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ABSTRACT

The increased use of artificial intelligence generated content (AIGC) among vast
user populations has heightened the risk of private data leaks. Effective auditing and
regulation remain challenging, further compounding the risks associated with the leaks
involving model parameters and user data. Blockchain technology, renowned for its
decentralized consensus mechanism and tamper-resistant properties, is emerging as an
ideal tool for documenting, auditing, and analyzing the behaviors of all stakeholders
in machine learning as a service (MLaa$). This study centers on biometric recogni-
tion systems, addressing pressing privacy and security concerns through innovative
endeavors. We conducted experiments to analyze six distinct deep neural networks,
leveraging a dataset quality metric grounded in the query output space to quantify the
value of the transfer datasets. This analysis revealed the impact of imbalanced datasets on
training accuracy, thereby bolstering the system’s capacity to detect model data thefts.
Furthermore, we designed and implemented a novel Bio-Rollup scheme, seamlessly
integrating technologies such as certificate authority, blockchain layer two scaling, and
zero-knowledge proofs. This innovative scheme facilitates lightweight auditing through
Merkle proofs, enhancing efficiency while minimizing blockchain storage requirements.
Compared to the baseline approach, Bio-Rollup restores the integrity of the biometric
system and simplifies deployment procedures. It effectively prevents unauthorized use
through certificate authorization and zero-knowledge proofs, thus safeguarding user
privacy and offering a passive defense against model stealing attacks.

Subjects Artificial Intelligence, Blockchain

Keywords Blockchain, Layer 2 scalability, Zero-knowledge proof, Biometrics, Privacy protection,
Bio-Rollup

INTRODUCTION

Biometric recognition technology has been widely adopted since the 1970s. However, data
security and privacy protection for biometric recognition systems is still unreliable.
Biometric information is strongly correlated with an individual’s physiological
characteristics or behaviors. Therefore, biometric template protection technology is

a critical research area in data security and privacy protection for biometric recognition
systems. Numerous biometric template protection schemes have been proposed in this area,
such as methods based on irreversible and reversible transformations of features (Ratha,
Connell & Bolle, 2001; Jin, Ling ¢ Goh, 2004) and methods based on biometric encryption
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for key generation and binding of templates (Nichols, 1998; Monrose, Reiter & Wetzel,
1999).

Tramer et al. (2016) demonstrated the potential for privacy leaks in machine learning
models. As a typical application of artificial intelligence, biometric recognition systems are
inevitably exposed to the threat of privacy attacks. Numerous technical solutions aim to
safeguard biometric recognition systems’ security and privacy. However, centralized storage
and deployment of these systems remain vulnerable to attacks. The security vulnerabilities
of biometric recognition systems are illustrated in the Fig. 1.

Blockchain technology addresses the various challenges that biometric recognition
systems face by ensuring data security and privacy, enabling reliable digital identity
management, supporting smart contracts, and providing transparent and auditable
operations. The integration of blockchain technology with biometric recognition systems
offers the following advantages:

e Data security and privacy protection: The decentralized, immutable, and transparent
nature of blockchain technology provides practical technical support for the secure
storage and privacy protection of biometric data.

e Authentication and authorization mechanisms: Blockchain technology facilitates
verifiable and decentralized digital identity management, offering secure authentication
and authorization mechanisms for biometric recognition technologies.

e Enhanced reliability: By introducing distributed ledgers, blockchain ensures the
reliability and traceability of data within biometric recognition systems.

e Transparency and audibility: The transparency and audibility of blockchain technology
provide effective monitoring of biometric recognition system operations, thereby
enhancing the overall trustworthiness of the system.

The convergence of blockchain and biometric recognition technologies collectively
presents a robust solution for advancing secure and trustworthy identity verification
processes. Since 2018, research on the integration of blockchain technology with artificial
intelligence (Al) (Zheng, Dai ¢ Wu, 2019; Salah et al., 2019), machine learning (ML) (Liu
et al., 2020a; Chen et al., 2018), and biometric recognition systems has gained widespread
attention (Huang et al., 2021). There have been new developments in the integration of
biometric recognition systems and blockchain technology. Goel et al. (2019) combined
biometric recognition feature extraction and template matching with blockchain, utilizing
no tray blocks in the feature extraction process to achieve consensus in the blockchain,
and using Shamir key sharing threshold schemes to vote on matching results to restore
keys in the template matching stage. Despite addressing security concerns in biometric
recognition systems, such as machine learning models, feature extraction data, and user
biometric templates, existing solutions have notable shortcomings:

e Given the current limitations in blockchain efficiency and scalability, the usability and
versatility of these systems should be enhanced.

e The absence of auditing and tracking systems for unauthorized access leaves the systems
vulnerable to privacy attacks.
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Figure 1 Weaknesses in biometrics systems.
Full-size @ DOI: 10.7717/peerjcs.2268/fig-1

e Insufficient definitions and explanations of user data privacy fail to address the privacy
challenges posed by blockchain data transparency.

Against this backdrop, this study aims to bridge the gap in research on decentralized Al
security frameworks leveraging blockchain as machine learning as a service enters a period
of rapid development and deployment. The research content is significant for advancing
the field of AI security frameworks.

Contributions

In the context of the burgeoning AIGC sector, the deployment of models across a broad
user base has amplified the vulnerability to privacy data breaches. Blockchain technology,
characterized by its decentralized consensus and immutability, stands out as a potent tool
for logging, auditing, and scrutinizing the actions of all parties within MLaaS. Nevertheless,
existing literature has not delved extensively into the performance scalability of blockchain
or the defense against Al privacy attacks.

Given this gap, this study concentrates on the privacy security of biometric recognition
systems, introducing an innovative Al privacy protection scheme, Bio-Rollup, which
amalgamates blockchain layer-two scaling and biometric identification. The core concept
of Bio-Rollup is to integrate the deployment and query of biometric recognition systems
within the auditing scope of blockchain layer-two scaling nodes, thereby effectively
validating the legitimacy of model deployment, modifications, and user queries. The
contributions of this study include:

e Experimental analysis of six distinct deep neural networks, employing a dataset quality
metric rooted in query output space to quantify the value of migrated datasets and
elucidate the impact of imbalanced datasets on training accuracy, thereby bolstering the
system’s capacity to detect model stealing attacks.

e Design and implementation of the Bio-Rollup scheme, which integrates certificate
authorization, blockchain layer-2 scaling, and zero-knowledge proofs. The scheme
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Table 1 Acronym description.

Acronym Explanation

Al Artificial Intelligence

ML Machine Learning

MLaa$ Machine Learning as a Service

IoT Internet of Things

Baa$ Blockchain as a Service

P2P Network peer-to-peer Network

CA Certificate Authority

Dapp Distributed Application

AIGC Artificial Intelligence Generated Content
SNARK Succinct Non-interactive Argument of Knowledge
GAM Generalized Additive Model

achieves lightweight auditing through Merkle proofs, enhancing efficiency and alleviating
blockchain storage pressure. In contrast to baseline approaches, Bio-Rollup restores
the integrity of the biometric system, reduces deployment complexity, and prevents
unauthorized use through certificate authorization and zero-knowledge proofs, ensuring
user privacy and offering passive defense against model stealing attacks.

