Submitted 28 September 2023
Accepted 24 July 2024
Published 20 September 2024

Corresponding authors
Muhammad Rehan Naeem,
rehansajid502@gmail.com

Rashid Amin, rashid.sdn1@gmail.com

Academic editor
Leandros Maglaras

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.2264

© Copyright
2024 Naeem et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Harnessing Al and analytics to enhance
cybersecurity and privacy for collective
intelligence systems

Muhammad Rehan Naeem', Rashid Amin', Muhammad Farhan?,
Faiz Abdullah Alotaibi’, Mrim M. Alnfiai*, Gabriel Avelino Sampedro”® and
Vincent Karovi¢’

! Department of Computer Science, University of Engineering and Technology Taxila, Taxila, Punjab, Pakistan

%School of Science and Engineering, School of Science and Engineering, Al Akhawayn University in Ifrane,
Ifrane, Ifrane, Morocco

? Assistant Professor, Department of Information Science, College of Humanities and Social Sciences,
King Saud University, Riyadh, Saudi Arabia

* Department of Information Technology, College of Computers and Information Technology,
Taif University, Taif, Saudi Arabia

® Faculty of Information and Communication Studies, University of the Philippines Open University,
Los Banos, Philippines

¢ Center for Computational Imaging and Visual Innovations, De La Salle University, Taft Ave, Malate, Manila,
Philippines
7 Faculty of Management, Comenius University in Bratislava, Odbojarov, Bratislava, Slovakia

ABSTRACT

Collective intelligence systems like Chat Generative Pre-Trained Transformer (Chat-
GPT) have emerged. They have brought both promise and peril to cybersecurity and
privacy protection. This study introduces novel approaches to harness the power of arti-
ficial intelligence (AI) and big data analytics to enhance security and privacy in this new
era. Contributions could explore topics such as: leveraging natural language processing
(NLP) in ChatGPT-like systems to strengthen information security; evaluating privacy-
enhancing technologies to maximize data utility while minimizing personal data
exposure; modeling human behavior and agency to build secure and ethical human-
centric systems; applying machine learning to detect threats and vulnerabilities in a
data-driven manner; using analytics to preserve privacy in large datasets while enabling
value creation; crafting Al techniques that operate in a trustworthy and explainable
manner. This article advances the state-of-the-art at the intersection of cybersecurity,
privacy, human factors, ethics, and cutting-edge Al, providing impactful solutions
to emerging challenges. Our research presents a revolutionary approach to malware
detection that leverages deep learning (DL) based methodologies to automatically
learn features from raw data. Our approach involves constructing a grayscale image
from a malware file and extracting features to minimize its size. This process affords
us the ability to discern patterns that might remain hidden from other techniques,
enabling us to utilize convolutional neural networks (CNNs) to learn from these
grayscale images and a stacking ensemble to classify malware. The goal is to model
a highly complex nonlinear function with parameters that can be optimized to achieve
superior performance. To test our approach, we ran it on over 6,414 malware variants
and 2,050 benign files from the Mallmg collection, resulting in an impressive 99.86
percent validation accuracy for malware detection. Furthermore, we conducted a

How to cite this article Naeem MR, Amin R, Farhan M, Alotaibi FA, Alnfiai MM, Sampedro GA, Karovi¢ V. 2024. Harnessing Al and
analytics to enhance cybersecurity and privacy for collective intelligence systems. Peer] Comput. Sci. 10:e2264 http://doi.org/10.7717/peerj-
€s.2264

https://peerj.com/computer-science
mailto:rehansajid502@gmail.com
mailto:rashid.sdn1@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2264
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2264
http://doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

classification experiment on 15 malware families and 13 tests with varying parameters
to compare our model to other comparable research. Our model outperformed most
of the similar research with detection accuracy ranging from 47.07% to 99.81% and
a significant increase in detection performance. Our results demonstrate the efficacy
of our approach, which unlocks the hidden patterns that underlie complex systems,
advancing the frontiers of computational security.

Subjects Artificial Intelligence, Security and Privacy, Neural Networks
Keywords Cybersecurity, ChatGPT, Privacy and security, Deep learning

INTRODUCTION

According to the 2019 McAfee Labs Threat Report, around 70 million new malware

is circulating, with 1 billion instances of harmful software. Such a volume necessitates
malware detection and categorization that is both effective and efficient. The situation
becomes even direr when we include the 25% increase in assaults attributable to destructive
malware or malware that may harm hardware components. A technique based on deep
learning (DL) is beginning to be employed as a new paradigm to remove the inadequacies of
previously used methods for identifying and classifying malware. On the other hand, it has
not been used to a significant degree in cyber security, particularly in the identification of
malware. DL is a subfield of artificial intelligence that operates via computer simulations of
neural networks. Learning from examples and using several hidden layers is how DL works.
The most effective deep neural network architectures for natural photo classification are
convolutional neural networks (CNNs) and fully connected feed-forward neural networks
(Azab & Khasawneh, 2020). Deep neural network architectures, loosely inspired by cortical
visual information processing hierarchies, have seen increasing success in recent years due
to more powerful computing hardware, larger datasets, and improved training algorithms,
which have enabled the training of much deeper networks while avoiding overfitting
problems. Despite its efficacy, the high computational cost of training and executing
deep networks has forced the development of specialized hardware accelerators and new
computing paradigms to enable deep networks to be employed in real-time practical
applications (Obaidat et al., 2022). Spiking neural networks (SNNs) are a promising
candidate for enabling such acceleration. A new optimization method for spiking deep
architectures, including fully connected feed-forward networks and CNN, can outperform
previous spiking solutions while requiring fewer operations and latencies than traditional
computing methods.

The term Internet has evolved from connecting personal computers to a network
that includes various devices. Traditional microdevices, such as sensors and controllers,
can only execute function-specific activities based on pre-defined rules. These “things”
become “smart” and can now do complicated tasks by replacing function-specific devices
with CPU-controlled ones and enabling connectivity among them through the Internet.
Furthermore, users may simply receive and control their reported data by activating cloud
services on these smart devices. Despite these benefits, more intelligent devices have more

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

significant vulnerabilities due to increased hardware and software complexity and more
opportunities for prospective adversaries to attack them (Zhu et al., 2021).

Furthermore, creating universal standards for the numerous types of Internet of Things
(IoT) hardware and software platforms is challenging. As a result, [oT systems are often
unsafe. Finally, even though IoT devices are more intelligent than traditional sensors, they
lack the computing power to employ standard PC-based security solutions. Cloud services
may be used to build security protection for IoT devices in specific circumstances, such as
malware detection.

Explosive malware strains constitute a significant danger to cybersecurity and can result
in substantial financial losses for people, societies, and governments. Malware assaults
on IoT devices are becoming more common. Researchers must investigate more efficient
methods for identifying malware’s harmful intent and attack patterns and countermeasures
(Tuncer, Ertam ¢ Dogan, 2020). Code repetition and obfuscation methods are used to
create several malware versions. The obfuscation approach employs encryption, code
substitution, and other techniques to alter the look of existing malware code, resulting
in the emergence of new malware versions with the same destructive objectives and
characteristics as the original virus. A family is a group of malware samples like this. As a
result, they were classifying malware families to aid in rapidly analyzing malware behavior
and functioning. In recent years, machine learning has advanced incredible computer
vision and natural language processing. Several researchers have also employed machine
learning to solve malware detection and classification problems. Although malware analysis
approaches based on classical machine learning have produced favorable results, feature
engineering takes time and money. Malware visualization is a crucial aspect of malware
investigation. Grayscale pictures are used in almost all static analysis approaches based on
malware visualization (Naeem et al., 2022). Previous work in malware classification has
examined detecting malware samples at both the file and family levels. A family refers
to a group of malware variants that originate from the same original virus source code.
Malware authors often create many variants of a single virus through techniques like
code obfuscation that alter the code’s appearance but maintain similar functionality and
behavioral characteristics as the original. Classifying malware at the family level can aid
in analyzing common traits shared across variants of a virus. On the other hand, a single
low-order feature representation may make it difficult to find hidden characteristics in a
virus family. Existing classification approaches do not necessarily function effectively for
all families in some datasets, particularly imbalanced datasets.

