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ABSTRACT

In crisis management, quickly identifying and helping affected individuals is key,
especially when there is limited information about the survivors’ conditions.
Traditional emergency systems often face issues with reachability and handling large
volumes of requests. Social media has become crucial in disaster response, providing
important information and aiding in rescues when standard communication systems
fail. Due to the large amount of data generated on social media during emergencies,
there is a need for automated systems to process this information effectively and help
improve emergency responses, potentially saving lives. Therefore, accurately
understanding visual scenes and their meanings is important for identifying damage
and obtaining useful information. Our research introduces a framework for detecting
damage in social media posts, combining the Bidirectional Encoder Representations
from Transformers (BERT) architecture with advanced convolutional processing.
This framework includes a BERT-based network for analyzing text and multiple
convolutional neural network blocks for processing images. The results show that
this combination is very effective, outperforming existing methods in accuracy,
recall, and F1 score. In the future, this method could be enhanced by including more
types of information, such as human voices or background sounds, to improve its
prediction efficiency.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science
Keywords Multi-modal, Deep learning, Damage detection, Media posts, Computer vision

INTRODUCTION

Background

In crisis management, swiftly detecting and assisting affected individuals are primary
concerns for emergency responders (Barton, 1994). Limited or interrupted information
about survivors’ conditions exacerbates this problem (Saroj ¢ Pal, 2020). Conventional
emergency communication systems frequently encounter constraints in terms of their
ability to be reached and their capacity, particularly during periods of high demand. This
limits the effectiveness of response efforts (Saroj ¢ Pal, 2020; Wut, Xu ¢» Wong, 2021;
Ritchie & Jiang, 2021). Over the years, social media platforms have become critical adjunct
resources, particularly in disasters (Phengsuwan et al., 2021; Muhammed & Mathew, 2022).
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During Hurricane Harvey, a Category 4 hurricane that hit Texas and Louisiana in August
2017, over 2.46 billion communications, such as calls and messages, were sent to report
locations, conditions, and other vital information (Mirbabaie et al., 2020). During
Hurricane Sandy, a massive and destructive Category 3 Atlantic hurricane that devastated
the Caribbean and the coastal Mid-Atlantic region of the United States in late October
2012, approximately 25 first aid officers were tasked with managing around 2.5 million
disaster-related social media posts (Meng ¢ Mozumder, 2021). A woman received
assistance after posting requests for help on Twitter when her 911 calls went unanswered
(Zou et al., 2023). Similarly, during Hurricane Harvey, social media was crucial in rescuing
individuals unreachable through conventional emergency call systems (Zou et al., 2023).
These examples demonstrate the essential role of social media in facilitating immediate
and effective responses in rescue activities (Mirbabaie et al., 2020; Yuan et al., 2021; Zou
et al., 2023). Nonetheless, the immense amount of data obtained via social media during
emergencies poses significant difficulties. Engaging in the manual processing of large
amounts of information is not feasible and takes emergency responders away from
important duties, which might negatively impact overall crisis management efforts (Zhang,
Ding ¢ Ma, 2020). Consequently, there is an imperative need for the development and
implementation of automated systems capable of efficiently parsing and extracting
actionable intelligence from the deluge of social media data (Fan, Wu & Mostafavi, 2020;
Imran et al., 2020). Such technological advances would significantly enhance the
operational capabilities of emergency response teams, allowing for more strategic
allocation of resources and improving the timeliness and effectiveness of crisis
interventions (Sufi ¢» Khalil, 2022). Leveraging automated analytical tools to navigate and
utilize social media data represents a crucial evolution in emergency management
methodologies, aiming to optimize response actions and ultimately save lives (Sufi ¢
Khalil, 2022).

