-r9 due to the offset. This case involves
two-dimensional offsets, expressed as follows: (AR1x, ARy,), -+, (ARgy, ARy,), where we
have Ry = ARy, + 1, -+, Rg = ARy, + r9. Next, we use the simplified parallelogram to
restrict the sampling points and construct the corresponding losses. The restricted sampling
points should try to satisfy the following three conditions: (1) The center sampling point
Rs5 should be close to r5 as a matter of course. (2) R4 and Rg are at the same distance from
rs and should be close to the x-axis. (3) Similarly R, and Rg should have equal distances
from r5 and both should be close to the y-axis.

For condition Eq. (1), it follows that:

Cr=[ARs 3+ ] ARs | M

For condition Eq. (2), it follows that:

Lhor = | ARy, + AR ||+ | ARy, ||§ +]|ARs, Hi @

For condition Eq. (3), it follows that:

Locc=| ARy, +ARs, |2+ | ARy, |5+ | ARs, |5 (3)

Lr, = (r44+ARy)+ (r2+ ARy) — (r5+ ARs) —71”%
Lr, = (r44+AR4)+(r2+ARy) — (r5+ARs) — 1, ||%
Lr, = [[(rs+ ARs) + (rs+ ARg) — (r5+ ARs) — 16|13 (4)
Lr, = ||(r¢+ ARg)+ (rs+ ARg) — (r5+ ARs) —r9||%

Then, NDLoss can be expressed as:

Lnd=Le+ Lnor+ Lyec+ Lr, + Lr, + Lry+ Ly (5)
Then, the final loss is:

Lan = Laen +ALna (6)

where A is the super-parameter. The constraint of normed-deformable loss (i.e., NDLoss)
makes the sampling point offsets in the deformable convolution more uniform, allowing
better access to head features, effectively improving the sensory field conditioning, and
improving the model performance. In addition, NDLoss is a lightweight module that does
not add to the computational burden.

Strip pooling

Strip pooling (Hou et al., 2020) is a spatial pooling method that is very effective when
dealing with complex target scenes and especially excels when focusing on long-range
contextual information. Compared to traditional pooling operations, it has the advantage
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of reducing the impact of including disjoint regions. The method employs a strip pooling
window to operate along the horizontal or vertical direction. For a tensor x € REXW i
the average pooling layer, the spatial extent of (h x w) is pooled. The output y is also a
two-dimensional tensor, with height H, = % and width W, = % The pooling operation
can be written as follows:

1
Viodo =7~ Z Z Xy hi, o x w+j (7)

0<i<hO0<j<w

where 0 <1, < H, and 0 <j, < W,. Strip pooling differs from average pooling by pooling
the spatial extent of (H,1) or (1, W) and averaging all feature values in a row or column.
The output y" € R¥ after horizontal strip pooling is calculated by averaging all values in a
row:

1
h
Vi=v Z Xij (8)

0<j<W

Vertical strip pooling output y” € R can be written in a compact form:

i Z% Z Xij 9)
0<i<H

By introducing horizontal and vertical banded pooling layers, long-term relational
dependencies between discretely distributed regions across the dataset can be easily
identified and maintained. In particular, this approach performs well when dealing with
areas with banded coding due to the unique elongated structure of the employed kernel.
The kernel’s elongated shape helps maintain focus, thus better isolating and capturing
localized complexities and features.

The implementation process of the strip pooling algorithm is not complex. It captures
and fuses multi-scale and multi-directional features through a series of feature extraction,
pooling, and convolution operations. Initially, two 1 x 1 convolution layers are defined
to preliminarily process the input feature map, generating two intermediate feature maps.
One of these intermediate feature maps undergoes three different sizes of adaptive pooling,
followed by 3 x 3 convolutions and upsampling back to the original size. Simultaneously,
the other feature map undergoes horizontal and vertical pooling separately, followed by
convolution and upsampling to the original size. Subsequently, these processed feature
maps are additively fused and further processed through a 3 x 3 convolution layer. Finally,
the fused feature maps are concatenated along the channel dimension, restored to the
original input channel count viaa 1 x 1 convolution layer, and added to the input feature
map. The result is activated using the ReLU activation function to generate the final
output. By employing this multi-scale and multi-directional feature processing and fusion,
the strip pooling module effectively enhances the model’s feature representation capability
in complex scenarios.