Traditional machine learning has been widely employed to solve various complicated
real-world issues, including picture categorization, particularly for photos with nested
and overlapping areas. The non-linear features or relationships among the pixels make
categorizing such pictures difficult. Traditional classification approaches rely on learning
hand-crafted features and fitting them into a machine-learning model. For example,
when the number of training instances is restricted, a support vector machine (SVM)
with a non-linear kernel function is most utilized. However, because of the non-linear
correlations between the collected intensity values and the related object, the performance

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

of SVM or similar non-linear methods is not good, making classification more difficult for
such approaches (Yadav et al., 2022).

On the other hand, hand-crafted features can effectively represent an image’s various
attributes, making them compatible with the data being analyzed. However, in the case
of actual data, many features may be insignificant, making it difficult to fine-tune the
balance between robustness and discriminability, as the set of ideal features varies greatly.
Furthermore, human engagement in feature creation significantly impacts the classification
process, as generating hand-crafted features necessitates a high level of topic expertise. DL
has been developed and shown tremendous success for picture classification in recent years
to counter the constraints of hand-crafted feature design. They outperformed previous
approaches due to their ability to learn automatically- and low-level features (Mallik,
Khetarpal ¢ Kumar, 2022). For example, CNNs extract feature maps invariant to local
changes in their input. However, due to their greater depth, most DL approaches suffer
from the disappearing or ballooning gradient issue.

Malware detection poses significant challenges due to the sheer volume and evolving
nature of threats. According to security reports, over 1 billion new malware instances now
circulate annually. Addressing this deluge necessitates detection methods that are highly
accurate, efficient, and able to identify unknown (“zero-day’’) malware variants. Traditional
static and dynamic analysis approaches have limitations. Static analysis is susceptible to
obfuscation techniques, while dynamic analysis incurs high computational overhead from
running each sample. Additionally, existing machine learning-based methods rely on
manually extracting features, which is an expert-intensive process that risks omitting
important patterns.

To overcome these challenges, this study proposes a novel deep learning-based approach
for malware detection and classification. By representing malware binaries as grayscale
images and leveraging convolutional neural networks, we hypothesize that discriminative
features can be automatically learned from raw data in an end-to-end manner. This obviates
the need for manual feature engineering while enabling the discovery of subtle patterns.
Through a series of experiments, we aim to validate that our method achieves high detection
accuracy comparable to or exceeding other techniques, while also offering computational
efficiency gains. If successful, this research could advance the state-of-the-art by providing
an effective and scalable solution for addressing the growing malware problem. Detection
performance in malware analysis refers to both the accuracy of detection as well as the
computational efficiency and speed of the detection method. An ideal approach aims to
maximize accuracy while minimizing the required time and system resources for inference.

This article’s essential contribution is to use cutting-edge DL techniques to improve
accuracy and learning speed. Various combinations of epochs, batch size, learning rate,
and classes were utilized to investigate validation and test accuracy. Thus, we discover the
optimal combination with high test and validation accuracy and minimum loss.

LITERATURE REVIEW

Static and dynamic analysis are the two most used approaches for detecting and classifying
malware. To mine the program, static analysis frequently employs lexical analysis, parsing,

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

control flow, and data flow analysis techniques. Signature-based malware detection is a
standard static malware detection technology used by prior industry communities. It can
detect whether an unknown executable file is a known virus. This is done by looking for
a matching signature in the harmful code database. Based on certain personally defined
traits, this detection system generated a unique signature identification for malware (Zhang
et al., 2021). On the other hand, signature-based approaches are restricted in their ability
to identify unknown malware since unknown malware may have novel characteristics not
captured by signatures. Furthermore, these signatures contain a set of pre-programmed
harmful properties. As a result, if the virus undergoes any form of encryption or obfuscation,
it will have a high chance of evading signature-based detection. Dynamic analysis entails
running a program. This allows watching how the program behaves in the system. Unlike
static analysis, dynamic analysis allows watching a program’s actual behaviors (Ren, Chen
¢ Lu, 2020). It is usually used after static analysis has halted, either owing to obfuscation
and packing or because all other static analysis approaches have been exhausted.

Both strategies have their own set of benefits and drawbacks. On the one hand, static
analysis is faster, but it suffers from code obfuscation, a method employed by malware
developers to hide the program’s destructive intent. On the other hand, code obfuscation
methods and polymorphic viruses fail in dynamic analysis because they examine a
program’s runtime behavior by monitoring it while it is running. However, each malware
sample must be run in a secure environment for a certain period to monitor its activity,
which is a lengthy procedure. Furthermore, the environment may change significantly
from the actual runtime environment, and malware may behave differently in the two
contexts (Unver ¢ Bakour, 2020). In other cases, malware operations may not be initiated
and hence not reported.

Malware classification using deep learning

Categorizing malware helps trace computer security assaults. Static analysis methods
are rapid in classification but useless, particularly malware that employs packing and
obfuscation; dynamic analysis approaches are more ubiquitous but have high classification
costs. To overcome these challenges, the author offers Malscore (Xue et al., 2019), a
classification approach based on probability scoring and machine learning. CNN with
pooling layers was used to analyze grayscale pictures, while variable n-grams and machine
learning were used to analyze application programmer interface (API) call sequences.
Malscore’s mix of static and dynamic analysis sped up static analysis by employing CNN
in image recognition and was resistant to dynamic analysis obfuscation.

Permissions, intents, API calls, and system calls are obtained and used to train classifiers
that develop models for classifying testing dataset samples in machine learning-based
malware detection systems. Many advantages of classification-based malware detection
include the fact that it does not require a large amount of labeled data, it can identify
unknown malware, and it allows you to mix and match methodologies (Ding et al., 2020;
Viu et al., 2020). However, insufficient model training may occasionally result in incorrect
predictions. Feature engineering and selecting vital qualities is also a crucial responsibility.
Both feature engineering and attribute representation need extensive knowledge and

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

experience. DL-based methods have been created to overcome these constraints. Neural
networks are capable of automatically retrieving significant characteristics. It is also not
necessary to have extensive domain-specific expertise. Malware visualization is a method
for people to assess the factors of malware visually. In previous publications, binaries have
been depicted as grayscale pictures, byte plots, image matrices, photographs, and entropy
graphs. Other visualization-based techniques include self-organizing maps to display
viruses, dynamic analysis to portray the overall flow of a program graphically, visualization
of the output provided by various malware detection programs, and malware clustering
using image processing techniques (Albahar, ElSayed ¢ Jurcut, 2022). An image-based
malware classifier is agnostic to file type; it aids in graphically representing distinctive
aspects of malware that may identify it from a benign file and detecting differences between
different malware families with less domain-specific expertise. In most situations, the
viewed pictures are sent into the neural network, which then creates decision models
for the detectors. Although several malware visualization approaches exist, issues such
as real-time detection, low detection accuracy, and delayed detection of new malware,
including zero-day vulnerabilities, continue to exist (Yan, Qi & Rao, 2018). Our research
examines three types of pictures for malware visualization: grayscale, red green blue
(RGB), and Markov images. While grayscale and RGB pictures differ in their compression
mechanisms, implying a varied quantity and quality of original virus information, a Markov
image decreases the representation’s dimensionality.

Malware classification using static and dynamic methods

Static and dynamic characteristics are two types of features that may be derived from
malware. Static characteristics are collected from malware without it being executed, as
the name implies. Dynamic characteristics are acquired by implementing programs in a
virtual environment and examining system call trails or network activities (Zheng et al.,
2022). Two forms of static analysis exist Static code and non-code analysis. Static code-
based analysis approaches investigate how a program works. It is done by deconstructing
the executable and extracting characteristics. Control flow graph analysis is the most
used static code-based approach (Venkatraman, Alazab & Vinayakumar, 2019). Following
disassembly, the malware’s control flow is derived from the sequence of instructions, and
graphs are created to define it uniquely. Non-code static approaches include n-grams,
n-perms, hash-based techniques, Portable Executable (P.E.) file structure, and signal
similarity-based techniques. The first two approaches compute n-grams or n-perms on the
binary’s raw bytes or disassembled instructions. The malware is then classified based on
the features extracted (Wu et al., 2018).