Related works

The humanitarian computing community is setting its sights on the creation of automated
systems capable of identifying and marking social media posts that provide data on
disasters and crises (Coppi, Moreno Jimenez ¢» Kyriazi, 2021; Sufi & Khalil, 2022). These
systems are structured into three primary components. The first component focuses on
retrieving social media posts that may be relevant to a disaster or crisis (Kaufhold, Bayer ¢
Reuter, 2020). This stage is crucial as it involves sifting through a vast array of irrelevant
posts, isolating those that are genuine and timely, among other vital criteria (Kaufhold,
Bayer & Reuter, 2020). The second component deals with the categorization of these
filtered posts, distinguishing between different types of damage and disaster incidents and
ensuring that each post is evaluated for its value in conveying substantive information
about the situation at hand (Asif et al, 2021; Wang et al., 2023). The final component is
concerned with condensing the information in these posts to distill essential disaster-
related data, which is then formatted to be quickly and effectively communicated to
emergency response personnel (Asif ef al, 2021). By processing and analyzing social media
content through these modules, the automated systems aim to enhance the situational
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awareness of emergency responders. This advancement in humanitarian computing not
only streamlines the flow of crucial information in times of crisis but also ensures a more
agile and effective response to disasters, ultimately aiding in saving lives and reducing
damages (Coppi, Moreno Jimenez & Kyriazi, 2021; Sufi & Khalil, 2022). Various
applications in humanitarian computing have utilized social media posts, spanning event
detection (Sakaki, Okazaki & Matsuo, 2013; Yang et al., 2024), the development of alert
systems (Breen, Ida ¢ Vidhya, 2016), map creation (Cresci et al., 2015), and the extraction
of actionable intelligence (Caragea et al., 2011; Ashktorab et al., 2014). A crucial aspect of
these applications is identifying the type and extent of damages to infrastructures, natural
environments, or individuals, which aids first responders in effectively deploying
resources. Research in damage detection has explored different approaches, including text
analysis (Imran et al., 2014; Cresci et al., 2015; Imran, Mitra & Castillo, 2016; Nguyen et al.,
2016; Dang et al., 2023), image processing (Alam, Imran & Ofli, 2017; Nguyen et al., 2017),
or combinations of both approaches (Jomaa, Rizk & Awad, 2016). Imran et al. (2014)
focused on text-based tweet analysis to identify damage information, while Cresci et al.
(2015) applied natural language processing to tweets for damage assessment. Nguyen et al.
(2016) employed artificial neural networks (ANN) to categorize tweets according to their
relevance to damages. In terms of the image analysis, Alam, Imran & Ofli (2017)
implemented a deep learning framework to evaluate damage type and severity in images.
Nguyen et al. (2017) enhanced convolutional neural networks (CNN) using domain-
specific images to improve the efficiency of damage detection from visual data. Besides,
several studies have integrated text and image analysis into a multimodal approach. Jomaa,
Rizk ¢» Awad (2016) combined basic visual feature extraction with textual analysis to
classify damage in tweeted images, showing superior results compared to single-mode
classifiers.

Understanding visual scenes and semantics is vital for damage identification and
extracting actionable insights. Deep learning stands out in the field for its ability to
comprehend scenes and semantics from extensive and often unstructured data sets,
requiring minimal manual feature extraction (LeCun, Bengio ¢ Hinton, 2015). CNN was
initially created for visual understanding (Krizhevsky, Sutskever ¢» Hinton, 2017) and later
adapted for analyzing text (Kim, 2014) and sound (Abdel-Hamid et al., 2014). CNNs,
trained on both labeled and unlabeled data, excel at recognizing a broad spectrum of
objects, even achieving accuracies beyond human capabilities (Krizhevsky, Sutskever &
Hinton, 2017). These networks process input data, like image pixels, through layered
convolutions and nonlinear pooling to identify various categories, as evidenced by their
performance on the ImageNet challenge, outperforming other methods by nearly 11%
with an error rate of 15% (Krizhevsky, Sutskever ¢ Hinton, 2017). Inception, a deep
15-layer CNN, has set new benchmarks in image recognition (Szegedy et al., 2017).
Recurrent neural network (RNN), particularly long short-term memory (LSTM), have also
shown impressive results in visual scene analysis, notably in generating accurate image
captions (Lai et al., 2015). Regarding semantic understanding, deep learning has been
pivotal in developing word embeddings, representing words as dense vectors (Mikolov
et al., 2013). This approach supports deeper sentence and textual comprehension,
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facilitated by word embedding techniques like Word2Ve (Mikolov et al., 2013). Deep
learning has led to breakthroughs in sentiment analysis (Glorot, Bordes ¢» Bengio, 2011),
sentence classification (Lai et al., 2015), text generation (Vinyals et al., 2015), and other
linguistic tasks. Additionally, CNNs have significantly contributed to deep learning’s
achievements in the domains of text classification (Kim, 2014; Zhang, Zhao & LeCun, 2015;
Conneau et al., 2017), sentiment analysis (dos Santos ¢ Gatti, 2014), and the acquisition of
semantic knowledge (Shen et al., 2014), showcasing their versatility and effectiveness
across different domains of data processing.

In order to fully use the capabilities of data originating from numerous sources with
distinct characteristics (such as size, structure, efc.), it is necessary to develop machine
learning algorithms that can effectively combine and utilize these diverse data types.
Multimodal learning addresses this by evolving or tailoring machine learning algorithms
to assimilate information from various modalities (Ramachandram ¢ Taylor, 2017).
Guillaumin, Verbeek ¢» Schmid (2010) enhanced image categorization by integrating tags
into the feature vectors, training a multiple kernel learning classifier, and achieving an
improvement of nearly 10% in accuracy for certain categories. Alghtani, Luo ¢ Regan
(2015) improved event detection from Twitter data by incorporating semantic and visual
features to train a k-nearest neighbor model with an 8% increase in classification accuracy
over single-mode methods. Jormaa, Rizk & Awad (2016) utilized a method combining
visual and semantic features in feature vectors, employing support vector machines to
refine damage classification, resulting in an accuracy enhancement of 4%. Poria et al.
(2016) conducted sentiment analysis using a mix of text, audio, and image data, applying
both feature fusion and deep fusion methods, surpassing the precision of leading-edge
techniques by at least 20%. While these studies separated feature extraction and supervised
learning, there has been a move toward deep learning multimodal algorithms in
unsupervised learning settings (Ngiam et al., 2011). Ngiam et al. (2011) developed an ANN
model to learn from raw audio and visual data. Srivastava ¢ Salakhutdinov (2012)
employed deep Boltzmann machines for learning from image and text data.