In conclusion, this study offers robust privacy protection for user data within biometric
recognition systems while ensuring efficiency, usability, and security. It also charts new
research directions in the integration of blockchain technology with biometric recognition.

To enhance readability, a list of acronyms is provided in Table 1. The structure of

»

this article is as follows: Related work is discussed in “Literature Review”. “Preliminary
Knowledge” introduces the key concepts necessary to understand the rest of this article,
such as blockchain and ZK-snarks. The methodology employed in our framework is
detailed in “Proposed Architecture”. In the “Experimental Evaluation and Discussion”,
the idea and effectiveness of the scheme are further demonstrated. Finally, “Conclusions”

brings the article to a close and outlines future work.

LITERATURE REVIEW

Biometric recognition technology aims to automatically verify user identity by using
physiological features such as facial or fingerprint patterns, or behavioral features such as
voice or handwritten signatures (Jain et al., 2016). Al systems face different security risks
at various stages of their lifecycle (Liu, 2020). Biometric recognition systems are a typical
use of Al that are mainly characterized by insecure hardware and software environments
during deployment. These challenges may lead to security risks such as unauthorized
machine learning model modification and unauthorized access by non-authorized users
(Jing et al., 2021). These problems are typically manifested in model extraction attacks.
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Blockchain and biometrics

Since 2018, the integration of blockchain technology with AI (Salah et al., 2019), ML (Chen
et al., 2018; Liu et al., 2020b), and biometric recognition systems has garnered significant
attention (Huang et al., 2021).

The integration of blockchain with biometric recognition systems is an emerging and
innovative field. The current research primarily focuses on literature reviews that analyze
application domains, advantages, and legal implications. For instance, Delgado-Mohatar
et al. (2020) delved into the application of blockchain technology for biometric template
storage and protection, evaluating the benefits and challenges of various blockchain
architectures within biometric systems. The research highlighted the potential of Merkle
tree structures for cost reduction and quantified the expenses of both off-chain and
on-chain matching, demonstrating the enhancing role of template protection in matching
accuracy. Ghafourian et al. (2023) provided an overview of the potential benefits and risks
of merging blockchain with biometric recognition, along with a synthesis of technical
aspects and an inaugural legal analysis. The synthesis underscored the significant promise
for innovative applications in the biometric domain, despite the integration being in its
infancy. The allocation of liability remains a paramount legal concern, along with other
challenges such as conducting proper data protection impact assessments. Sharma ¢
Dwivedi (2024) offered a comprehensive review of blockchain’s application in biometric
systems, emphasizing its potential to enhance security, transparency, and traceability. The
survey outlined the fundamental principles and challenges of blockchain technology, as
well as the pivotal operations of biometric systems, exploring application areas such as
template storage, identity management, and authentication.

These reviews collectively provide a foundational understanding of the integration
of blockchain with biometric systems, charting a course for future research directions.
Additionally, there are scholarly works that propose specific solutions for targeted scenarios.
For instance, Goel et al. (2019) introduced an integrated architecture that enhanced the
security of biometric systems by employing blockchain’s immutability to encrypt and
verify the feature extraction process and employing a Merkle tree-like structure for
secure, decentralized matching. Alharthi, Ni ¢ Jiang (2021) presented a BBC-based privacy
protection framework that ensures secure and trustworthy vehicle communications in
VANETSs while safeguarding user privacy. The framework uses cancellable biometric
information to create unique pseudonyms, maintaining privacy while allowing traceability.
Lee ¢ Jeong (2021) introduced the blockchain-based biometric authentication system
(BDAS), which enhanced the security, reliability, and transparency of biometric
authentication through distributed management of biometric information. BDAS
fragments biometric templates and employs blockchain for decentralized management,
establishing a decentralized authentication mechanism.

In conclusion, integrating blockchain technology into biometric recognition systems
represents a novel research direction. To date, no studies have proposed the use of
blockchain’s authentication and authorization mechanisms and auditing capabilities
to achieve comprehensive privacy protection across the entire lifecycle of biometric
recognition systems. Considering this Goel et al. (2019) was used as a baseline for
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comparative analysis. Firstly, the proposed baseline scheme mapped the feature extraction
process onto the blockchain, with each extraction step corresponding to a block. The
integrity of the feature extraction process was verified through the introduction of
notarized blocks. While this design enhances audit precision, it sacrifices feature extraction
efficiency and increases the complexity of deploying the biometric recognition system.
This study suggests that integrity recovery for biometric systems should be prioritized,
with user queries processed as batched transactions for auditing. Secondly, we built a
blockchain-based authentication and authorization mechanism on a consortium chain to
prevent unauthorized use and provide audit conditions. Finally, by analyzing the user’s
output space, the study assesses the extent to which users can access private data and
designs an artificial intelligence security framework, Bio-Rollup, based on a second-layer
scalability off-chain auditing mechanism to safeguard the privacy of biometric recognition
systems. Experimental results indicate that the proposed study’s scheme, employing two
zero-knowledge proof protocols, significantly improves audit efficiency compared to the
baseline and effectively warns against privacy attacks involving data leaks.

Privacy attacks

Model stealing attacks represent a clandestine form of black-box assaults where the
attacker’s fundamental objective is to construct a substitute model f” that replicates the
functionality and performance of the victim model f. The primary purposes of such attacks
can be encapsulated in two broad aspects: firstly, to ensure that f” achieves a comparable
level of accuracy to f on a test set drawn from the input data distribution that is pertinent
to the learning task (Krishna et al., 2019; Milli et al., 2019; Orekondy, Schiele ¢ Fritz, 2019;
Tramer et al., 2016); secondly, to create an f’ that closely aligns with f on a set of input
points that have no direct correlation with the learning task (Correia-Silva et al., 2018;
Jagielski et al., 2020; Juuti et al., 2019; Tramer et al., 2016). Jagielski et al. (2020) termed the
former type of attack as “task accuracy extraction”, while the latter was referred to as
“loyalty extraction”. Model stealing attacks can be leveraged to launch subsequent assaults
of various types, including adversarial attacks (Juuti et al., 2019; Papernot et al., 2017) and
membership inference attacks (Nasr, Shokri & Houmansadr, 2019). Furthermore, there
are studies focused on extracting information from the victim model, such as extracting
hyperparameters from the target function (Wang ¢ Gong, 2018) or various attributes of
neural network architectures, including activation types, optimization algorithms, number
of layers, and more (OFh, Schiele ¢ Fritz, 2019). A summary of model stealing attacks is
provided in Table 2.

Passive defense strategies focus on detecting malicious querying behavior and limiting
or denying inference services to attackers. Kesarwani et al. (2018) developed an extraction
auditing mechanism tailored for decision tree models. Juuti et al. (2019) introduced
PRADA, a multi-query detection approach. Kariyappa ¢ Qureshi (2020) proposed an
adaptive error information injection method that selectively sends incorrect predictions
for queries deemed to be out-of-distribution. However, these countermeasures have their
limitations; for instance, active defense strategies may compromise model accuracy, while
passive defense strategies incur high computational costs when dealing with large-scale
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Table 2 Summary of model stealing attacks.