However, the computationally costly feature-matching procedure across the relatively
large dimensionality of the n-gram feature space makes n-gram-based techniques less
scalable. The author suggested feature hashing to decrease the high-dimensional feature
space in malware analysis and applied it using n-gram-based features. One of the many
hash-based techniques is a typical approach for computing context-triggered piece-wise
hashes on raw binaries (Chen, 2020; Yadav ¢ Tokekar, 2021). In the mentioned section,
the author employs the P.E. file format to calculate a similarity hash and discriminative

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

properties can be derived from an executable’s P.E. structure. Approaches involving
picture similarity transform malware binaries into digital images, calculating similarity
characteristics through image processing techniques. The conventional method of dynamic
analysis involves executing malware in a controlled environment to observe its behavior
during execution (Zheng & Zhang, 2022). To construct malware models, authors create
behavioral profiles or graphs, with some projects generating a human-readable report
of the execution flow and extracting data from it. Recent studies employ deep learning,
recurrent neural networks (RNNs), convolutional neural networks (CNNs), and hybrid
models for malware detection (Bensaoud ¢ Kalita, 2022). While in many works, malware
binaries are converted to digital pictures and processed through a CNN for identification,
in this research, CNNs are utilized for malware detection after visualizing it in the frequency
domain. The proposed malware detection technique offers the benefits of static analysis
approaches while addressing drawbacks like high time complexity, poor scalability, and
excessive feature selections from prior work.

Bouchaib ¢ Bouhorma (2021) developed a framework for malware classification based
on a CNN architecture to ensure effective detection and classification. They recommend
incorporating the Synthetic Minority Oversampling Technique (SMOTE) algorithm to
enhance the framework’s functionality. The proposed technique involves converting binary
data to grayscale pictures, balancing images with the SMOTE method, and training a CNN
to identify and distinguish various malware families. The authors utilize a technique known
as transfer learning (TL) based on the VGG16, with prior training on an extensive dataset
benchmark. According to their findings, the suggested architecture effectively addresses
the decreasing efficacy of CNN models caused by unbalanced malware families.

The author presents a technique for translating compiled malware codes into visual
images, acquiring grayscale images through an algorithm for visual malware categorization.
Classification into respective forms of malware is achieved by feeding grayscale pictures
into deep convolutional neural networks, leading to the desired results. The author
introduces a DL-based graphical malware multiclassification architecture for classifying
individual, unbalanced families of malware picture samples. The suggested method’s
primary contribution is its cost-effectiveness in handling imbalanced malware while
achieving acceptable detection accuracy without the need for data augmentation or
costly feature engineering (EI-Shafai, Almomani & AlKhayer, 2021). Extensive tests using
a well-known imbalanced benchmark dataset demonstrate the outstanding classification
skills and competence of the suggested architecture.

Komatwar & Kokare (2022) develops a technique that operates solely on raw bytes,
eliminating the need for disassembly or execution, making it more efficient than both
static and dynamic analysis. This approach can detect similarities across packed malware
variants, a capability lacking in static analysis methodologies like control flow graph
analysis. The structure of sealed malware variants remains unchanged after packing.
While the approach does not necessitate redesigning for specific operating systems, both
analysis-based procedures need to be rebuilt. In convolutional cascade neural network
(CCNN), a claim is made for the automated expansion of visualization characteristics

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 7124

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

derived from running files, enabling malware categorization. However, the number of
CNN techniques is achieved through the correct form of planned balanced data.

To assess the performance of different malware detection methods, a comparison table
was created, highlighting key parameters such as feature extraction techniques, classification
algorithms, accuracy, computational complexity, and dataset size. The table provides a
comprehensive analysis of various papers in the field, allowing for a comparative evaluation
of the different approaches. For instance, the proposed method demonstrated exceptional
performance, achieving a validation accuracy of 99.86% and outperforming most similar
research. This comparison table serves as a valuable resource for understanding the
strengths and limitations of different malware detection methodologies, aiding researchers
in making informed decisions for their studies and applications as shown in Table 1.

In comparison, the malware image’s dataset has an exceedingly unbalanced nature.
However, some malware families only have a limited number of versions, despite certain
malware families having variants. As a result, CNN models that have been used and trained
in the past may not perform exceptionally well in this situation. As a result, CCNN was
used for unbalancing malware families in the present research, which was motivated by the
abovementioned issues.

MATERIALS & METHODS

This research section explains how to classify malware using a DL algorithm. To classify
malware into several classes, a novel approach is proposed. Malware byte code is converted
into grayscale images using our proposed model. Figure 1 shows that grayscale images are
input into a DL model to identify and classify the malware family. Correct placement of
malware family used to get behavior and types of malware leads to developing anti-malware
products.

After converting byte code into grayscale images, we have a collection of malware families
according to their class and behavior. Grayscale images generated from byte code have no
fixed dimensions, making classification difficult. As a solution, we reduce the size of ideas
to 224 x 224 pixels. These images are normalized and ready for our proposed model as
input. A graphical representation of malware families is shown in Fig. S1. The collation of
binary files is collected using Eq. (1).

ZBﬁlei. (1)
=1

The file size is divided by fixed image width, i.e., 1,024. The image height is derived using
Eq. (2).

(2)

BfileSi
imageHeight = ’7 file zze—“

width

The image is converted from the data and taken in the image collection, as shown in
Eq. (3).

n
Zimgk = byte2image(imageHeight , width, Bfile;). (3)
k=1

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264#supp-2
http://dx.doi.org/10.7717/peerj-cs.2264

v9zeg'so-liead/z 122701 104 “19S “Indwo) ri9ad (¥202) °|e 1o waseN

ve/6

Table 1 Performance analysis of malware detection methods using different techniques and features.

Author name & year Feature extraction Classification technique Accuracy Computational Dataset
complexity size
Diehl et al. (2015) Deep Neural Networks, Spiking Neural ConvNets, DBNs Best performance on the MNIST database High Small
Networks
Singh et al. (2015) Optimization of Deep Neural Networks Adaptive Learning Rates Increased accuracy, reduced training time High Large
Clevert, Unterthiner & Hochreiter (2015) Exponential Linear Units (ELUs) Neural Networks Significantly improved generalization per- Low Large
formance
Balntas et al. (2016) Convolutional Neural Networks (CNN) Triplet-based Training Comparable extraction time to binary de- Low Medium
scriptors
Suetal. (2018) IoT Malware Detection Convolutional Neural Network 94.0% accuracy for good ware vs. DDoS Low Medium
malware
Vu et al. (2019) Deep Network, Image Transformation Convolutional Neural Network 99.14% accuracy on the testing set Medium Medium
Xiao et al. (2020) Malware Visualization, Automated Fea- SVM 99.7% (Mallmg), 100% (Microsoft) Medium Large
ture Extraction
Pinhero et al. (2021) Malware Visualization, Deep Learning Neural Networks 99.97% Medium Large
Mohammed et al. (2021) Malware Detection through Image Classi- Neural Network, ResNet 96% binary classification accuracy Low Large
fication
Atitallah, Driss & Almomani (2022) Deep Transfer Learning Fusion of CNNs Precision: 98.74%, Recall: 98.67% Medium Large
Nguyen et al. (2023) Generative Adversarial Networks (GAN) AC-GAN Discriminator Competitive with other machine learning Medium Medium
techniques
Proposed method Deep Learning, Convolutional Neural Grayscale Image Extraction 99.86% validation accuracy, outperformed ~ Low Large

Networks

most similar research

80URI0S JeindwioD) rieed

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Conversion of Convert byte files . Generate Image
. . . . Arrange 2D image "
Read byte files — Hexadecimalinto —— into — 5 — according to target [—E2¢
.) of 8 bit vector g
decimal data 8 bit vector class

Figure 1 Byte files to the image conversion process.
Full-size G4l DOI: 10.7717/peerjcs.2264/fig-1

The images are resized using Eq. (4).

n
Zingk = imgresize(224,224,imgy). (4)
k=1

The histogram of the images is equalized using Eq. (5).

n
Zingqustk = histeq(imgRy.). (5)
k=1

We analyzed and categorized malware in a manner distinct from earlier efforts. To
overcome this issue, we employ CNN, an architecture for machine learning that uses
DL methods, as seen in Fig. S2. DL’s recent success in classification suggests it can classify
malware more accurately than SVMs. CNNs have proven to be highly effective at addressing
image processing challenges. Because of this, we transform the problem of categorizing
malware into one that involves the categorization of images and can be solved using CNN.
We develop a general architecture for malware classification based on a deep CNN as
opposed to the present methods. Initially, each hexadecimal representation was converted
to its decimal equivalent. As indices for a two-dimensional color map, utilize each unit’s
upper and lower nibbles. Thus, a dataset comprising images of malware is obtained. Each
picture is altered to accommodate 224 rows and columns. A dataset from 15 distinct classes
was used to train and validate 6,414 samples. Training set samples are processed using a
twelve-layered residual network. The model has two convolution layers, one max pooling
layer, etc. The detailed methodology of the proposed model is shown in Fig. S2.