Proposed method

In our research, we introduce a computational framework designed for detecting damage
in social media posts, employing the Bidirectional Encoder Representations from
Transformers (BERT) architecture (Devlin et al., 2018) alongside a multi-block
convolutional approach. Our approach consists of two key elements: a network grounded
in BERT for extracting text features, and CNN blocks dedicated to image feature
extraction. We expect this integration to yield a performance that surpasses existing
methods. By leveraging the strengths of both text and visual data processing, our method
aims to provide a comprehensive and nuanced analysis of social media content, enhancing
the accuracy and reliability of damage detection in real-world scenarios. This synergistic
approach harnesses the deep learning capabilities of BERT and CNN to effectively
interpret the complex and varied data found in social media posts, potentially setting a new
standard for automated damage assessment tools. In this work, we highlighted our
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contribution to designing a streamlined architecture for the image processing stage,
instead of using pre-trained models like other approaches. The introduction of streamlined
processing significantly enhances the training speed as well as adaptability to specific
datasets, especially small ones.

METHOD

Our bimodal deep learning model, which utilizes both visual and textual data, can enhance
the performance of damage detection tasks by leveraging complementary information.
Visual data provides detailed physical characteristics of the damage, while textual data
offers contextual details and descriptions. This integration allows for improved accuracy
and robustness, as the model can cross-validate information and extract diverse features.
Additionally, textual data helps disambiguate visual ambiguities and incorporates expert
knowledge, leading to a more comprehensive and adaptive understanding of various
damage scenarios. Consequently, bimodal models can more effectively identify and classify
damage, improving overall predictive performance.

Proposed architecture

To address the problem, we proposed a model that combines both text and image
features to enhance prediction efficiency. The proposed model consists of two
components: text processing (TP) and image processing (IP) (Fig. 1). In the TP
component, a pre-trained BERT model was used to extract text features. For the IP
component, we developed a network comprising three convolutional (Conv) blocks, one
Transformer block, one 2D-convolutional (Conv2D) layer, and one fully connected (FC)
layer. Each sample is represented by a pair of image and text. The images, of size 224 X
224 x 3, are first passed through a Conv2D layer before entering the IP component. The
Conv block is designed with two Conv2D layers, with a batch normalization
(BatchNorm) layer following each Conv2D layer, and rectified linear unit (ReLU) is used
as the activation function. The vectors of image features and text features are then
concatenated before passing through the last FC layer. The Softmax function is employed
to return predictions.

BERT-based pretrained model

The BERT architecture (Devlin et al., 2018), initially introduced by Google, has been a
groundbreaking development in the natural language processing (NLP) domain for text
information extraction. The core innovation of BERT is its bidirectional processing
capability using Transformers, an attention mechanism that comprehends the contextual
relationship of words or sub-words within the text. In contrast to traditional models that
process text linearly, either from left to right or right to left, BERT analyzes the entire text
string simultaneously. This feature enables it to grasp the context on both sides,
significantly enhancing its ability to understand each word’s meaning within its
contextual environment. BERT-based pretrained model was developed using a large
corpus of text from the Internet, including the entire Wikipedia (in English), which is
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Figure 1 Proposed model for detecting social media posts. The model contain two main components:
image processing and text processing. Full-size k&l DOL: 10.7717/peerj-cs.2262/fig-1

2,500 million words long. During its training, BERT uses two main strategies: masked
language model (LLM) and next sentence prediction (NSP). While LLM randomly masks
15% of the words in a sentence and then predicts the masked words based on the context
provided by the other non-masked words in the sentence, NSP also learns to predict
whether two given segments of text naturally follow each other, which helps it
understand the relationship between consecutive sentences. After the pretraining, BERT
can be fine-tuned with just one additional output layer for various NLP tasks without
substantial task-specific architecture modifications. For textual information extraction,
BERT evaluates the context of words and sentences in the text thoroughly, which enables
it to extract entities, relationships, sentiments, or any other information effectively. This
ability to process words in relation to all other words in a sentence allows BERT to
establish a nuanced understanding of language nuances and complexities, leading to
more accurate extraction of textual information for tasks such as sentiment analysis,
entity recognition, summarization, and question answering. The maximum length of the
text is set to 300. The input text and attention mask have a size of 1 x 300. After passing
through the BERT-based pretrained model, the output vector with a size of 1 x 768 is
returned, which is then passed through the next linear layer.
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Convolutional block