Related work Adversary knowledge Model Attack phase
Tramer et al. (2016) Blackbox/Whitebox Neural network, efc Inference
Papernot et al. (2017) Blackbox Neural network Inference
Correia-Silva et al. (2018) Blackbox Neural network Inference
Oh, Schiele & Fritz (2019) Blackbox Neural network Inference
Juuti et al. (2019) Blackbox Neural network Inference
Milli et al. (2019) Blackbox Neural network Inference
Orekondy, Schiele ¢ Fritz (2019) Blackbox Neural network Inference
Barbalau et al. (2020) Blackbox Neural network Inference
Chandrasekaran et al. (2020) Blackbox Neural network Inference
Jagielski et al. (2020) Blackbox Neural network Inference
Pal et al. (2020) Blackbox Neural network Inference
Yu et al. (2020) Blackbox Neural network Inference
Gong et al. (2020) Blackbox Neural network Inference
Table 3 Comparison of defense strategies against model stealing attacks.

Related work Privacy = Tamper Attack knowledge = Defense strategy

resistance

Juuti et al. (2019) — — Query, Model Detection
Kariyappa & Qureshi (2020) - - Query, Gradient Detection
Kesarwani et al. (2018) — — Query Detection

This scheme v v Query Blockchain, Detection

data, and some methods are only applicable to specific types of models. Consequently,
future research needs to enhance the generality and effectiveness of defense strategies
without compromising model performance. A comparison of this study with existing
approaches is provided in Table 3.

PRELIMINARY KNOWLEDGE

Blockchain
Blockchain is a distributed ledger that relies heavily on hash functions and cryptography to
store redundant data. It enables peer-to-peer transactions, coordination, and collaboration
in a decentralized system without central institutions. This is achieved through various
techniques such as data encryption, timestamping, distributed consensus, and economic
incentives (Yuan & Wang, 2016).

Smart contracts (Zheng et al., 2020) are computer programs that encode the terms
of a contract into code that can be executed on a blockchain. Each contract is created
and executed as a transaction, which is recorded on the blockchain. When a smart
contract is called, it is executed by all nodes in the network, ensuring that the contract
remains active even if one node fails. The most popular public chain for smart contracts
is Ethereum (Buterin, 2015), which supports programming languages such as Solidity and
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Vyper (Kaleem, Mavridou ¢ Laszka, 2020). Hyperledger Fabric (a consortium chain) uses
container technology to host smart contract codes.

The scaling technology of blockchain layer two (Gangwal, Gangavalli & Thirupathi,
2022) aims to balance the need for decentralization and security with the requirement for
efficient transaction processing. State channels (Dziembowski, Faust ¢~ Hostdkovd, 2018)
and rollups are currently popular L2 solutions. State channels utilize multi-signature
smart contracts to enable users to make transactions offline before final settlement on
the main net, providing free transactions. Rollups execute transactions off-chain before
compressing and publishing the original data on the main net. Two types of rollups are:
Optimistic rollups, which propose fraud proofs to ensure the correctness of the off-chain
state (Optimism, 2021; Boba, 2021), while ZK-Rollups upload zero-knowledge proofs to
guarantee the accuracy of the off-chain state (Matter-Labs, 2019; Aztec, 2020; Starkware,
2020).

Succinct non-interactive argument of knowledge

Zero-knowledge proof is a technique that allows one party to prove the accuracy of a
statement to another party without revealing any additional information beyond what

is necessary (Goldwasser ¢ Micali, 1989). It is characterized by completeness, reliability,
and zero knowledge. The succinct non-interactive argument of knowledge (SNARKS) is
a concise and non-interactive version of zero-knowledge proofs. SNARKSs are achieved
through the use of common reference strings (CRS) models (Blum, Feldman ¢ Micali,
2019) and random oracle models (ROM) (Bellare ¢» Rogaway, 1993). The statement to be
proven can be converted into a circuit satisfiability problem (C-SAT), and the witness
generated from the process data in the circuit is called a constraint. Groth16 is a general
non-interactive zero-knowledge proof scheme based on the protocols of QAP (Gennaro
et al., 2013) and LIP (Bitansky et al., 2013). It has linear proof size and constant verification
time but requires a specific trusted setup for the pre-processing phase. GKMMM18 (Groth et
al., 2018), Sonic (Maller et al., 2019), and PlonK (Gabizon, Williamson ¢ Ciobotaru, 2019)
implement global, updateable CRSs to address the trusted setup issue. PlonK generates more
extensive proof data but has a faster generation speed than Groth16. Therefore, Groth16 is
more suitable for applications that require generating many proofs with high-performance
requirements. At the same time, PlonK is more suitable for scenarios where different
circuits need to be processed to avoid the additional performance overhead caused by a
trusted setup.

In the realm of lightweight zero-knowledge proofs, recent advancements have
introduced a privacy-preserving authentication system for IoT applications (Dwivedi ef al.,
2022), which leverages non-interactive zero-knowledge proofs. This system features the
lightweight ZKNimble encryption algorithm, allowing for authentication to be completed
without users having to disclose any personal identification information.

PROPOSED FRAMEWORK

Threat model
The threat model encompasses the following categories of participants:
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e Data owners: Data owners possess training datasets or other raw data that may contain

sensitive information. Consequently, the regulation and auditing of data owners’ actions
are crucial for ensuring the confidentiality and integrity of the data.

e Model owners: Model owners have the right to access the data owned by data owners

and are willing to share information related to their models. The regulation of model
owners’ behavior is essential for preventing unauthorized data access and model misuse.

e Cloud service providers: Cloud service providers are responsible for processing user

query requests and managing the responses provided by the models. The regulation of
cloud service providers’ actions is critical for ensuring the security and compliance of
data processing.

Model users: Model users typically utilize the services provided by model owners through
applications or user interfaces. The regulation of model users’ behavior is significant for
preventing the misuse of model services. Audits can ensure that model users adhere to
usage terms and take appropriate security measures to protect their data.

Adversaries: Adversaries may access the model’s interface as normal model users do, and,
if permitted, may directly access the model itself. Within the threat model, regulating the
behavior of adversaries is vital for preventing privacy attacks. Audits can ensure that data
owners comply with data protection regulations, such as GDPR, and take appropriate
security measures to safeguard data. They can also ensure that model owners adhere
to privacy regulations and implement suitable security measures to protect models
and user data. Furthermore, audits can verify that cloud service providers comply with
privacy regulations and employ appropriate security measures to protect data. Audits
can detect abnormal behaviors by adversaries, such as frequent inquiries or attempts to
obtain sensitive information and prompt the implementation of appropriate security
measures to protect data. In summary, regulation and behavioral audits are imperative
for ensuring data security and privacy protection. Through audits, potential security
threats can be detected and prevented, and appropriate security measures can be taken
to protect data.