The improvements to this module primarily focus on three aspects:

(1) Enhancement of pooling operations: The original article mentions pool sizes of (20,
12) and (12, 20). In the implementation, the dimensions of pooll and pool2 vary according
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to the different cropping sizes of images from different datasets. This modification is mainly
to meet the requirements of feature extraction in specific scenarios. Additionally, pool3
and pool4 have been added with pooling sizes of (1, None) and (None, 1), respectively, to
capture as many as possible features in the horizontal and vertical directions.

(2) Improvement in feature fusion: The configuration of the conv2_x series convolution
layers has been modified, using convolution kernels of (1, 3) and (3, 1), in contrast to the
conventional (3, 3) convolution.

(3) Other details: Bilinear mode was selected for upsampling with align_corners set to
true. This helps preserve spatial information better during the upsampling process.

Efficient channel attention

Efficient channel attention (ECA) (Wang et al., 2020) is a lightweight channel attention
module for improving the performance of convolutional neural networks (CNNs). ECA
uses a strategy called local cross-channel interaction, which effectively avoids the impact
of dimensionality reduction on the learning effect of channel attention. The block involves
only a few parameters but has a significant effect gain. The original article compares three
variants of the squeeze-and-excitation (SE) block (Hu, Shen ¢ Sun, 2018), SE-Varl-3, in
which SE-Var3 is more effective than SE-Var2 because SE-Var3 captures inter-channel
interactions while SE-Var2 does not. The author explores another method to capture local
cross-channel interaction in ECA, using a band matrix Wy to learn channel attention.

whl o Lk 0 0 e 0
0 w22 ... kLo e 0

(10)
0 0 00 .. wOCHH 00

In Eq. (10), only interactions between y; and its k neighbors are considered in the

weights, i.e.,
k

wi:g(zw),)/ieszf, (1)
j=1

This strategy can be achieved by a fast 1 D convolution with kernel size k, i.e.,
o =0 (CIDi(y)), (12)

where C1D stands for 1 D convolution. In particular, the ECA module exhibits similar
results to SE-var3 at k = 3 but with lower complexity. It efficiently captures local cross-
channel interactions, ensuring high efficiency and effectiveness. The channel attention
mechanism has great potential to improve the performance of counting CNNs by
dynamically adjusting the weights of each channel based on the correlation between
different channels to enhance the model’s feature extraction and exploitation in extreme
environments such as distorted viewpoints and dense occlusion between crowds. However,
the complex attention mechanism module inevitably increases the complexity of the model.
The introduction of ECA successfully achieves a good balance, is lightweight, and is fast to
help the model learn effective channel attention.
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As a lightweight channel attention mechanism, ECA defines an adaptive average
pooling layer, a 1D convolution layer, and a Sigmoid activation function during the
initialization phase for global feature capture and attention weight generation. In the
forward propagation, the module first performs global average pooling on the input
feature map using the adaptive average pooling layer. It then captures global correlations
through the 1D convolution layer, followed by mapping the obtained attention weights
to a range between 0 and 1 using the Sigmoid activation function. Finally, the module
performs an element-wise multiplication of the attention weights with the input feature
map, resulting in a weighted feature representation. This process enhances the model’s
focus on essential features, thereby improving the model’s feature representation capability.

As a lightweight channel attention module, there were no significant modifications
when embedding it into the model; the focus was mainly on its placement. After extensive
testing, we found that adding this module after VGG16_BN, specifically after the front
end, resulted in the most significant performance improvement. A possible theoretical
explanation lies in the net architecture.

EXPERIMENT

In this section, we first briefly introduce experiment settings and the evaluation metrics
and datasets used, then compare the results of our model on the dataset with current

state-of-the-art models, and finally perform an ablation study to find the contribution
made by each new improvement in the model.

Experiment settings

The mean squared error loss (MSELoss) was used to supervise the training of SPCANet,
with an Adam optimizer with a learning rate of 1e—4, batch size of 4, a decay rate of 0.9,
and momentum of 0.95 for optimization. Experiments were performed using Pytorch
(1.11.0+cul13) and on a GeForce RTX 3090 graphics card. The pseudo-code for model
training is shown in Algorithm 1.