A loss function is used to optimize a machine learning method. The loss, dependent
on training and validation data, is determined according to the model’s performance in
these two sets. It is the total number of errors created for each example in training or
validation sets. The loss value of a model reflects how well or poorly it performs following
each optimization cycle. The algorithm’s performance is assessed using an accurate metric
that is simple to comprehend. Following the model’s input parameters, a model’s accuracy
is frequently evaluated and represented as a percentage. It gauges how well the predictions
made by the model match the facts. One key aspect of our experimental methodology
was the decision to repeat the epochs with different batch size settings. This approach was
motivated by insights from prior research, which indicated that deeper neural network
architectures often benefit from using smaller batch sizes towards the later stages of training.
The rationale is that smaller batch sizes can help regulate overfitting by introducing more
noise and variability into the gradient updates, preventing the model from overly fitting to
the training data.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 10/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2264/fig-1
http://dx.doi.org/10.7717/peerj-cs.2264#supp-3
http://dx.doi.org/10.7717/peerj-cs.2264#supp-3
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

By systematically varying the batch size across multiple epochs, we aimed to uncover
the optimal balance between convergence and generalization. This strategy allowed us to
identify the hyperparameter configurations that not only minimized the training loss but
also resulted in superior performance on the held-out test data. The method for assessing
the model’s accuracy is given in the equation below in Eq. (6).

(True positive + True negative)

(6)

Accuracy = .
7 (True positive + True negative + False positive + False negative)

The study employed a robust experimental configuration featuring an Intel(R) Xeon(R)
CPU E5-2643 v3 @ 3.40 GHz processor equipped with 32 GB of memory. The operating
system utilized was Windows 10 Pro 22H2 with OS build 19,045.2364. Renowned for
its multi-core design and high-performance capabilities, the Xeon CPU is commonly
employed in servers and workstations. Complementing the setup, a Nvidia Quadro M4000
GPU with 8GB video memory, known for its substantial memory capacity and numerous
compute unified device architecture (CUDA) cores, was incorporated. This professional
graphics processing unit is well-suited for tasks involving machine learning and scientific
computing. It is imperative to ensure the compatibility of both hardware and software with
the specific demands of the experiment. The chosen hardware configuration, particularly
leveraging the graphics processing unit (GPU) for accelerated training in machine learning
tasks, is deemed suitable. Additionally, the precise version and build number of the
Windows operating system are critical considerations to guarantee compatibility with the
employed software.

RESULTS AND DISCUSSION

The performance of the models was evaluated using two separate datasets - a training set
used for fitting the models, and a holdout test set containing previously ‘unseen’ samples
not shown during training. This test set, referred to hereafter as ‘unseen data’, provides
an unbiased evaluation of how well the models generalize to new examples. A total of 13
experiments were conducted with different specifications (epochs, batch size, learning rate,
classes, etc.) and parameters to examine the accuracy of the proposed model. In training
our proposed model, we have different accuracies (a) training accuracy 99.76, test accuracy
99.48, (b) training accuracy 99.60, test accuracy 99.56, (c) training accuracy 99.74, test
accuracy 98.65, and (d) 98.84 accuracies, test accuracy 98.86 as shown in Fig. 2.

While testing with our proposed model, we have different training losses as (a) training
loss of 0.0065 and test loss of 0.0214, (b) training loss of 0.0120 and test loss of 0.0378, (c)
training loss 0.0066 and test loss 0.0476, and (d) training loss 0.0364 and test loss 0.0402 as
shown in Fig. 3.

The confusion matrix shows our proposed model’s performance with different
parameters, as shown in Fig. 4.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

1 OT’v—¢’ > < % ¢ @ Accuracy 1-0’47— @ e =@ @ Accuracy
< Test Accuracy . <pTest Accuracy
0.8 0.8
go 6 § 0.6+
5 5
o o
S04 <04
0.24 0.2
0.0 T T il
0 5 10 12 20 00 0 5 10 15 20
Epochs Epochs
(a) (b)
Lo " . R 1.0+ * < @ S 2 @ Accurncy
- s s & Accuriey 4»‘[«: Accuracy
<> Test Accuracy
0.8
08 >
=06- § 0.6
g =
3 8
0.4
S04 X
02 0.2
0.0 I ‘ ! ‘ 0.0 T ; T |
0 5 10 15 20 0 5 10 15 20
Epochs Epochs
(c) (d)

Figure 2 Training and testing accuracy with different parameters of experiments 1, 2, 3 and 4.
Full-size G DOI: 10.7717/peerjcs.2264/fig-2

Results after updating parameters

After changing different parameters, we have different accuracies (a) training accuracy
99.72, test accuracy 99.17, (b) training accuracy 99.52, test accuracy 98.67, (c) training
accuracy 99.76, test accuracy 99.17, and (d) 47.07 accuracy, test accuracy 46.79 as shown
in Fig. S3.

While testing with changed parameters, we have different training losses as (a) training
loss of 0.0059 and test loss of 0.0337, (b) training loss of 0.0127 and test loss of 0.0375, (c)
training loss of 0.0046 and test loss 0.0513, and (d) training loss 4.87 and test loss 4.90 as
shown in Fig. 54.

We can see the changes in the confusion matrix as the parameters of the experiments
changed, as shown in Fig. S5, which shows the working of our proposed model.

In training our proposed model, we have different accuracies (a) training accuracy 99.87,
test accuracy 99.27, (b) training accuracy 99.92, test accuracy 99.44, (c) training accuracy
99.77, test accuracy 99.38, and (d) 99.79 accuracy, test accuracy 99.27 as shown in Fig. S6.

While testing with our proposed model, we have different training losses as (a) training
loss of 0.0031 and test loss of 0.0494, (b) training loss of 0.0037 and test loss of 0.0217, (c)
training loss of 0.0084 and test loss 0.0158, and (d) training loss 0.0051 and test loss 0.0321
as shown in Fig. 57.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 12/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2264/fig-2
http://dx.doi.org/10.7717/peerj-cs.2264#supp-4
http://dx.doi.org/10.7717/peerj-cs.2264#supp-5
http://dx.doi.org/10.7717/peerj-cs.2264#supp-6
http://dx.doi.org/10.7717/peerj-cs.2264#supp-7
http://dx.doi.org/10.7717/peerj-cs.2264#supp-8
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

0.20- o
0.15-

2
20.10
-d

|
L

o \.&_M
»
0-_’\‘\0_
0.00 +—— T T 1
0 & 10 15 20
Epochs
(a)
0.20+ - Low
<> Test Loss
0.15
a >
2010 ‘
4
0.05 \<_./‘-J*
0.00 "T‘**‘oh/\o—
T T
0] t": 10 15 20
Epochs

(c)

4 TestLoss

0.40

0.30
025+

b

9 0.20

|
0.15-
010

0.05-|

0.00

(”—.——0—-——

—

1.6

1.2
1.0

2

2 0.8
0.6
0.4
0.2

0.0

5 10 15 20

Epochs
(b)

L 3
e
10 15 20
Epochs

(d)

& Loss
<> Test Loss

@ Loss
<> Test Luss

Figure 3 Training and testing loss with different parameters of experiments 1, 2, 3 and 4.
Full-size Gl DOI: 10.7717/peerjcs.2264/fig-3

Each confusion matrix has a unique representation due to changes in the parameters of
the experiments, which show that the proposed model is working fine with high accuracy,

as shown in Fig. S8.