Assumptions
The following are several important assumptions related to experiments on the issue of
privacy leakage in biometric recognition systems:

e Dataset imbalance: This study assumes that the remaining portion of the training set

1 —t is evenly distributed across categories, partitioning the dataset into f and 1 —t¢
segments, where t represents the proportion of the dataset classified as user biometric
templates. The data set balance analysis experiment aims to validate that higher user
loyalty leads to a stronger demand for self-related information, resulting in imbalanced
sample collection and reduced model accuracy. Conversely, a higher degree of balance in
the user queries indicates that attempting to steal the model may infringe upon privacy.

e Unauthorized access: The unauthorized use of biometric recognition systems

encompasses malicious model deployment and privacy breaches across multiple
dimensions. Unauthorized model owners may deploy malicious models, potentially
collecting and transmitting biometric data without user knowledge or erroneously
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associating user biometric information, thereby infringing privacy rights. Additionally,
malicious access by unauthorized users may lead to privacy leaks, with attackers gaining
system access through social engineering, physical attacks, or technical means to steal or
abuse biometric data. Insiders also have the potential to abuse their privileges to disclose
sensitive information. To address these issues, it is necessary to implement secure model
deployment, enhance access control, auditing, and monitoring measures to mitigate
unauthorized use risks and safeguard user privacy and data security. Performance
analysis experiments demonstrate the efficiency advantage of the authorization and
auditing scheme based on this proposal over the baseline scheme.

e Account and permission abuse: Biometric recognition systems authenticate individuals
by identifying and verifying their biometric traits, which includes fingerprints, facial
recognition, iris scans, palmprints, and voiceprints. Despite offering high security and
convenience, these systems have vulnerabilities that could lead to account hijackings,
such as attackers deceiving the system with impersonation techniques or copying
biometric data during registration and transmission. Software vulnerabilities may be
exploited by attackers. Furthermore, attackers could mimic users through replay attacks
or steal biometric data through database leaks. Social engineering attacks may deceive
users into sharing biometric data. To mitigate the risk of account hijacking, strict access
control and monitoring auditing measures must be implemented to enhance system
security and protect user identity privacy. Privacy attack prevention experiments reveal
anomaly analysis of legitimate accounts engaging in privacy attacks after misuse.

Proposed architecture
Bio-Rollup is composed of four parts: certificate authority (CA), biometric recognition
system, blockchain layer two scaling service, and consortium chain, as shown in Fig. 2.
The CA is responsible for managing the organization and identity within the scheme,
generating identity certificates for system administrators and users, and providing
conditions for tracking the use behavior of the biometric recognition system. By setting
up the CA, the layer two scaling service, biometric recognition system, and account are
organized based on certificate authorization. This system uses communication certificates to
build communication channels, complete end-to-end encryption, and secure transmission
of user biometrics, effectively preventing users’ biometrics from being tampered with or
forged. At the same time, certificates can be revoked in a timely manner when suspected
privacy attacks are detected based on the identity certificate authentication mechanism.
To address the issue of existing schemes using deconstructed deep neural networks for
system deployment, which may result in model structure and parameter leakage due to
improper block configuration file storage. Bio-Rollup’s biometric recognition system uses
Apache-TVM for deployment. To prevent tampering, the deployment of models serves as
the initial transaction of the entire system, and any modifications to models also need to
be reviewed by the system. The system state will iterate based on this initial transaction.
The layer two scaling service of Bio-Rollup is a decentralized application leveraging zero-
knowledge proof (ZKP) functions to audit and verify the legality of system usage behavior.
Bio-Rollup associates biometric data with user accounts and system behavior, facilitating
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traceability. It distinguishes between manager and visitor accounts, with information

stored in Merkle trees encompassing privacy data hash value D, credit parameter C, attack
probability &, public key Py, and sequence number N. This binding enables tracking and
verification of authorized usage through CA identity management and Merkle audit paths.

Workflow of proposed architecture
The overall workflow of the proposed scheme is shown in Fig. 3. Here, we provide a detailed
overview of the process of the proposed scheme, combining Figs. 2 and 3.

Step 1: Participant registration phase, where all participants complete the registration
process. This stage serves as the cornerstone of the entire procedure, ensuring the
legitimacy and authenticity of the participants, and laying a solid foundation for subsequent
transaction and verification processes.

Step 2: Transaction signature verification phase, which involves authenticating the
signatures of transactions to ensure their authenticity and validity. This step is crucial for
securing the integrity of transactions.

Step 3: Updating the Bio-Rollup status, which may include the updating of biometric
information or the rolling status, thereby enhancing the system’s security.

Step 4: Setting of the post-update status as witness, where the state change information
is recorded and preserved, providing a reliable basis for subsequent audits.

Step 5: Initialization of user transactions, where user transactions are prepared for later
signature verification and the generation of zero-knowledge proofs.

Step 6: Entailing the system checking the legality of the signatures and the authenticity
of the data owners to ensure that transactions meet the predefined conditions.
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Step 7: If the conditions are met, the seventh step involves finding the account within
the user quantity mapping based on the public key, completing the transaction matching,
and ensuring the accurate execution of transactions.

Step 8: The verification of the transaction serial number, which is aimed at preventing
replay attacks and tampering.

Step 9: The reputation audit, where the reputation of the transaction initiator is reviewed
to ensure compliance with standards, and the quality of the acquired migration dataset is
analyzed to issue warnings for datasets with a high suspicion of malicious activity.

Step 10: The generation of zero-knowledge proofs, which protect the privacy of
transactions while ensuring their authenticity and validity.

Step 11: The first layer of the blockchain verifies the zero-knowledge proofs to ensure
the authenticity and legality of transactions.

Throughout the process, if any step fails to meet the conditions or encounters errors, the
flow redirects to the “return error” phase, where error information is reported to facilitate
timely issue identification and resolution. Ultimately, when all steps are successfully
completed, the first layer of the blockchain will update the newly generated Merkle root.

Blind privacy data

Participants should register with Bio-Rollup and obtain a key certificate. The critical
certificate provides the basis for auditing and account tracing. Figure 2 numbered 1 shows
the participant registration process. Figure 4 depicts the data owner registration process.
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The registration process for regular users is similar to that of the data owner.The registration
process involves three steps:

Step 1: Unregistered participants request account registration from the system,
which then uses the CA administrator account to submit a registration request for the
corresponding account name and random cipher text to the CA. The CA processes the
request and returns the cipher text.

Step 2: Participants register using the cipher text, generating their signing private key
and certificate locally for interaction with the biometric recognition system and blockchain.
This step allows users to sign transactions and authenticate their identity on the blockchain.

Step 3: Participants and the system establish a trusted channel and upload their biometric
data. The registration of biometric templates will be submitted as a request to the layer
two scaling service as an initial transaction for the account. This step enables users to store
their biometric information on the blockchain, providing a secure and tamper-proof way
to authenticate their identity in Fig. 4.

To ensure the ethics and legality of biometric recognition models and prevent
unauthorized tampering, both the deployment and upgrading processes of these models
are subject to rigorous audit supervision. This auditing mechanism guarantees the integrity
and credibility of the models, thereby safeguarding the secure application of biometric
recognition technology. The ownership of the models is unambiguously vested in the data
owners, and their deployment is considered the underlying transaction. This setup protects
the rights and interests of the data owners and ensures the compliance of model usage.
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During the model updating process, the auditing mechanism plays a pivotal role. Any
unauthorized attempts to update the models will be promptly detected and blocked by the
system, thus ensuring the security and stability of the models.