Before entering the convolutional (Conv) block, the input image (Xinpy) With a size of
224 x 224 x 3 enters the first Conv2D layer (Conv2D), specified by a kernel size of 3 x 3,
to create a corresponding feature map (Xcony) with a size of 112 x 112 x 16. This feature
map is the input of these next Conv blocks. Our Conv block, with its sequence of layers,
effectively enhances the network’s capability to extract and learn robust feature
representations. Each Conv block two Conv layers termed as Conv2D,; and Conv2D,,
respectively. The activated feature map (Xyctivated_conv) 18 then consecutively passed through
three Conv blocks, represented mathematically as:

Xnorm1 = BatchNorm(Xcony1) = BatchNorm(Conv2D (Xactivated_conv) ) (1)

where X, ,orm1 is the normalized feature map obtained after the feature map (Xcony1) are
passed through the BatchNorm layer. The BatchNorm layer standardizes the activations
from the previous layer, improving training stability and speed. After normalization, the
ReLU activation function is applied on, introducing non-linearity and allowing the
network to learn complex patterns.

Next, the activated output passes through another Conv2D layer (Conv2D,), further
processing the features to create the secondary feature map (Xconv2) with the same size as
primary feature map (Xconv1):

Xeonv2 = Conv2D;(ReLU(Xporm1))- (2)

Finally, the secondary feature map Xcopny2 is normalized in another BatchNorm layer
and complete the block:

Xeconv_out_i = BatchNorm (Xconvz ) , (3 )

where Xcony_out_i (i = {1, 2, 3}) is the final output of the Conv block. The sizes of the
convoluted outputs Xcony_out_i are gradually reduced from 112 x12 to 56 x 56, and finally
to 28 x 28 while the output’s depth increases from 16 to 32.

Transformer block

The Transformer block is developed by a sequence of layers designed to process input data
effectively. The input of the Transformer block is the output feature map of the third Conv
block (Xconv_out_3)- Initially, the input passes through a 2D convolutional layer
(Conv2Dr), mathematically represented as:

Heonvr = ReLU(COHVZDT (Xconv_out_3 ) ) s (4)

where Hconyri is the output feature map. After passing the first Conv2D layer, the output
Honvri is fed into the Transformer layer. The core of the Transformer layer is the self-
attention mechanism, which can be formulated as:

Attention(Q, K, V) = softmax <QKT> \% (5)
n Vi)
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In this formula, Q, K, and V represent the queries, keys, and values matrices,
respectively, derived from Xcony1, and d is the dimensionality of the keys. The output from
the Transformer layer, denoted as Hyyaps, is then processed through another Conv2D layer
(Conv2Dr,), followed by a ReLU activation function, yielding the final output Hyypu with
the same size as the input. This process can be described mathematically as:

Houtput = ReLU(Conv2D7; (Hyrans))- (6)

Our Transformer block, characterized by its integration of Conv layers and a
Transformer layer, is strategically engineered to harness both local and global
dependencies within the dataset. This dual-layer architecture ensures a comprehensive
analysis, where the Conv layers focus on extracting spatial features by recognizing patterns
and textures in the data, while the Transformer layer excels in capturing the global context,
enabling the model to understand broader relationships and dependencies. This synergy
enhances the model’s ability to discern nuanced features and relationships that are crucial
for complex data interpretation tasks. The Conv layers, with their inherent strength in
dealing with structured data, process the input in a hierarchical manner, identifying local
features at various levels of abstraction. The Transformer layer, on the other hand, employs
attention mechanisms to weigh and integrate these features across the entire input space,
thus providing a dynamic and context-aware processing capability. This combination not
only improves the accuracy of feature extraction but also increases the robustness of the
model, making it adaptable to a wide range of scenarios. By effectively capturing and
integrating both the detailed and overarching elements of the data, our Transformer block
is suitable for advanced analytical tasks. It paves the way for more sophisticated processing
strategies, potentially leading to breakthroughs in various applications such as image
recognition (Zhou et al., 2024; Zhao et al., 2021; Wang et al., 2021; Hu et al., 2021), NLP
(Wolf et al., 2020b, 2020a; Kalyan, Rajasekharan & Sangeetha, 2021), and predictive
analytics (Kabir, Foggo & Yu, 2018; Bukhsh, Saeed & Dijkman, 2021; Park et al., 2023).
Comprehending the complex interaction between local and global data characteristics is
essential for obtaining the most effective outcomes.