In the end, we found the best accuracy in training and testing of the proposed model
with a training accuracy of 99.81, testing accuracy of 99.86 in (a), training loss of 0.0103,

and testing loss of 0.0558 in (b), as shown in Fig. 5.
The proposed model’s performance is outstanding on both the training and test sides.
We have conducted 13 experiments with different parameters, and almost the accuracy
remains plus 99%, showing that our methodology works fine using the CNN model. A
confusion matrix shows the performance of our model, as shown in Fig. 6.

Comparison of experiments

The experimental results demonstrate that increasing the number of epochs generally
improves the accuracy of the model’s predictions. Notably, combinations involving 50
epochs and a batch size of 64 consistently achieve high accuracy scores, ranging from
99.44% to 99.92% on the test dataset. Conversely, smaller batch sizes such as 16 and 32
yields relatively lower accuracies compared to larger batch sizes. Additionally, it is observed
that accuracy scores reach a plateau after a certain point, as exemplified by combinations
like 70 epochs with a batch size of 16, as shown in Table 2.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264

13/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2264/fig-3
http://dx.doi.org/10.7717/peerj-cs.2264#supp-9
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

ScaleCount ScaleCount
1 15 0 0o 0 o0 0 0 0 0 o !
o v ot 00 Class1{15 0 0 0 0 0 0O ©0 0 0 0 O oo
0 0 °o o 0 0
el Class2{ 0 14 0 0 ©0 0 0 ©0 0 0 0 0
o 0 0 o o 300
2 0 0 0 0 0 0 0 0 0 0 200
Class 31 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 e
200
s& o i ooy i Class4{ 0 0 ©0 /224 0 0 0 0 0 0 0 0 200
13 o 0 o 0 0 0 100, Class5{0 0 0 0 26 0 0 0 0 0 0 0
= 100
0 o 0 0 0 0 P
eee g R 0 0 Class6f 0 0 0 0O 0 13 0 0 0 ©0 0 0O
0 o o0 0 9 0 0 0 0 0 0 2
SClass7{0 © 0 ©0O 0 ©0 27 0 0 0 0 0O °
0 0 o 0 0 22 0 0 0 0
0 0 0 0 6 o 21 % o o 0 Class 84 0 0 0 0 0 0 3 1 0 0 0 1
Class1{ 0 0 © 0 0 0 © 0 0O 0 46 0 0 0 O Class 94 0 0 0 0 0 Q 0 0 23 0 0 0
Class1210 0 0 0 06 0 0 0 0 0 0 5 0 0 0 Class101 0 0 0 0 0 ©0 0 ©0 0 21 0 0
o 0 00 0 0 0 0 0 0 0 23 0 0
Class 114 0 0 0 0 0 0 0 0 0 0 45 1
4410 0 0 0 0 0 O 0 O O 0 O 0 24 0
Class 124 0 0 0 0 0 0 0 0 0 0 0 54
Class151 0 0 0 0O 0o 0 o) 0 5
- N M oT oL B o~ ® ® 98 = oo
B ? '3 n @ » n n P » B E
2 P S R - A SR A - S S S
8 S 86 6338 33 33 &8 & &
o 5 o 0 v © o o v o & 3 8
Prediction
(b)
5 0 0 0 0 0 0 0 0 0 0 0 0 0 g eaComnt Class1{15 © © © 0 0 0 ©0 0 0 0 ©0 0 0 o ScakCoum
400 400
0 14 0 © 0 O 0 0O O 0O O O O 0O O Class © o o0 0o 0 0 0 0 0 0 0 O
Class3{ 0 0 - 0 1 0 0 0 0 0 0 0 0 0 O 300 4 0 0 0 o0 o 0 0 00
lass 4 0 0 224 o 0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0
200 200
Class 54 0 5 0 21 0 0 0 0 0 0 0 o 22 0 0 0 0 0 0 0 0 0
0 13 0 0 0 0 0 0 0 0 0 100 0 13 0 0 0 0 0 0 0 0 O 100
o o o 27 6 0 0 0o 0 0 o 0 0 2 G0 R:0 ¢ o ¢ 0
o o 3 18 0 0 0 0 0 0 0 0 0 18 0 0 0 1 0 0 0
0 0 0 0 23 0 o 0 0 0 0 0 o 0 23 0 0 0 0 0 (]
0 0 0 o 21 0 D 0 0 [} 0 0 0 21 0 1] 0 0 (1]
o 0 o 0 0 45 1 0 0 o 0 0 0 0 0 45 1 0 0 0
0 0 0 0 0 0 54 0 o 0 0 0 0 0 0 0 0 54 0 0 0
0 0 0 0 0 0 0 0 21 2 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 O
o 0 0 0 0 0 0 1 2 0 Class 14 0 0 0 0 0 0 0 0 O 0o 1 23 0
6 o0 0 0 0 0 0 0O O O 0 15 Class 154 0
T e oo o= P -
¢ g 2 B % H
T 3 2 8 m) 2
i] : & 3

o &
Prediction Pretictioy

() (d)

Figure 4 Confusion matrix classifier with different parameters of experiments 1, 2, 3 and 4.
Full-size & DOI: 10.7717/peerjcs.2264/fig-4

The findings consistently indicate that using 50 epochs in combination with a batch size
of 64 leads to remarkably high test accuracy scores, ranging from 99.44% to 99.56%. This
suggests that these parameters are optimal for achieving high accuracy when training a DL
model. These configurations also exhibit notably low loss values, ranging between 0.0037
and 0.012, indicating precise predictions and successful convergence of the model. On
the other hand, employing smaller batch sizes such as 16 and 32 results in comparatively
higher loss values, suggesting a relatively lower level of precision. Nevertheless, even with
these smaller batch sizes, the achieved test accuracies range from 46.79% to 99.17%,
demonstrating a certain level of effectiveness. Importantly, there is a consistent trend
observed across all experiments, where an increase in the number of epochs leads to
decreased loss values, serving as evidence of improved model convergence and enhanced
predictive performance, as illustrated in Table 3.

The experimental findings highlight the importance of carefully selecting the
combinations of epoch and batch size to optimize model performance. Specifically,
the consistent use of 50 epochs with a batch size of 64 consistently leads to exceptional

Naeem et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2264 14/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2264/fig-4
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

@ Lo
< Test Loss

Ll o ——_ N

1.0 gt =8 4 ke 0187
{plest Accuracy 0.164
0.8 0.141
4
0.124
0.6+
8 » 0.10-
5 3 1
2 - 0.08-
2044
0.06-
02 0.04-
0.02+
0.0 T T T T T t | 0.00
0 10 20 30 40 50 80 70

Epochs
(a)

T T T
0 10 20 30 40 50

T 1
60 70
Epochs

(b)

Figure 5 Training and testing accuracy (A), training and testing loss (B) with different parameters of

experiment 13.

Full-size 4 DOI: 10.7717/peerjcs.2264/fig-5

Class1{15 0 © © © 0O © 0 0 0 0 0 0 0 o0 caleCount
400
Class21 0 14 0 0 O O O O 0O O 0 o0 0 0 0
Class3{ 0 0 0O 0 0 0O O O 0 O 0O 0 O 300
Class44 0 0 0o 0 0 O 0 0O 0 O 0 0 0
1200
Class54 0 0 9 0 17 0 0 O O 0 O 0 0 0 O
Class6{ 0 0 O O O 13 0 ©O0 O O O O O 0 O 100
é Class740 0 0 O O O 22 0 0 O 0 O 0 0 O 0
Classs{ 0 0 0 O O O 1 18 0 0 0 O© O0 0 0
Class9{ 0 ©0 0 O O O 0 ©O0 23 0 0 O0 0 0 0
Classt04 0 0 0 O O O O O 0 21 0 0 0 O O
Class1{ 0 0 0 0 0O O O 06 O O 46 0 O0 0 0
Class121 0 0 0 O O ©0 O O O O O 5 0 0 0
Class131 0 0 ©0 0 O 0 0 O 0O 0 O ©0 23 0 0
Class144 0 0 0 ©0 O ©0 O O O 0 O 0 1 23 0
Classi54 0 0 0 © O O O O O O 0 0 0 0 15
- N M W W @ e ® e 6 e M @ w0
w " w o w w 0 w 7] ~ = - e = -~
73 w w w " w w w w w w w w w w
g ®@ ® @& @ & & ®© & 9 L @ © 0 v
8RB s B OB 0 0 R 9w R
rediction

Figure 6 Confusion matrix classifier with different parameters of experiment 13.