Evaluation metrics
We use mean absolute error (MAE) and mean squared error (MSE) to assess model
accuracy and robustness. MAE and MSE are specifically defined for a sample size of N as:

N
1
MAE=NZ|R,-—R1-GT| (13)
i=1
and
1 N
GT
MSE:NZ(Ri—Ri )2 (14)

i=1
where R; denotes the number of the population predicted by the model and RYT denotes
the number of the real population. MAE can effectively reflect the model’s accuracy, and
MSE can reflect the model’s robustness. The combination of the two can comprehensively
evaluate the model’s performance.
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Algorithm 1 SPCANet training algorithm

Input: N training image patches {X;}} | with groundtruth density maps {D)G(iT}fi |
Output: Trained parameters {62},{1 , for Ry
[*Training for E, epochs*/
/ *rik is result predicted by Ry for input X;*/
/*rET is ground truth count for input X;*/
/*0O; is NDloss offset matrix*/
for e = 1 to E, epochs do
Save model with R, epoch and MAE;
fori=1to N do
/*count with SPCANet*/
rz-k, O; = model(X;);
forj=1to O;do
NDloss generates extra_loss;;

end for

best

loss; GT l;

= argminlrik —1;

optimizer.zero_grad()
(lossﬁ’“ ! + extra_loss;).backward()

end for
end for
Table 2 Overview of the four datasets.
Dataset Resolution Number of Number of Numberof  Maximum Minimum  Average Total
pictures training images  testimages  count count count count
Shanghai Tech Part A Different 482 300 182 3,139 33 501.4 241,677
Shanghai Tech Part B 768 x 1,024 716 400 316 578 9 123.6 88,488
UCF_CC_50 Different 50 40 10 4,543 94 1,279.5 63,974
UCF-QNRF Different 1,535 1,201 334 12,865 49 815.4 1,2511,642
Datasets

All evaluation experiments for SPCANet were performed on four mainstream datasets:
ShanghaiTech Part A, ShanghaiTech Part B, UCF-QNRF, and UCF_CC_50. The Overview
of the four datasets is shown in Table 2.

ShanghaiTech (Zhang et al., 2016) is a large-scale crowd-counting dataset released by
the Shanghai University of Science and Technology in 2016, divided into Part A and Part
B, with 1,198 crowd images. The Part A images are from the Internet, with 482 total images
split into a training set of 300 and a test set of 182. The images are densely populated and
have variable resolution. The Part B images are taken from the streets of Shanghai, and this
part contains 716 images, 400 images in the training set, and 316 images in the test set. The
targets are sparse. The image resolution remains the same. On the whole, Shanghai tech is
very diverse in both scene types and viewpoint transformations, and it is still challenging
to realize accurate counting on it.

Yuan (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2273 12/21


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2273

PeerJ Computer Science

Table 3 Comparisons of four Mainstream datasets. The best results are shown in bold.

Methods Shanghai B Shanghai A UCF-QNRF UCF_CC_50
MAE MSE MAE MSE MAE MSE MAE MSE
MCNN (Zhang et al., 2016) (2016) 26.4 - 110.2 - — - 3376 -
CSRNet (Li, Zhang & Chen, 2018) (2018) 10.6 16 68.2 115 120.3 208.5 266.1 397.5
SANet (Cao et al., 2018b) (2018) 8.4 13.6 67 104.5 258.4 334.9
CAN (Liu, Salzmann ¢ Fua, 2019) (2019) 7.8 12.2 62.3 100 107 183 212.2 243.7
LSC-CNN (Sam et al., 2020) (2019) 8.1 12.7 66.4 117 120.5 218.2 225.6 302.7
DensityCNN (Jiang et al., 2020) (2020) 9.1 16.3 63.1 106.3 101.5 186.9 244.6 341.8
SDANet (Miao et al., 2020) (2020) 7.8 10.2 63.6 101.8 - - 227.6 316.4
FusionCount (Ma, Sanchez & Guha, 2022) (2022) 6.9 11.8 62.2 101.2 - - - -
OrdinalEntropy (Zhang et al., 2023) (2023) 9.1 14.5 65.6 105 - - - -
NDConv (Zhong et al., 2022) (baseline) 7.8 13.8 61.4 104.1 91.2 165.6 167.2 240.6
SPCANet 7.3 12.5 60.9 99.9 90.8 158.7 161.1 228.8

UCF-QNREF (Idrees et al., 2018) released by the esteemed University of Florida in 2018,
is a comprehensive collection of 1,535 crowd images, meticulously divided into a training
set of 1,201 images and a test set of 334 images. This dataset boasts an impressive total
of 1.25 million painstakingly detailed head annotations. Compared to the ShanghaiTech
dataset, the UCF-QNREF dataset stands out as a more intricate and challenging compilation.
It boasts a higher proportion of high-count crowd images, a wider spectrum of diverse
viewpoints, and an increased frequency of images depicting varying densities and lighting
conditions.