We used model summaries to better understand the security and credibility of the
deployed biometric recognition models. In this process, a hashing function H(.), selected
by the data owners, was employed to generate the summaries of the models through
hashing operations, N as the serial number of transactions for model employment and
updates and Py as the public key of data owner. These summaries can be utilized for rapid
model verification and comparison, serving as a crucial basis for the security and integrity
of the models. The registered model summaries are as follows:

D, = SHA256(H(Bytes(model)) : N : Py). (1)

Common users only need to receive summaries of their biometric template classification
results. These summaries will be stored as data and provided to Bio-Rollup for auditing.
The auditing process aims to gain insight into the user’s query intent by thoroughly
analyzing their querying behavior. Given that most privacy attacks are based on querying
behavior, it is crucial to construct a high-quality transfer dataset, which requires attackers
to collect enough diverse data. In biometric recognition systems, misclassification is
inevitable due to external factors such as the environment, lighting, and angle, which may
lead to inconsistencies in query results for the same user. Therefore, relying solely on
inconsistent query results to determine the existence of targeted attacks is not accurate
enough. However, from a statistical perspective, this auditing process is still important.
The registered biometric template summaries are as follows:

D, = SHA256(Argmax(Model(biometic template)) : N : Py). (2)

In the Bio-Rollup framework, the core mechanism of transaction is primarily constructed
based on Egs. (1) and (2). These transactions can be further categorized into two major
types: model operations and system queries. Both categories are subject to rigorous auditing
supervision within the Bio-Rollup architecture. Notably, the exposure of participant
data, including model data and biometric template information, is limited solely to the
interaction between the biometric recognition system and the participants. This design
ensures that the auditing process cannot access sensitive or private information, thereby
effectively protecting the privacy rights of users.

The purpose of auditing extends beyond verifying the legitimacy of models; it also aims
to safeguard the compliance of user inquiries. Bio-Rollup provides a secure and reliable
transactional environment for participants through this dual safeguard mechanism.
Regarding the upload process for the two types of summaries, detailed instructions can be
found in Algorithm 1. This algorithm outlines the privacy-preserving approach for data
upload and processing, further enhancing the usability and reliability of the Bio-Rollup
system.

Lightweight auditing of transactions
Merkle proofs are a lightweight auditing mechanism based on Merkle trees, enabling users
to verify the presence of specific transactions on the blockchain by downloading only the
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Algorithm 1 Participants’ privacy data upload process.

Require: Information to be uploaded m, Incremental serial number N, Participant’s pri-
vate key S, Participant’s metadata d.

1: Procedure PrivacyDataUpload(m, N, Sk, d)

2: if the participant role in the metadata d is data owner then

3:  Generate a model summary D, <~ SHA256(H(Bytes(model)) : N : Py)

4 else
5 Generate a template summary D), <— SHA256(Argmax(Model(biometic template)))
6: end if
7: Serialize data to generate a transaction TX < Serialize([D,, N ,d])
8: Sign the transaction sig <— ECDSA.sign(TX, S¢)
9: TX <« Extend(TX,sig)
10: Transmit the transaction to the Bio-Rollup node TLS 1004 (TX)
11: end Procedure

block header and Merkle proof rather than the entire block data. In a blockchain, each
block contains a Merkle tree where the leaf nodes are the hashes of all transactions within
the block, and the root hash is included in the block header. Users obtain the transaction’s
hash to be verified, request a full node to generate a Merkle proof, and then calculate the
Merkle root using the proof’s sibling hashes and path, comparing it with the root hash in
the block header to confirm the transaction’s existence. This method significantly reduces
the data users need to download and store, improving verification efficiency, especially in
large-scale blockchain networks. The scalability and efficiency of Merkle proofs make them
an ideal choice for lightweight clients to validate transaction existence.Lightweight audit
process see Algorithm 2.

Bio-Rollup maintains an account mapping table M on the blockchain’s second layer,
with each account information occupying 120 bytes. The fields include Credit (uint64),
Index (uint64), Nonce (uint64), Data (fr.Element), and PubKey (ecdsa.PublicKey). These
fields collectively represent the complete account information, with Credit, Index, Nonce,
and Data storing the account’s state information and PubKey used to verify the account
owner’s identity. After serialization, the account information forms a binary Merkle tree.
In the Bio-Rollup second-layer scaling solution, transactions are manifested in the legal
changes of user states, with storage costs linearly increasing with the number of accounts.
Zero-knowledge proof technology ensures the validity of transactions and audits, and
historical transactions are not stored, making the second-layer storage cost independent of
the number of transactions. The design of this solution is lightweight and includes audit
mechanisms based on Merkle proofs and storage based on account states.

In the Bio-Rollup architecture, the Operator object assumes the pivotal roles of account
information storage and behavior auditing. It incorporates multiple fields and functions
tailored for account state management, transaction processing, and the detection of
potential attacks. The primary fields of the Operator object include: InitState is a byte
array for recording the initial state; State is a byte array for the current state, including
account index, nonce, balance, and public key; HashState is a byte array for the hash
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Algorithm 2 Lightweight auditing of transactions

Require: Participant’s Transaction TX, Participant account mapping M.
Ensure: Zero-knowledge proof for blockchain layer one verification 7, 7, the Attack
rate parameter §&.
1: Procedure TransactionsAudit(TX, M)
2. fori<0toBdo
3. Retrieve user data from the Bio-Rollup mapping user <— ReadAccount(M [Px])
4 if the account does not exist then
5: return an error indicating that the account does not exist.
6: endif
7. Obtain merkle proof before state update 7, 7, <— GetWitness(user)
8:  if MerkleProofVerify(m,, 7,) = False then
9 return an error indicating that the current state is illegal.
10 endif
11:  Calculate the participant’s credit C <« Zfi Dy & TX;.Dp) +
log(i+1)[(D, & TX;.D,) — 1]}
12: The participant is suspected of strong attack intent if £ > 0.5.
13:  Obtain merkle proof after state update 7, T, < SetWitness(user)
14 grgli], T[] <= (7mp, 700), (T, T4)
15: end for
16: return my, T,,&.
17: end Procedure

state; AccountMap is a field for storing a hash mapping of all available account indices;
nbAccounts is a field for recording the number of managed accounts; 4 is a field for the
hash function used to construct the Merkle tree; SchemeQueue is a field for the transaction
transmission channel; and Witnesses is a field for storing circuit witnesses.This scheme
provides the NewOperator function to create an Operator instance, which initializes the
state and creates accounts. The readAccount function retrieves account information at a
specified index from the Operator instance. The UpdateState function updates the account
state of the Operator instance. The AttackDetect function detects possible attack behaviors
by calculating the rate of change in account credit limits to identify anomalies. These
functions aim to establish an Operator instance capable of efficiently handling account
state updates and attack detection.

Upon receiving a transaction, the Bio-Rollup node follows a rigorous verification and
auditing process to ensure the security and compliance of the transaction, shown in Fig. 5.
This process consists of four core steps, as illustrated in points 3.1 and 3.2 of Fig. 2. The
following provides a detailed explanation of these four steps:

Step 1: This step aims to verify the authenticity and validity of the transaction originator.
Cross-checking identity identification information such as digital signatures and public
keys ensures that only legitimate users can initiate transaction requests.
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Step 2: Before the transaction enters the verification phase, the Bio-Rollup node examines
the legitimacy of the current Bio-Rollup state. This includes checking whether the Bio-
Rollup state satisfies preset rules and constraints and identifying potential conflicts or
inconsistencies.