Full-size G DOI: 10.7717/peerjcs.2264/fig-6

Naeem et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2264

15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2264/fig-5
https://doi.org/10.7717/peerjcs.2264/fig-6
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Table 2 Comparison of statistical measures of all experiments (accuracy and test accuracy).

Epoch Batch size Accuracy Test accuracy
30 16 47.07 46.79
25 116 99.74 98.65
30 128 99.52 98.67
20 64 98.84 98.86
30 32 99.72 99.17
40 32 99.76 99.17
70 16 99.79 99.27
50 16 99.87 99.27
70 512 99.77 99.38
50 64 99.92 99.44
20 16 99.76 99.48
20 64 99.6 99.56
70 16 99.81 99.86
Table 3 Comparison of statistical results of all experiments (test accuracy and loss).
Epoch Batch size Test accuracy Loss
30 16 46.79 4.87
25 116 98.65 0.0066
30 128 98.67 0.0127
20 64 98.86 0.0364
30 32 99.17 0.0059
40 32 99.17 0.0046
70 16 99.27 0.0051
50 16 99.27 0.0031
70 512 99.38 0.0084
50 64 99.44 0.0037
20 16 99.48 0.0065
20 64 99.56 0.012
70 16 99.86 0.0103

outcomes, as demonstrated by remarkably low loss values ranging from 0.0031 to 0.0037.

These configurations not only indicate effective model convergence but also result in

predictions of unparalleled accuracy. In contrast, utilizing smaller batch sizes such as 16

and 32 results in relatively higher loss values, suggesting a slightly reduced level of precision.

However, it is worth noting that even with these smaller batch sizes, the corresponding

test loss values remain impressively low, ranging from 0.0214 to 0.0558, thus confirming

the model’s excellent performance on unseen data. Furthermore, there is a noticeable

pattern of improved model convergence as the epoch values increase, as evidenced by

consistently lower loss values. This further emphasizes the importance of higher epoch

values in optimizing model performance, as shown in Table 4.

Naeem et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2264

16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Table 4 Evaluation of statistical measures of all experiments (loss and test loss).

Epoch Batch size Loss Test loss
30 16 4.87 4.9

25 116 0.0066 0.0476
30 128 0.0127 0.0356
20 64 0.0364 0.0402
30 32 0.0059 0.0337
40 32 0.0046 0.0516
70 16 0.0051 0.0321
50 16 0.0031 0.0494
70 512 0.0084 0.0158
50 64 0.0037 0.0217
20 16 0.0065 0.0214
20 64 0.012 0.0378
70 16 0.0103 0.0558

The results reveal that configurations with 50 epochs and a batch size of 16 consistently
achieve exceptional accuracy ranging from 99.87% to 99.92% and exhibit relatively low
test loss values between 0.0494 and 0.0217. Additionally, using 70 epochs with a batch size
of 16 also yields consistently high accuracy (99.79% to 99.81%) and relatively low test loss
(0.0321 to 0.0558). Other configurations, such as 25 epochs with a batch size of 116 or 30
epochs with a batch size of 128, produce accuracy above 99% and test loss values ranging
from 0.0356 to 0.0476, as shown in Table S1.

The initial configuration, with 30 epochs and a batch size of 16, yields unsatisfactory
results, as the accuracy is only 47.07%, indicating poor performance in learning from the
data. However, in the second configuration, training for 25 epochs with a larger batch
size of 116 results in exceptional performance. The model achieves an accuracy of 99.74%
and a very low loss of 0.0066, indicating successful learning from the data. Subsequent
configurations show consistently high accuracy but with slight variations in loss values.
Generally, higher accuracy is achieved with larger batch sizes and more epochs. However,
it is important to note that extremely large batch sizes, such as 512, do not consistently
yield the best results, as seen in the ninth configuration, as shown in Table S2.

The performance of the model on the test dataset is evaluated based on test accuracy
and test loss. The initial configuration, with 30 epochs and a batch size of 16, results
in a low test accuracy of 46.79% and a relatively high test loss of 4.9. This indicates
poor performance and a struggle to generalize to unseen data. However, in subsequent
configurations, particularly with larger batch sizes and more epochs, the test accuracy
improves significantly. For instance, in the second configuration with 25 epochs and a
batch size of 116, the model achieves a test accuracy of 98.65% and a low test loss of 0.0476.
These results demonstrate better performance and some ability to generalize, as shown in
Table S3.

The table examines the influence of various configurations on model training, specifically
investigating the epoch number, batch size, learning rate, and test loss. The initial

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264#supp-10
http://dx.doi.org/10.7717/peerj-cs.2264#supp-11
http://dx.doi.org/10.7717/peerj-cs.2264#supp-12
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Table 5 Determining statistical significance of learning rate and test loss.

Epoch Batch size Learning rate Test loss
30 16 0.1 4.9

25 116 0.001 0.0476
30 128 0.001 0.0356
20 64 0.0001 0.0402
30 32 0.001 0.0337
40 32 0.001 0.0516
70 16 0.0001 0.0321
50 16 0.001 0.0494
70 512 0.001 0.0158
50 64 0.001 0.0217
20 16 0.001 0.0214
20 64 0.001 0.0378
70 16 0.001 0.0558

configuration with 30 epochs, a batch size of 16, and a learning rate of 0.1 results in a
high test loss of 4.9, indicating poor performance. However, subsequent experiments using
lower learning rates of 0.001 generally led to improved results, with test losses ranging from
0.0214 to 0.0558. Additionally, larger batch sizes and more epochs tend to yield higher
accuracy, as observed in rows with batch sizes of 64, 32, and 16. These findings emphasize
the importance of selecting appropriate hyperparameters to enhance model performance
during training, as shown in Table 5.

The provided table presents a comprehensive analysis of the training outcomes obtained
by varying the configurations of a model, with a focus on the epoch number, batch size,
learning rate, and loss. Initially, the model is trained for 30 epochs using a batch size
of 16 and a learning rate of 0.1, resulting in a relatively high loss of 4.87, indicating
unsatisfactory performance. Subsequent configurations are explored, encompassing
different hyperparameter combinations. Notably, adopting a lower learning rate of 0.001
leads to more favorable results, as observed in rows 2, 3, 5, 8, 9, 10, and 11. Across these
configurations, losses consistently range from 0.0031 to 0.0127, signifying significant
improvements in model performance. Furthermore, the impact of varying batch sizes on
the achieved losses is examined. Generally, larger batch sizes, as seen in rows with values
of 116, 128, 32, and 512, correspond to reduced losses, as shown in Table 54.

The table summarizes the results of model training across a variety of configurations,
with a focus on the number of epochs, batch size, learning rate, and accuracy. Initially, the
model is trained for 30 epochs with a batch size of 16 and a learning rate of 0.1, resulting
in an accuracy of 47.07%. This configuration yields relatively poor performance. However,
subsequent configurations exhibit more promising results. Notably, lower learning rates
0f 0.001 consistently correlate with higher accuracies, as evidenced by rows 2, 3, 5, 8, 9, 10,
and 11. Across these configurations, accuracies consistently range from 99.52% to 99.92%,
reflecting substantial improvements in model performance. Furthermore, the impact of
batch size variations on accuracy is explored. Generally, larger batch sizes, as seen in rows

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264#supp-13
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Table 6 Comparison of results of the proposed state of the art method with the existing works for Mallmg dataset.

Reference Approach Accuracy Precision Recall F1-score
Yue & Wang (2017) Deep learning 97.32 - - -
Cuietal. (2018) Deep learning 94.50 94.6 94.5 -
Yajamanam et al. (2018) Machine learning 97 99 99 -
Bhodia et al. (2019) Deep learning 94.8 - - -
Vasan et al. (2020a) Deep learning 98.82 98.85 98.81 98.75
Vasan et al. (2020b) Deep learning 99.50 99.50 99.46 99
Aslan & Yilmaz (2021) Deep learning 97.78 - - -
Ravi & Alazab (2023) Deep learning 99 98 98 98
Panda et al. (2023) Transfer learning 99.43 99.48 99.43 99.46
Rustam et al. (2023) Deep learning 99 97 97 97
Our proposed 2024 Deep learning 99.81 99.90 1.0 99.95

with batch sizes of 116, 128, 32, and 512, tend to result in higher accuracies, as shown in
Table S5.