UCF_CC_50 (Idrees et al., 2013) is a unique challenge in crowd counting to test the
performance of models under crowded crowd images. It has only 50 images with a total
of 63,974 head center annotations. These images were mainly collected from FLICKR. The
number of heads per image ranges from 94 to 4,543, characterized by small data size and
high variance. This data resource plays an irreplaceable role in comprehensively assessing
counting methods’ performance and efficiency in realistic scenarios with complexity and
variability.

Evaluation and comparison
In the testing and comparison of models, we selected ten models, MCNN (Zhang et al.,
2016), CSRNet (Li, Zhang & Chen, 2018), SANet (Cao et al., 2018b), CAN (Liu, Salzmann
& Fua, 2019), LSC-CNN (Sam et al., 2020), DensityCNN (Jiang et al., 2020), SDANet
(Miao et al., 2020), FusionCount (Ma, Sanchez ¢» Guha, 2022), OrdinalEntropy (Zhang
et al., 2023), and NDConv (Zhong et al., 2022), and, as mentioned above, the metrics for
evaluating the models are the mean absolute error (MAE) and mean squared error (MSE).
Table 3 lists a comparison of SPCANet with 16 other population counting methods,
with the best results shown in bold. Compared to the current state-of-the-art methods, we
achieved better results.
As shown in Fig. 3, in Shanghai Part B, SPCANet is ranked second, with 0.5 performance

improvement and 9.4% model robustness improvement compared to baseline, indicating
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Figure 3 Visualization of an example from Shanghai Part B dataset.
Full-size Gl DOI: 10.7717/peerjcs.2273/fig-3
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Figure 4 Visualization of an example from Shanghai Part A dataset.
Full-size @ DOI: 10.7717/peerjcs.2273/fig-4

that SPCANet achieves good results in environments with minor changes in scene
perspectives. As shown in Fig. 4, in Shanghai Part A, the performance is improved by
0.5 compared to the baseline, and the MSE is decreased by 4.1%, which shows that the
focusing long-distance module we added has achieved good results. Facing the UCF-QNRF
dataset, which has a larger volume and more diversified viewpoints, the mae improves
by 0.4 compared to the baseline, and the MSE decreases by 4.2%, which indicates that
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Table 4 Influence of the number of strip pooling on Shanghai Part A. The best results are shown in

bold.
Strip pooling Baseline (NDConv) Ours (SPCANet)
MAE MSE MAE MSE
1 61.4 104.1 62.2 105.3
2 61.9 103.8 60.9 99.9
3 63.7 111.2 62.9 110.7
4 64.6 108.3 62.6 107.9

our improvement is more capable of coping with the tasks of larger and more complex
scenarios.

SPCANet is better at dealing with dense crowd scene tasks. When facing the 50 images in
UCF_CC_50 in extreme environments, our model also improves significantly compared to
the baseline, and the MAE is improved by 6.1, which shows the feasibility of long-distance
focusing in extreme environments. This is a good improvement in SPCANet’s ability to
deal with distortion caused by perspective distortion and crowd distribution diversity.

Ablation study

In this section, the primary purpose of our ablation experiments 1 and 2 is to verify the
effect of the number of strip poolings in the network and the effectiveness of the ECA.
Experiment 1 discusses the performance increase of the strip pooling module to SPCANet,
and experiment 2 discusses the subtle changes that ECA brings to the whole SPCANet
when it works with the strip pooling module. Experiments 3 and 4 mainly verify the effects
of NDloss and some hyperparameter settings of the model on SPCANet so that the latter
can reproduce the experimental results.

Influence of the number of strip pooling. NDConv replaces the null convolution in
CSRNet with deformable convolution and replaces it with NDConv at each layer of
deformable convolution, and we add a strip pooling after NDConv to experiment on
Shanghai Part A. As shown in Table 4, with the increase of the number of variability layers,
i.e., the number of strip poolings, the performance firstly increases and then decreases from
61.4 to 64.6 for NDConv. The trend of SPCANet is the same as that of NDConv, from
60.9 to 62.9. Moreover, the best result was obtained by adding strip pooling after the two
NDConv.