Step 3: The node performs detailed transaction validation. This includes, but is not
limited to, checking the validity, compliance, and authenticity of the transaction, as well as
the authenticity and integrity of the data and information involved in the transaction.

An attacker may utilize a dataset with varying legal sample proportions t after a valid
query to query the biometric recognition system. The Nonce serves as the sequence number
of the user’s request, and the function describes the user credit change with an increase in
request numbers, as outlined in Eq. (3):

N
C=> {(Dy & TX;.D,)+log(i+1)[(Dp & TX;.D,) — 1]}. (3)
i=1
The attack rate parameter & represents the likelihood of an attacker exhibiting malicious
behavior, and the calculation method can be found in Eq. (4):
C

f:l—ﬁ. (4)

Step 4: Once the transaction passes verification, the Bio-Rollup node updates the Bio-
Rollup state to reflect the transaction’s outcome. This update process follows strict rules
and standards to ensure that any changes to the state do not introduce any inconsistencies
or conflicts.

Once the batch size reaches the standard BatchSize B, all publicly and privately disclosed
parameters are recorded in a circuit. A zero-knowledge proof corresponding to the protocol
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is then generated from the circuit, with the computational cost proportional to the size of
the circuit. Bio-Rollup achieves transaction validation and user data settlement separation,
offloading a significant amount of computing and storage costs to an off-chain solution.

This effectively alleviates pressure on the blockchain. The specific process can be found in

Algorithm 3.

Algorithm 3 Zero-knowlege proof verification procedure.

Require: Zero-Knowledge Proof Provided by Bio-Rollup 7, 7.k, Verification Key Pro-
vided by Blockchain Layer one V.
Ensure: Verification result of zero-Knowledge proof.
1: Procedure ZeroKnowledgeProofVerify(mk, Tz, Vi)
2: Obtain verification result R <— Verify(V, mux, T )
3. if R reflects failed verification then
4 return Return an error indicating that the proof failed verification.
5. end if
6: UpdateStateOnLegder(z,)
7: return R
8: end Procedure

EXPERIMENTAL EVALUATION AND DISCUSSION

Experimental setup

The study employs the CIFAR-10 dataset, a standard benchmark for image recognition
algorithms. CIFAR-10 comprises 32x32 pixel, 3-channel images across ten classes, each
containing 6,000 images. The dataset consists of 50,000 training and 10,000 testing images.
The deep learning model for the biometric recognition system is based on the pre-trained
VGG16 model on the ImageNet-1000 dataset, achieving a top-1 training accuracy of 96%
and a top-1 test accuracy of 87% on the CIFAR-10 dataset. Table 4 shows the training
results under balance datasets in six neural network architectures, as a benchmark for
subsequent experiments. The system is deployed on the Bio-Rollup layer two scaling node
using Apache-TVM. The blockchain layer one is implemented as a Hyperledger Fabric
consortium chain on Docker, while layer 2 employs the Bio-Rollup scheme developed in
this study for auditing user queries. All experiments are conducted on a server equipped
with an AMD Ryzen 7 5800H processor, a Radeon graphics processor, 32GB of memory,
and an NVIDIA GeForce RTX 3050Ti GPU.

Dataset balance analysis

Table S7 presents the training results for other imbalanced datasets with different
proportions. We used the generalized additive model (GAM) to delve into the critical
factors affecting model performance. GAM, an extension of the generalized linear model,
incorporates a linear predictor term that is the sum of smooth functions of covariates. The
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Table 4 Training accuracy of the CIFAR-10 dataset under a balanced data set.

Percent Architectures 200 500 1000 5000 10000 20000
VGG16 23.3% 32.0% 49.3% 71.7% 75.8% 80.1%
Resnet18 37.7% 50.8% 57.1% 70.7% 73.5% 78.4%
0.1 Resnet50 38.6% 47.2% 57.1% 72.8% 75.3% 80.2%
Resnet101 33.2% 44.9% 57.4% 70.0% 71.6% 77.8%
Densenet121 45.7% 54.0% 62.7% 76.4% 78.5% 82.5%
Densenet161 43.3% 52.7% 61.3% 74.8% 78.7% 82.2%

GAM is specified as:

g() =X70+> fi(xy)+e, e ~N(0,0?). (5)
j

Here, u; = E(Y;) is the expected value of the response variable, Y;, which is assumed to
follow an exponential family distribution. X;* denotes a row of the incidence matrix for
parametric model components, ¢ is the corresponding parameter vector, f; represents the
jth smooth function of the covariate x;;, and ¢ is the error term with a normal distribution.
To reduce computational costs, smooth functions are often estimated using the reduced
rank smoothing approach.

Preliminary exploration suggested that the distribution of Y; for MPMs was similar to
the normal distribution. Consequently, we chose a GAM with a Linear regression and a
“identity” link function for model fitting and assessment.

The CIFAR-10 dataset was utilized to construct a generalized additive model (GAM).
The model parameters were configured as follows:

e Six artificial deep neural networks were selected, comprising VGG16, Resnet18,
Resnet50, Resnet101, Densenet121, and Densenetl161, with the number of network
layers serving as parameters across six levels: [16, 18, 50, 101, 121, 161].

e The training set size was categorized into six levels: [200, 500, 1,000, 5,000, 10,000,
20,000].

e The proportion of the training set classified as user template output by the model was
set at five levels: [0.1, 0.6, 0.7, 0.8, 0.9].

In this experiment, the CIFAR-10 dataset was employed to construct a GAM. The
model parameters were configured as follows: the GAM was chosen for data analysis due
to its capability to handle continuous, discrete, and categorical data with flexibility. The
model’s complexity was effectively controlled, and the risk of overfitting was reduced using
regularized smoothing parameters, while maintaining strong interpretability by clearly
illustrating the impact of each predictor variable.

A summary of GAM is shown in Table 5. The GAM utilized a normal distribution as the
link function, conforming to standard statistical assumptions and accurately capturing the
data’s characteristics. The model’s effective degrees of freedom were substantial, reaching
11.5074, indicating the extensive use of degrees of freedom to create a complex model
structure that could delve into nonlinear effects. The log-likelihood ratio, AIC, and AICc
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Table5 The summary of the GAM model.

Distribution NormalDist AIC 42253.8316
) Link Function IdentityLink AICc 42255.861

LinearGAM Effective DoF 11.5074 GCv 0.0043
metrics Log Likelihood —21114.4084 Scale 0.0038

Number of Samples 180 Pseudo R-Squared 0.9043
Feature Function Lambda Rank EDoF P>x
s(0) [285.2329] 20 4.2 1.60e—03
s(1) [2.4758] 20 55 1.1le—16
s(2) (8.9639] 20 1.8 1.11e—16
intercept 1 0.0 1.11e—16

values were all low, suggesting that the GAM achieved a good balance between data
fitting and the avoidance of overfitting. The generalized cross-validation (GCV) value of
0.0043 and the scale value of 0.0038 indicated that the model appropriately incorporated
nonlinear components without overfitting or underfitting, and closely fit the data. The
pseudo R-squared value of 0.9043 demonstrated that the model could explain most of the
variability in the data, confirming the suitability of the GAM. The significance test results
for the feature functions and the intercept were highly significant, further highlighting the
GAM’s superior fitting performance and predictive power.