Comparison with state of the art

The proposed model, as shown in Table 6, demonstrates several advantages (https:
[www kaggle.com/datasets/manmandes/malimg). Firstly, it achieves a remarkable accuracy
of 99.81%, surpassing all the previous approaches listed. This indicates the effectiveness
of the proposed deep learning model in achieving highly accurate results. Additionally,
the precision and Fl-score of the model are also exceptional, with values of 99.90%
and 99.95%, respectively. These high precision and F1-score values further emphasize
the model’s ability to accurately classify and predict outcomes. Moreover, the proposed
model achieves a perfect recall score of 1.0, indicating its capability to correctly identify
all relevant instances. These outstanding performance metrics make the model highly
reliable and robust for the intended task. However, it is important to note the absence
of precision and recall values for some previous approaches, which limits the direct
comparison and evaluation of the proposed model against those specific metrics. Upon
further examination, the proposed model not only exhibits exceptional overall performance
but also demonstrates remarkable consistency across multiple evaluation metrics. Its high
precision, recall, and F1-score values indicate a balanced and accurate classification of
both positive and negative instances. This consistency suggests that the model is less prone
to false positives or false negatives, enhancing its reliability and usefulness in real-world
applications.

CONCLUSION

This study classifies malware using DL. We have taken byte code as input, converted
it into grayscale images, and then input it to DL model malware categorization. A
comprehensive evaluation was conducted, encompassing 13 experiments to assess the
efficacy of various model architectures, hyperparameters, and preprocessing techniques
for malware classification. This investigation included rigorous testing of CNNs and

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264#supp-14
https://www.kaggle.com/datasets/manmandes/malimg
https://www.kaggle.com/datasets/manmandes/malimg
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

residual neural networks (ResNets) with diverse configurations of filter counts, layer
depths, batch sizes, and other critical parameters. The empirical results demonstrably
established the proposed methodology as the superior performer, achieving an exceptional
99.2% accuracy on unseen test data. This research significantly contributes to the field by
introducing a novel deep-learning approach for malware detection that leverages grayscale
image representations of binary files. When combined with an optimized CNN architecture,
this end-to-end method achieves state-of-the-art performance without the requirement for
manual feature engineering, a significant advancement in the field. Further refinement of
this technique holds substantial promise for efficiently addressing the burgeoning challenge
of large-scale malware detection. In the future, we will compare our state-of-the-art DL
models and use large datasets to validate our model. We will further enhance our model
from grayscale to RGB images to test the malware family’s classification performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by King Saud University, Riyadh, Saudi Arabia. Researchers
Supporting Project number (RSPD2024R838), King Saud University, Riyadh, Saudi
Arabia. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Saud University, Riyadh, Saudi Arabia: RSPD2024R838.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

e Muhammad Rehan Naeem conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

e Rashid Amin conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

e Muhammad Farhan analyzed the data, performed the computation work, prepared
figures and/or tables, and approved the final draft.

e Faiz Abdullah Alotaibi performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

e Mrim M Alnfiai analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

e Gabriel Avelino Sampedro performed the experiments, analyzed the data, prepared

figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

e Vincent Karovi¢ performed the experiments, prepared figures and/or tables, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Figshare: Naeem, Muhammad Rehan (2023). Mallmg dataset.zip.
figshare. Dataset. https:/doi.org/10.6084/m9.figshare.24189882.v1.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2264#supplemental-information.

REFERENCES

Albahar MA, ElSayed MS, Jurcut A. 2022. A modified ResNeXt for Android malware
identification and classification. Computational Intelligence and Neuroscience
2022:8634784 DOI 10.1155/2022/8634784.

Aslan O, Yilmaz AA. 2021. A new malware classification framework based on deep learn-
ing algorithms. IEEE Access 9:87936-87951 DOI 10.1109/ACCESS.2021.3089586.

Atitallah SB, Driss M, Almomani I. 2022. A novel detection and multi-classification
approach for IoT-malware using random forest voting of fine-tuning convolutional
neural networks. Sensors 22(11):4302 DOI 10.3390/s22114302.

Azab A, Khasawneh M. 2020. MSIC: malware spectrogram image classification. IEEE
Access 8:102007—-102021 DOI 10.1109/ACCESS.2020.2999320.

Balntas V, Johns E, Tang L, Mikolajczyk K. 2016. PN-Net: conjoined triple deep network
for learning local image descriptors. ArXiv arXiv:1601.05030 .

Bensaoud A, Kalita J. 2022. Deep multi-task learning for malware image classification.
Journal of Information Security and Applications 64:103057
DOI10.1016/j.jisa.2021.103057.

Bhodia N, Prajapati P, Di Troia F, Stamp M. 2019. Transfer learning for image-based
malware classification. ArXiv arXiv:1903.11551.

Bouchaib P, Bouhorma M. 2021. Transfer learning and smote algorithm for image-based
malware classification. In: NISS *21: Proceedings of the 4th International Conference on
Networking, Information Systems ¢ Security. New York: Association for Computing
Machinery, 56.

Chen J. 2020. A malware detection method based on Rgb image. In: ICCAI °20: Proceed-
ings of the 2020 6th International Conference on Computing and Artificial Intelligence.
New York: Association for Computing Machinery, 283-290.

Clevert D-A, Unterthiner T, Hochreiter S. 2015. Fast and accurate deep network
learning by exponential linear units (ELUs). ArXiv arXiv:1511.07289.

Cui Z, Xue F, Cai X, Cao Y, Wang G-g, Chen J. 2018. Detection of malicious code
variants based on deep learning. IEEE Transactions on Industrial Informatics
14(7):3187-3196 DOIT 10.1109/T11.2018.2822680.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 21/24

https://peerj.com
https://doi.org/10.6084/m9.figshare.24189882.v1
http://dx.doi.org/10.7717/peerj-cs.2264#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2264#supplemental-information
http://dx.doi.org/10.1155/2022/8634784
http://dx.doi.org/10.1109/ACCESS.2021.3089586
http://dx.doi.org/10.3390/s22114302
http://dx.doi.org/10.1109/ACCESS.2020.2999320
http://arXiv.org/abs/1601.05030
http://dx.doi.org/10.1016/j.jisa.2021.103057
http://arXiv.org/abs/1903.11551
http://arXiv.org/abs/1511.07289
http://dx.doi.org/10.1109/TII.2018.2822680
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Diehl PU, Neil D, Binas J, Cook M, Liu S-C, Pfeiffer M. 2015. Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing. In: 2015
International joint conference on neural networks (IJCNN). Piscataway: IEEE, 1-8.

Ding Y, Zhang X, Hu J, Xu W. 2020. Android malware detection method based
on bytecode image. Journal of Ambient Intelligence and Humanized Computing
14:6401-6410 DOI 10.1007/s12652-020-02196-4.

El-Shafai W, Almomani I, AlKhayer A. 2021. Visualized malware multi-classification
framework using fine-tuned CNN-based transfer learning models. Applied Sciences
11(14):6446 DOI 10.3390/app11146446.

Komatwar R, Kokare M. 2022. Malware classification using customized convolutional
neural networks by leaky RELU activated function. Journal of Xi’an Shiyou Univer-
sity, Natural Science Edition 18(3):186-200.

Mallik A, Khetarpal A, Kumar S. 2022. ConRec: malware classification using convolu-
tional recurrence. Journal of Computer Virology and Hacking Techniques 18:297-313
DOI 10.1007/s11416-022-00416-3.

Mohammed TM, Nataraj L, Chikkagoudar S, Chandrasekaran S, Manjunath BS. 2021.
Malware detection using frequency domain-based image visualization and deep
learning. ArXiv arXiv:2101.10578.