DATASET

The dataset used in this study was collected from Mouzannar, Rizk ¢ Awad (2018). A
collection of 5,879 images with captions from social media depicting damage caused by
natural disasters or wars is categorized into six classes: Fires, Floods, Natural Landscapes,
Infrastructure, Human, and Non-damage. According to Mouzannar, Rizk & Awad (2018),
the refined dataset was processed via multiple steps. Social media platforms (e.g.,
Instagram, Twitter, and Facebook) often serve as initial sources for reporting emergency
and crisis events and providing crucial information. However, the challenge lies in the
overwhelming presence of irrelevant or uninformative content, complicating the
extraction of useful information for emergency response teams (Olteanu, Vieweg &
Castillo, 2015). Efforts have been made to filter disaster-specific content on Twitter,
analyzing both the textual tweets (Abel et al., 2012; Chowdhury et al., 2013; Olteanu,
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Vieweg ¢ Castillo, 2015; Jomaa, Rizk ¢» Awad, 2016) and their associated images (Jomaa,
Rizk & Awad, 2016; Alam, Imran & Ofli, 2017). For a sample, it is represented by a pair of
image and text (Fig. 2).

This dataset was constructed with a particular focus on Instagram as it is inherently
suited for the scope of the study, and since these posts primarily exist as captioned images,
the process of correlating text with visual content is simplified. To ensure a comprehensive
representation of crisis-related images and captions, data were gathered using more than
100 hashtags across various time frames. Additionally, the textual data was enriched by
incorporating informative tweets from the CrisisLexT26 dataset (Olteanu, Vieweg ¢
Castillo, 2015) and tweets related to human and infrastructure damage from the CrisisNLP
dataset (Imran, Mitra ¢» Castillo, 2016). The image dataset was expanded by including
images obtained from Google searches using the same keywords and hashtags. To remove
captioned images that were not relevant, a multimodal decision-based system was
employed. The system processed the caption through a text relevancy model and the image
through an image relevancy model. When both models concurred on relevancy, the
captioned image was then classified into the appropriate category. If there was a
discrepancy between the text and image relevancy, they were categorized separately. For a
captioned image, if both its text and image matched the respective elements of another
post, it was then removed from the dataset. After removing duplicates, the refined dataset
was finalized with 5,830 samples. Table 1 gives information on the refined dataset for
model training and testing.

RESULTS AND DISCUSSION

Model benchmarking
To fairly assess the prediction efficiency of our proposed method against other existing
state-of-the-art (SOTA) methods, we compared our model with three others, whose IP
components were developed using the AlexNet (Krizhevsky, Sutskever ¢» Hinton, 2017),
VGG16 (Conneau et al., 2017), and ResNet50 (He et al., 2016) architectures. These SOTA
models being compared have the same architecture in the TP components, while in the IP
components, the AlexNet, VGG16, and ResNet50 pre-trained models were used to extract
the image features. In addition to SOTA models developed using both image and textual
data, we implemented three models processing only image data and three models
processing only textual data as baseline models. For the development of image-only
models, we still utilized the AlexNet, VGG16, and ResNet50 architectures. To develop text-
only models, we used two other architectures: the Cross-lingual Language Model (XLM)
(Lample & Conneau, 2019) and the Robustly Optimized BERT Pretraining Approach
(RoBERTa) (Liu et al., 2019) beside the BERT architecture used in our proposed method.
The efficacy of our models was assessed using various evaluation metrics. We evaluated
other metrics such as accuracy, precision, recall, and F1 scores (F1), all of which were
computed using a default threshold of 0.5. Table 2 presents the performance comparisons
of these models.

Experimental results indicate that our proposed method achieves superior performance
in terms of accuracy, recall, and F1 score. Our model achieves an accuracy of 0.8473,
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Text Sample

Here's some video of the smoldering ruins in White Hall, IL. When | left | smelled like a
campfire. 3 massive buildings destroyed by a giant fire. A local woman told me about it all.
Just unbelievably sad. So much history and such a historic loss in a really small town.

Hashtag

Figure 2 The text and image sample (ID: buildingfire 2017-02-05 04-06-10). The dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license and is available at DOI: 10.
24432/C52P6P. Full-size K&l DOT: 10.7717/peerj-cs.2262/fig-2

outperforming those developed with ResNet50, VGG16, and AlexNet. The precision of the
ResNet50-based model is slightly higher than ours but significantly higher than the others.
The recall for the VGG16-based model is second only to ours and exceeds both the
AlexNet-based and ResNet50-based models. The F1 scores for the VGG16-based and
ResNet50-based models are nearly the same, at approximately 0.76, but still lower than
ours. The performance of the AlexNet-based model indicates that the IP component with
the AlexNet architecture is less effective in extracting image features. Although the IP
components using VGG16 and ResNet50 architectures show better performance than
AlexNet, they still fall short of our method. Moreover, the results suggest that image-only
models are less effective than text-only models, and both show lower performance
compared to models developed by combining both types of data.