The fitting results of the GAM on the CIFAR-10 dataset indicate that the training
accuracy is significantly influenced by the neural network architecture, training set size, and
training set proportion. As demonstrated by the GridSearch method predictions in Fig. 6C,
while the model depth increases from 16 to 161, a tenfold expansion, the improvement
in accuracy is not substantial. Conversely, the model’s accuracy is significantly enhanced
with an increase in training set size, consistent with prior research. Moreover, the model’s
accuracy decreases as dataset imbalance increases, as shown in the Fig. 6C. Considering
that typical users tend to query data related to themselves, such as registered biometric
templates, rather than other data, the impact of imbalanced datasets on model training
accuracy is minimal. Therefore, by analyzing the balance of users’ dataset acquisitions, one
can assess their query preferences and dataset quality.

Performance comparison analysis

The batch standard for generating zero-knowledge proofs is B = [10, 25, 50, 75, 100].
Simulated users query the biometric recognition system at an interval of 20 ms. Table 6
shows that the proof computation volume of the prover increases with the size of the
circuit. Although the volume of the Groth16 proof computation is related to the public
input volume, the number of public inputs in the circuit is significantly less than the
number of secret inputs, which can be disregarded. Therefore, the Groth16 protocol’s
proof computation volume depends on the scale of multiplication and connection gates
in the circuit, while the PlonK protocol’s proof computation volume is related to the scale
of multiplication and addition gates. In summary, both protocols’ proof computation
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Table 6 Computing scale of zero knowledge proof protocols.

Protocol Proving computing Verifying computing
Grothl6 19770« B E,,4942 B E, 3P,2%BE,
PlonK 66375%BxE, 2P, 18E,
20000
18479
175001 3 Plonk 16&18
15000 securingCNN 14550 14555
,.g 12500 11153
‘:.c:’ 10000 - 8826
F 75001 7500
5000 1 4031
2500 2098 H 1625 2332 2593
LN T
oL 249 i 11 , :
10 25 50 75 100
BatchSize

Figure 7 Comparison of efficiency between Bio-Rollup and SecuringCNN.
Full-size Gal DOI: 10.7717/peerjcs.2268/fig-7

volumes will increase with the size of the circuit, so placing the proof computation process
in a second-layer scaling service can reduce the blockchain’s computational burden.

As depicted in Fig. 7, through a comparative experiment of overall efficiency among
different B, the average efficiency of Bio-Rollup based on Groth16 reaches approximately
five times that of PlonK protocol and about 11 times that of SecuringCNN scheme.
Furthermore, even if Bio-Rollup is implemented using the PlonK protocol suitable for
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multi-circuit operations, its average efficiency remains approximately 2.2 times that of
SecuringCNN scheme.

The operational expenses of Bio-Rollup are derived from the generation of zero-
knowledge proofs by the second-layer scaling service and their verification by on-chain
smart contracts. Equations (6) and (7) illustrates the cost T of SecuringCNN and Bio-

Rollup:
Tsec cNN = TFeature Extracting + TTamplate Matching (6)
Tgio Rollup = TProving + TVerifying . (7)

In comparison to SecuringCNN, Bio-Rollup does not disrupt the deployment of
biometric recognition systems. Rather, it enhances communication with second-layer
scaling services through an additional interface. Blockchain prioritizes external system
access, input data, and behavior decisions through CA authorization, offline auditing,
and zero-knowledge proofs rather than relying on complex feature extraction processes to
ensure computing legality. This approach enables blockchain to concentrate on achieving

consensus.

Privacy attacks blocking experiment and analysis

Current privacy attacks are predominantly query-based, necessitating the continuous
generation of input for the victim model in the sample space. These inputs, when combined
with the victim model’s outputs, form a transfer dataset used to train a surrogate model or
analyze the data for privacy theft. However, legitimate users typically do not generate many
queries that significantly deviate from registered classification labels, which can serve as a
basis for determining whether a user is suspected of engaging in privacy attacks. Data set
imbalance experiments indicate that when ¢ exceeds 0.5, the parameter does not contribute
to model training, hence setting the suspected attack threshold at £ = 0.5 is appropriate.

The horizontal axis of Fig. 8 represents the number of system queries made by the user,
denoted as N. The vertical axis represents &, and the curve depicts how & changes with the
number of user queries under different legal sample proportions t.« represents the number
of legitimate queries the corresponding account makes to the system before launching an
attack.

Setting o = 500 (Fig. 8A), the probability of an attacker conducting a suspected attack
increases with the proportion of fabricated data. At 588 visits, the dataset with a proportion
of t =10% was blocked by Bio-Rollup (solid represents system visits that have been
implemented, while dashed represents suspected attacks that were intended but blocked
due to lack of intent). At this point, the suspected attackers obtained approximately 90
and 70 pieces of confidence data (i.e., unauthorized access) respectively. The dataset with a
proportion of t =50% was blocked by Bio-Rollup at 619 visits. The dataset with a proportion
of t =70% was blocked by Bio-Rollup at 822 visits. Extensive experiments revealed that only
when the AttackRate value of the dataset with a proportion of + =90% finally converged
between 0.4 and 0.5 without being blocked did Bio-Rollup successfully block most malicious
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attackers. However, if an attacker with a proportion of t =90% visited 5,000 times, they
would obtain approximately 450 pieces of confidence data, implying they could obtain
about 9% of the confidence data from 5,000 visits. In this scenario, the so-called attacker
requires many legitimate samples for cover, and Bio-Rollup can set longer visiting intervals,
effectively “transforming” these non-malicious attackers. Setting « =1,000, as shown in Fig.
8B, the situation is similar to & =500 and is not further elaborated. Additionally, attackers
may conduct attacks at any time, as shown in Fig. 8C. Setting t =50%, B =10, starting
from privacy attack requests with o =[100,500,1000,3000,5000], these five conditions were
blocked by Bio-Rollup at visits [144,619,1212,3491,5868] respectively.

Bio-Rollup can successfully block most malicious attackers and transform non-malicious
potentially convertible attackers. Considering both the scale of fabricated data used for
attacking B and the time point for carrying out privacy attacks o, we can model & based
on these two parameters. At this point, the range of £ is given by Eq. (8):

[ﬂ +log[ Ty (i+1) ﬂ+1og1‘[fiN_ﬂ+a(i+1)}

N ’ N ®

Common privacy attacks are analyzed using Eq. (8). In model extraction attacks, the
accuracy of attacks against multilayer perceptron(MLP) models depends on the size of the
model. g is the number of queries made by the attacker, and k is the number of model
parameters. According to Tramer et al. (2016), as a factor, the average query time can
basically achieve the effect of accurately restoring model parameters. That is, the number
of queries is half the size of the model parameter. If the attacker can maintain & within
the minimum value in the range of Eq. (8), to perform 100 million (e =100,000,000)
queries for the VGG-16 model with a parameter size of half, an account needs to make
approximately 100 million legal queries in advance.