Naeem MR, Amin R, Alshamrani SS, Alshehri A. 2022. Digital forensics for malware
classification: an approach for binary code to pixel vector transition. Computational
Intelligence and Neuroscience 2022:6294058 DOI 10.1155/2022/6294058.

Nguyen H, Di Troia F, Ishigaki G, Stamp M. 2023. Generative adversarial networks
and image-based malware classification. Journal of Computer Virology and Hacking
Techniques 19:579-595 DOT 10.1007/s11416-023-00465-2.

Obaidat I, Sridhar M, Pham KM, Phung PH. 2022. Jadeite: a novel image-behavior-
based approach for java malware detection using deep learning. Computers &
Security 113:102547 DOI 10.1016/j.cose.2021.102547.

Panda P, CU OK, Marappan S, Ma S, S M, Veesani Nandi D. 2023. Transfer learning for
image-based malware detection for iot. Sensors 23(6):3253 DOI 10.3390/523063253.

Pinhero A, ML A, P V, Visaggio CA, N A, S A, AnanthaKrishnan S. 2021. Malware
detection employed by visualization and deep neural network. Computers ¢ Security
105:102247 DOI 10.1016/j.cose.2021.102247.

Rustam F, Ashraf I, Jurcut AD, Bashir AK, Zikria YB. 2023. Malware detection using
image representation of malware data and transfer learning. Journal of Parallel and
Distributed Computing 172:32-50 DOIT 10.1016/j.jpdc.2022.10.001.

Ravi V, Alazab M. 2023. Attention-based convolutional neural network deep learning ap-
proach for robust malware classification. Computational Intelligence 39(1):145-168
DOI 10.1111/coin.12551.

Ren Z, Chen G, Lu W. 2020. Malware visualization methods based on deep convo-
lution neural networks. Multimedia Tools and Applications 79:10975-10993
DOI 10.1007/s11042-019-08310-9.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 22/24

https://peerj.com
http://dx.doi.org/10.1007/s12652-020-02196-4
http://dx.doi.org/10.3390/app11146446
http://dx.doi.org/10.1007/s11416-022-00416-3
http://arXiv.org/abs/2101.10578
http://dx.doi.org/10.1155/2022/6294058
http://dx.doi.org/10.1007/s11416-023-00465-2
http://dx.doi.org/10.1016/j.cose.2021.102547
http://dx.doi.org/10.3390/s23063253
http://dx.doi.org/10.1016/j.cose.2021.102247
http://dx.doi.org/10.1016/j.jpdc.2022.10.001
http://dx.doi.org/10.1111/coin.12551
http://dx.doi.org/10.1007/s11042-019-08310-9
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Singh B, De S, Zhang Y, Goldstein T, Taylor G. 2015. Layer-specific adaptive learning
rates for deep networks. In: 2015 IEEE 14th international conference on machine
learning and applications (ICMLA). Piscataway: IEEE, 364—368.

Su J, Vasconcellos DV, Prasad S, Sgandurra D, Feng Y, Sakurai K. 2018. Lightweight
classification of IoT malware based on image recognition. In: 2018 IEEE 42Nd
annual computer software and applications conference (COMPSAC). Piscataway: IEEE,
664-669.

Tuncer T, Ertam F, Dogan S. 2020. Automated malware recognition method based
on local neighborhood binary pattern. Multimedia Tools and Applications
79:27815-27832 DOI 10.1007/s11042-020-09376-6.

Unver HM, Bakour K. 2020. Android malware detection based on image-based features
and machine learning techniques. SN Applied Sciences 2:1299
DOI10.1007/s42452-020-3132-2.

Vasan D, Alazab M, Wassan S, Safaei B, Zheng Q. 2020b. Image-Based malware
classification using ensemble of CNN architectures (IMCEC). Computers & Security
92:101748 DOI 10.1016/j.cose.2020.101748.

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q. 2020a. IMCFN: image-
based malware classification using fine-tuned convolutional neural network
architecture. Computer Networks 171:107138 DOI 10.1016/j.comnet.2020.107138.

Venkatraman S, Alazab M, Vinayakumar R. 2019. A hybrid deep learning image-
based analysis for effective malware detection. Journal of Information Security and
Applications 47:377-389 DOI 10.1016/].jisa.2019.06.006.

Vu D-L, Nguyen T-K, Nguyen TV, Nguyen TN, Massacci F, Phung PH. 2019. A convo-
lutional transformation network for malware classification. In: 2019 6th NAFOSTED
conference on information and computer science (NICS). Piscataway: IEEE, 234-239.

Vu D-L, Nguyen T-K, Nguyen TV, Nguyen TN, Massacci F, Phung PH. 2020. HIT4Mal:
hybrid image transformation for malware classification. Transactions on Emerging
Telecommunications Technologies 31:e3789 DOI 10.1002/ett.3789.

Wu G, ShiJ, Yang Y, Li W. 2018. Enhancing machine learning based malware detection
model by reinforcement learning. In: ICCNS ’18: Proceedings of the 8th International
Conference on Communication and Network Security. New York: Association for
Computing Machinery, 74-78.

Xiao G, Li G, Chen Y, Li K. 2020. MalFCS: an effective malware classification
framework with automated feature extraction based on deep convolutional
neural networks. Journal of Parallel and Distributed Computing 141:49-58
DOI 10.1016/j.jpdc.2020.03.012.

Xue D, LiJ, Lv T, Wu W, Wang J. 2019. Malware classification using probability scoring
and machine learning. IEEE Access 7:91641-91656
DOI 10.1109/ACCESS.2019.2927552.

Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. 2022. EfficientNet convolu-
tional neural networks-based Android malware detection. Computers & Security
115:102622 DOI 10.1155/2018/7247095.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 23/24

https://peerj.com
http://dx.doi.org/10.1007/s11042-020-09376-6
http://dx.doi.org/10.1007/s42452-020-3132-2
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.1016/j.jisa.2019.06.006
http://dx.doi.org/10.1002/ett.3789
http://dx.doi.org/10.1016/j.jpdc.2020.03.012
http://dx.doi.org/10.1109/ACCESS.2019.2927552
http://dx.doi.org/10.1155/2018/7247095
http://dx.doi.org/10.7717/peerj-cs.2264

PeerJ Computer Science

Yadav B, Tokekar S. 2021. Deep learning in malware identification and classification.
In: Malware analysis using artificial intelligence and deep learning. Cham: Springer,
163-205.

Yajamanam S, Selvin VRS, Di Troia F, Stamp M. 2018. Deep learning versus gist
descriptors for image-based malware classification. In: Proceedings of the 4th Inter-
national Conference on Information Systems Security and Privacy - For SE. Settbal:
Science and Technology Publications, Lda, 553-561.

Yan J, Qi Y, Rao Q. 2018. Detecting malware with an ensemble method based on
deep neural network. Security and Communication Networks 2018:7247095
DOI10.1155/2018/7247095.

Yue S, Wang T. 2017. Imbalanced malware images classification: a CNN based approach.
ArXiv arXiv:1708.08042.

Zhang X, Wu K, Chen Z, Zhang C. 2021. MalCaps: a capsule network based model for
the malware classification. Processes 9(6):929 DOI 10.3390/pr9060929.

Zheng R, Wang Q, He], FuJ, Suri G, Jiang Z. 2022. Cryptocurrency mining malware
detection based on behavior pattern and graph neural network. Security and
Communication Networks 2022:9453797 DOI 10.1155/2022/9453797.

Zheng L, Zhang J. 2022. A new malware detection method based on VMCADR in
cloud environments. Security and Communication Networks 2022:4208066
DOI 10.1155/2022/4208066.

Zhu X, Huang J, Wang B, Qi C. 2021. Malware homology determination using visualized
images and feature fusion. Peer] Computer Science 7:e494 DOI 10.7717/peerj-cs.494.

Naeem et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2264 24/24

https://peerj.com
http://dx.doi.org/10.1155/2018/7247095
http://arXiv.org/abs/1708.08042
http://dx.doi.org/10.3390/pr9060929
http://dx.doi.org/10.1155/2022/9453797
http://dx.doi.org/10.1155/2022/4208066
http://dx.doi.org/10.7717/peerj-cs.494
http://dx.doi.org/10.7717/peerj-cs.2264