Although ResNet50, VGG16, and AlexNet are well-known CNN-based architectures
that have significantly advanced the field of image processing and recognition, our model
integrates the strengths of CNNs in capturing local patterns and the Transformer’s
prowess in modeling long-range dependencies. This hybrid model leverages the spatial
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Table 1 Refined dataset for model training and testing.
Data Category

Fires Floods Natural landscapes Infrastructure Human Non-damage Total

Training 308 282 416 1,111 192 2,413 4,722
Validation 40 34 48 137 20 246 525
Test 36 30 50 142 28 297 583
Total 384 346 514 1,390 240 2,956 5,830

Table 2 The performance of all the models.

Type data Model Accuracy Precision Recall F1 score
Image VGG16 0.7101 0.6988 0.5567 0.5467
ALexNet 0.7479 0.6551 0.6406 0.6388
ResNet50 0.7530 0.6912 0.5941 0.5997
Text BERT 0.7616 0.7214 0.6308 0.6649
XML 0.7461 0.7135 0.5976 0.6197
RoBERTa 0.7496 0.6606 0.6433 0.6438
Image + Text AlexNet + BERT 0.7770 0.7225 0.7095 0.7119
VGG16 + BERT 0.8216 0.8042 0.7408 0.7680
ResNet50 + BERT 0.8216 0.8562 0.7090 0.7620
Our method 0.8473 0.8530 0.7564 0.7947

hierarchies learned by CNNs and the global context captured by Transformers, offering a
more holistic understanding of the data. Such a combination not only addresses the
limitations of purely convolutional or purely attention-based methods but also leads to
superior performance in tasks requiring nuanced understanding and integration of both
local and global features, showcasing the significant advantage of the Convolutional-
Transformer combinatory model over traditional CNN architectures like ResNet50,
VGG16, and AlexNet.

Statistical analysis

To provide statistical evidence on the stability of the proposed method, we repeated the
experiment five times and recorded the performance of each trial. For each trial, the
experiment was randomly resampled to create different training, validation, and test
datasets. These datasets for model development and evaluation were independent of each
other. Table 3 summarizes the results of the modeling experiment over five trials. The
findings demonstrate that our proposed method is stable and reproducible with low
variance over multiple trials with different sets of sampled data.

Limitations
Besides preliminary achievements, multi-modal deep learning models like ours have
several limitations. Properly aligning and synchronizing the data is challenging, and the
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Table 3 The performance of the proposed model over five different trials.

Trial Accuracy Precision Recall F1 score
1 0.8473 0.8530 0.7564 0.7947
2 0.8542 0.8635 0.7553 0.7997
3 0.8611 0.8539 0.7719 0.8063
4 0.8508 0.8601 0.7751 0.8035
5 0.8370 0.8087 0.7658 0.7822
Mean 0.8501 0.8479 0.7649 0.7973
Standard deviation 0.0079 0.0200 0.0080 0.0085

increased model complexity may lead to extensive computational costs and elongated
training times. Extracting meaningful features from both modalities is difficult, raising the
risk of overfitting. Furthermore, interpreting these multi-modal models is harder than
single-modal ones since the roles of texts and images in each sample vary. In certain cases,
the text may contain more information while the image has less (e.g., blurry, low-quality),
and vice versa. Finally, understanding domain knowledge is highly essential to improving
the training strategy and enhancing the model’s generalizability.

CONCLUSION

In our study, we proposed a robust method for detecting damage from social media posts,
combining both textual and visual information to enrich the feature set. The image features
capture specific regions of destruction, while text features provide insights into the severity
or urgency of the cases. Our model is characterized by its IP component. Comparative
analysis has shown that our IP component performs better than those developed with
existing SOTA architectures. This method could be expanded in the future to integrate
additional information (e.g., human voice, ambient sounds) to further enhance
performance. The blend of Transformer and convolutional layers in our approach captures
both detailed and broad data aspects, providing a strong foundation for complex analysis.
This synergy paves the way for advanced processing methods and innovations across
various fields, with a critical understanding of the interplay between local and global data
features essential for maximizing performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The study was supported by the National Social Science Foundation of China (Project
number: 22BXW016). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Social Science Foundation of China: 22BXWO016.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2262 1217


http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

PeerJ Computer Science

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

» Jiale Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Manyu Liao conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

* Yanping Wang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Yifan Huang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

 Fuyu Chen conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

» Chiba Makiko conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The data used in this study is available at the University of Irvine:
Mouzannar,Hussein, Rizk,Yara, and Awad,Mariette. (2018). Multimodal Damage
Identification for Humanitarian Computing. UCI Machine Learning Repository. https://
doi.org/10.24432/C52P6P.
The Python code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2262#supplemental-information.