Suppose a potential attacker can maintain £ at its minimum value &pi,. At this point,
considering the data balance analysis, let the size of the dataset Trainset be s, then s = o + 8.
Let the proportion of user queries classified as their registered biometric template results
be t, then &y, is expressed as a function £ (s, t) as follows:
_logl'(s+1) —logD'(st +1)+s(1 —1t)

s

£(s,1) 9)
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Figure 9 Different sample sizes for privacy leak monitoring.
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where I'(x) is the Gamma function, and § (6 > 1) is the inverse decay factor, adjusted to
control the sensitivity of privacy monitoring. The smaller the value of §, the higher the
sensitivity in monitoring small samples. In this study, § is set to log(smax)-

As shown in Fig. 9, a threshold parameter E is set to quantify the degree of suspected
privacy leakage risk. Within this framework, when &(s,t) > E, it can be determined that
there is a high suspicion of privacy leakage. In Fig. 9, the value of E is set to 0.5 to evaluate
the effectiveness of the £(s,¢) function in privacy leakage monitoring. The function was
tested on sample datasets of varying sizes, containing 200, 500, 1000, 5000, and 10,000
samples, respectively. The results show that under the condition of small-scale samples,
the value of £(s,t) did not trigger the warning mechanism; however, as the sample size
increased, especially when the number of samples reached 10,000, the setting of E =0.5
successfully triggered the alert, indicating that the function demonstrates significant
efficacy in identifying potential privacy attacks. This finding emphasizes the importance
of the reputation decay factor in revealing and preventing privacy leakage, particularly for
accounts that have already conducted many query operations and may be subject to account
hijacking or privilege abuse. This mechanism allows potential privacy attack behaviors to
be effectively identified and controlled, significantly reducing the risk of privacy leakage.

In conclusion, the experiments and analyses conducted above confirm the effectiveness
of Bio-Rollup in preventing common privacy attacks. Currently, there is a shortage of
blockchain security frameworks for privacy attacks due to the lack of publicly known
techniques such as model extraction, member inference, and model inversion. This
article proposes a security framework based on a two-layer scalability-focused consortium
blockchain that utilizes biometric recognition technology.

CONCLUSION

This article investigates the application of blockchain technology in biometric recognition

systems and introduces an innovative two-tier scaling solution, Bio-Rollup. By integrating
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biometric recognition with blockchain, Bio-Rollup effectively decouples the tight
integration of biometric recognition and blockchain in existing solutions, significantly
enhancing the efficiency of model deployment and upgrades. The solution’s lightweight
auditing mechanism ensures model integrity while analyzing user query intent to prevent
privacy leaks. Moreover, the definition of private data exposure ranges and the separation
of the model from the blockchain architecture significantly reduce the risk of model
parameter leakage. The application of zero-knowledge proof technology further safeguards
participants’ sensitive information.

Regarding scalability, transaction volume testing demonstrates Bio-Rollup’s excellent
scalability in large-scale systems. As the number of transaction-proof batches per 20 ms
increases from 10 to 100, the transaction confirmation time increases by only 15%, far below
linear growth, validating its robust scalability. Regarding privacy protection, Bio-Rollup
implements multiple measures, including advanced encryption technologies, to ensure
the secure transmission and storage of sensitive biometric data. The system adheres to the
principle of data minimization, collecting only the minimum data necessary to achieve
functionality. It emphasizes the importance of user consent, ensuring that users have
explicit consent for collecting and processing their biometric data.

Regarding legal compliance, Bio-Rollup complies with global data protection regulations
such as GDPR, ensuring that data processing activities meet legal standards and respect
the rights of data subjects. Regarding responsibility and ethics, Bio-Rollup follows ethical
guidelines such as fairness and transparency. Regarding technical reliability, Bio-Rollup
aims to reduce misidentification and denial of service incidents, ensuring the error rate
remains acceptable.

In the future, we plan to delve deeper into artificial intelligence’s privacy and security
risks and improve the Bio-Rollup solution to become a broader privacy protection security
framework. We will research universal privacy attack detection and prevention mechanisms
for AI, explore more advanced cryptographic techniques, and investigate the application
of Bio-Rollup in a broader range of scenarios, such as cross-domain authentication and
telemedicine. Additionally, we will promote interoperability between different blockchain
platforms, enhance user control over personal data, and automate data management
using smart contracts to ensure transparency and compliance. Interdisciplinary research
will collaborate with multidisciplinary experts to assess the social and ethical impacts of
technology. Research on applying Bio-Rollup in edge computing environments will further

reduce data transmission and mitigate privacy risks.

APPENDIX

Table 7 displays the training accuracy of six artificial neural networks on the Cifar-10
dataset with different proportions of imbalance.
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Table 7 Training accuracy of CIFAR-10 dataset under imbalanced dataset.

Percent Architectures 200 500 1,000 5,000 10,000 20,000
VGG16 19.5% 19.6% 21.2% 25.3% 39.3% 47.9%
Resnet18 18.8% 13.7% 19.5% 33.6% 47.2% 53.1%
0.6 Resnet50 14.9% 18.1% 16.8% 34.1% 43.7% 54.3%
Resnet101 14.6% 17.9% 21.0% 38.4% 45.2% 52.5%
Densenet121 16.1% 20.3% 18.2% 37.8% 47.7% 55.6%
Densenet161 18.8% 15.1% 25.3% 43.2% 49.3% 56.1%
VGG16 15.4% 18.8% 20.2% 33.7% 31.3% 32.0%
Resnet18 14.5% 17.6% 23.3% 33.4% 39.8% 51.8%
0.7 Resnet50 14.8% 14.2% 18.3% 35.3% 41.9% 50.7%
Resnet101 16.5% 18.0% 16.4% 32.9% 42.7% 49.5%
Densenet121 17.3% 19.4% 21.3% 37.8% 46.2% 54.6%
Densenet161 16.3% 17.5% 26.4% 37.5% 44.4% 52.5%
VGG16 16.9% 16.5% 17.4% 26.9% 29.3% 38.5%
Resnet18 10.7% 16.1% 19.9% 28.6% 40.0% 44.6%
0.8 Resnet50 10.9% 17.5% 18.2% 25.8% 35.5% 44.6%
Resnet101 11.2% 14.6% 20.1% 25.5% 37.9% 44.4%
Densenet121 12.3% 18.5% 18.6% 34.9% 40.1% 47.5%
Densenet161 10.6% 14.5% 21.2% 30.3% 38.0% 49.0%
VGG16 14.8% 16.1% 14.4% 22.4% 31.0% 32.8%
Resnet18 11.4% 11.1% 15.7% 23.2% 27.7% 35.3%
0.9 Resnet50 10.2% 18.2% 17.1% 19.3% 22.9% 31.8%
Resnet101 12.8% 11.6% 18.1% 21.1% 24.1% 31.5%
Densenet121 15.6% 11.0% 15.9% 23.5% 29.2% 33.6%
Densenet161 12.0% 14.7% 16.9% 22.6% 27.8% 36.2%
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