Effect of ECA on further model improvements. As mentioned above, efficient channel
attention (ECA) can obtain higher model performance at the cost of increasing the number
of parameters by a minimal amount. In the experiments on ECA to further improve the
model performance, we divided them into three groups of methods: baseline (NDConv),
baseline + strip pooling, baseline + strip pooling + ECA, and two by two to form a control.
As shown in Table 5, adding strip pooling to NDConv improves the model performance
considerably, especially on larger datasets. The MAE decreases from 61.4 to 60.6 on
Shanghai A, and the performance on UCF_CC_50 increases by 2.1, which verifies that the
introduction of strip pooling can improve the model’s counting ability in highly congested
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Table 5 Effect of ECA on further model improvements. The best results are shown in bold.

Methods Shanghai B Shanghai A UCF_QNRF UCF_CC_50
MAE MSE MAE MSE MAE MSE MAE MSE
baseline 7.8 13.8 61.4 104.18 91.2 165.6 167.2 240.6
baseline+strip pooling 7.8 12.9 60.6 102.81 89.4 160.9 165.1 253.3
baseline+strip pooling+ECA 7.3 12.5 60.9 99.9 90.8 158.7 161.1 228.8

Table 6 Effect of the weight of L£,,; on Shanghai tech part A and part B. The best results are shown in

bold.
Dataset Metrics A (super-parameter)
le™! le™? le™3 le™*
MAE 63.1 62.7 60.9 61.4
Shanghai Tech Part A
MSE 100.1 99.6 99.9 98.6
MAE 7.6 7.4 7.3 7.7
Shanghai Tech Part B
MSE 14.7 12.2 12.5 12.8

and noisy scenarios, as mentioned above. The introduction of ECA enhances the model’s
performance on most datasets.

It shows that ECA does not exacerbate the complexity of the model, which is also
consistent with our previous conclusion. On Shanghai B, the MAE drops from 7.8 to 7.3.
Compared to adding only strip pooling, the introduction of ECA makes the model more
delicate in dealing with scenarios with sparse crowds. On UCF_CC_50, the performance
is improved by 6.1, and the channel attention can also handle the distortion of viewpoints
and the diversity of crowd distribution in extreme environments very well. In addition,
from the MSE changes, the introduction of ECA dramatically improves the robustness of
the model. Shanghai B improves by 9.4%, Shanghai A improves by 4.1%, UCF_QNRF
improves by 4.2%, and UCF_CC_50 improves by 4.9%. Although there is a significant
improvement from the results of Shanghai A and UCF_QNRF, our model’s ability to cope
with large datasets is reduced after the introduction of ECA.

The impact of hyperparameters. Firstly, as an essential component of the loss function,
the effect of the hyperparameter X is investigated. Through ablation experiments, it was
verified that the model performs better when the hyperparameter A weight is set to le=>.
Experimental data are shown in Table 6. Similarly, Table 7 explores the impact of the
optimizer and batch size parameters on performance. It was confirmed that the model
performed best when the batch size was set to 8 on UCF-QNRF and 4 on UCF_CC_50 and
when the Adam optimizer was used.

CONCLUSIONS

In this article, SPCANet is presented based on NDConv. A novel spatial pooling operation,
strip pooling, is innovatively added to the count-based network. The long and narrow
pooling window allows the model to collect the rich global crowd perspective information
in the picture with good results. This lightweight module does not cause additional
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Table 7 Effect of optimizer and BatchSize on UCF-QNRF and UCF_CC_50. The best results are shown

in bold.
Dataset Metrics Optimizer & BatchSize
Adam SGD
4 8 16 4 8 16

MAE 91.1 90.8 92.3 93.7 95.6 94.1
UCF-QNRF

MSE 157.9 158.7 161.3 165.4 165.2 167.9

MAE 161.1 175.2 182.4 167.2 187.2 189.5
UCF_CC_50

MSE 228.8 238.7 283.1 240.6 227.5 240.6

computational burden. On top of enriching the model perspectives, efficient channel
attention (ECA), a mechanism for learning channel attention using a local cross-channel
interaction strategy, is added to the model to improve the performance as much as possible
at the cost of adding very few parameters.

In the SPCANet, we mainly focus on strip pooling to capture global contextual
information. In the future, we can explore methods for multi-scale feature fusion to
further enhance the model’s adaptability to different crowd densities by extracting and
fusing features at various scales. Efficient channel attention (ECA) has demonstrated
its effectiveness. Future research could investigate dynamic attention mechanisms to
adaptively adjust attention weights based on the features of input images, thus improving
the model’s robustness and accuracy. We believe that SPCANet can be extended to other
similarly challenging counting scenarios and look forward to validating its effectiveness in
the future, thereby advancing the development of crowd counting and related fields.
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