REFERENCES

Abdel-Hamid O, Mohamed A-R, Jiang H, Deng L, Penn G, Yu D. 2014. Convolutional neural
networks for speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 22(10):1533-1545 DOI 10.1109/TASLP.2014.2339736.

Abel F, Hauff C, Houben GJ, Stronkman R, Tao K. 2012. Semantics + filtering + search =
twitcident. exploring information in social web streams. In: Proceedings of the 23rd ACM
Conference on Hypertext and Social Media, HT 12. New York: ACM.

Alam F, Imran M, Ofli F. 2017. Image4Act: online social media image processing for disaster
response. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM 17. New York: ACM.

Alghtani SM, Luo S, Regan B. 2015. Fusing text and image for event detection in Twitter. ArXiv
7(1):27-35 DOI 10.5121/ijma.2015.7103.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2262 13/17


https://doi.org/10.24432/C52P6P
https://doi.org/10.24432/C52P6P
http://dx.doi.org/10.7717/peerj-cs.2262#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2262#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2262#supplemental-information
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.5121/ijma.2015.7103
http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

PeerJ Computer Science

Ashktorab Z, Brown C, Nandi M, Culotta A. 2014. Tweedr: mining Twitter to inform disaster
response. In: International Conference on Information Systems for Crisis Response and
Management.

Asif A, Khatoon S, Hasan MM, Alshamari MA, Abdou S, Elsayed KM, Rashwan M. 2021.
Automatic analysis of social media images to identify disaster type and infer appropriate
emergency response. Journal of Big Data 8(1):1 DOI 10.1186/s40537-021-00471-5.

Barton L. 1994. Crisis management: preparing for and managing disasters. Cornell Hotel and
Restaurant Administration Quarterly 35(2):59-65 DOI 10.1177/001088049403500219.

Breen WA, Ida AM, Vidhya MQM. 2016. Implementation of speedy emergency alert using tweet
analysis. Indian Journal of Science and Technology 9(11):1-5
DOI 10.17485/ijst/2016/v9i11/89390.

Bukhsh ZA, Saeed A, Dijkman RM. 2021. ProcessTransformer: predictive business process
monitoring with transformer network. ArXiv preprint DOI 10.48550/arXiv.2104.00721.

Caragea C, Mcneese NJ, Jaiswal AR, Traylor GW, Kim HW, Mitra P, Wu D, Tapia AH, Giles L,
Jansen BJ, Yen J. 2011. Classifying text messages for the Haiti earthquake. In: International
Conference on Information Systems for Crisis Response and Management.

Chowdhury SR, Imran M, Asghar MR, Amer-Yahia S, Castillo C. 2013. Tweet4act: using
incident-specific profiles for classifying crisis-related messages. In: International Conference on
Information Systems for Crisis Response and Management.

Conneau A, Schwenk H, Barrault L, Lecun Y. 2017. Very deep convolutional networks for text
classification. In: Lapata M, Blunsom P, Koller A, eds. Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. New
York: Association for Computational Linguistics, 1107-1116.

Coppi G, Moreno Jimenez R, Kyriazi S. 2021. Explicability of humanitarian Al: a matter of
principles. Journal of International Humanitarian Action 6(1):19
DOI 10.1186/541018-021-00096-6.

Cresci S, Cimino A, Dell’Orletta F, Tesconi M. 2015. Crisis mapping during natural disasters via
text analysis of social media messages. Berlin, Germany: Springer International Publishing, 250-
258 DOI 10.1007/978-3-319-26187-4_21.

Dang W, Cai L, Liu M, Li X, Yin Z, Liu X, Yin L, Zheng W. 2023. Increasing text filtering
accuracy with improved LSTM. Computing and Informatics 42(6):1491-1517
DOI 10.31577/cai_2023_6_1491.

Devlin J, Chang M-W, Lee K, Toutanova K. 2018. BERT: Pre-training of deep bidirectional
transformers for language understanding. ArXiv preprint DOI 10.48550/arXiv.1810.04805.
dos Santos C, Gatti M. 2014. Deep convolutional neural networks for sentiment analysis of short
texts. In: Tsujii J, Hajic ], eds. Proceedings of the 25th International Conference on Computational

Linguistics: Technical Papers (COLING 2014). Dublin, Ireland: Dublin City University and
Association for Computational Linguistics, 69-78.

Fan C, Wu F, Mostafavi A. 2020. A hybrid machine learning pipeline for automated mapping of
events and locations from social media in disasters. IEEE Access 8:10478-10490
DOI 10.1109/ACCESS.2020.2965550.

Glorot X, Bordes A, Bengio Y. 2011. Domain adaptation for large-scale sentiment classification: a
deep learning approach. In: Proceedings of the 28th International Conference on International
Conference on Machine Learning ICML 11. Madison: Omnipress, 513-520.

Guillaumin M, Verbeek J, Schmid C. 2010. Multimodal semi-supervised learning for image
classification. In: The 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2262 14/17


http://dx.doi.org/10.1186/s40537-021-00471-5
http://dx.doi.org/10.1177/001088049403500219
http://dx.doi.org/10.17485/ijst/2016/v9i11/89390
http://dx.doi.org/10.48550/arXiv.2104.00721
http://dx.doi.org/10.1186/s41018-021-00096-6
http://dx.doi.org/10.1007/978-3-319-26187-4_21
http://dx.doi.org/10.31577/cai_2023_6_1491
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.1109/ACCESS.2020.2965550
http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

PeerJ Computer Science

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770-778.

Hu Y, Jin X, Zhang Y, Hong H, Zhang J, He Y, Xue H. 2021. RAMS-Trans: recurrent attention
multi-scale transformer for fine-grained image recognition. In: Proceedings of the 29th ACM
International Conference on Multimedia, MM 21. New York: ACM.

Imran M, Castillo C, Lucas J, Meier P, Rogstadius J. 2014. Coordinating human and machine
intelligence to classify microblog communications in crises. In: International Conference on
Information Systems for Crisis Response and Management.

Imran M, Mitra P, Castillo C. 2016. Twitter as a lifeline: human-annotated Twitter corpora for
NLP of crisis-related messages. ArXiv preprint DOI 10.48550/arXiv.1605.05894.

Imran M, Ofli F, Caragea D, Torralba A. 2020. Using Al and social media multimodal content for
disaster response and management: opportunities, challenges, and future directions.
Information Processing & Management 57(5):102261 DOI 10.1016/j.ipm.2020.102261.

Jomaa HS, Rizk Y, Awad M. 2016. Semantic and visual cues for humanitarian computing of
natural disaster damage images. In: The 12th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS 2016). Piscataway: IEEE, 404-411.

Kabir F, Foggo B, Yu N. 2018. Data driven predictive maintenance of distribution transformers.
In: 2018 China International Conference on Electricity Distribution (CICED). Piscataway: IEEE.

Kalyan KS, Rajasekharan A, Sangeetha S. 2021. AMMUS: a survey of transformer-based
pretrained models in natural language processing. ArXiv preprint
DOI 10.48550/arXiv.2108.05542.

Kaufhold M-A, Bayer M, Reuter C. 2020. Rapid relevance classification of social media posts in
disasters and emergencies: a system and evaluation featuring active, incremental and online
learning. Information Processing & Management 57(1):102132 DOI 10.1016/j.ipm.2019.102132.

Kim Y. 2014. Convolutional neural networks for sentence classification. ArXiv preprint
DOI 10.48550/arXiv.1408.5882.

Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional
neural networks. Communications of the ACM 60(6):84-90 DOI 10.1145/3065386.

Lai S, Xu L, Liu K, Zhao J. 2015. Recurrent convolutional neural networks for text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 29.

Lample G, Conneau A. 2019. Cross-lingual language model pretraining. ArXiv preprint
DOI 10.48550/arXiv.1901.07291.

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553):436-444
DOI 10.1038/nature14539.

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V.
2019. RoBERT4a: a robustly optimized BERT pretraining approach. ArXiv preprint
DOI 10.48550/arXiv.1907.11692.

Meng S, Mozumder P. 2021. Hurricane Sandy: damages, disruptions and pathways to recovery.
Economics of Disasters and Climate Change 5(2):223-247 DOI 10.1007/s41885-021-00082-7.
Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013. Distributed representations of words

and phrases and their compositionality. Advances in Neural Information Processing Systems, 26.

Mirbabaie M, Bunker D, Stieglitz S, Marx J, Ehnis C. 2020. Social media in times of crisis:
learning from Hurricane Harvey for the coronavirus disease 2019 pandemic response. Journal of
Information Technology 35(3):195-213 DOI 10.1177/0268396220929258.

Mouzannar H, Rizk Y, Awad M. 2018. Damage identification in social media posts using
multimodal deep learning. In: ISCRAM. Rochester, NY, USA.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2262 15/17


http://dx.doi.org/10.48550/arXiv.1605.05894
http://dx.doi.org/10.1016/j.ipm.2020.102261
http://dx.doi.org/10.48550/arXiv.2108.05542
http://dx.doi.org/10.1016/j.ipm.2019.102132
http://dx.doi.org/10.48550/arXiv.1408.5882
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.48550/arXiv.1901.07291
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.1007/s41885-021-00082-7
http://dx.doi.org/10.1177/0268396220929258
http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

PeerJ Computer Science

Muhammed TS, Mathew SK. 2022. The disaster of misinformation: a review of research in social
media. International Journal of Data Science and Analytics 13(4):271-285
DOI 10.1007/s41060-022-00311-6.

Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A. 2011. Multimodal deep learning. In:
International Conference on Machine Learning.

Nguyen DT, Mannai KAA, Joty S, Sajjad H, Imran M, Mitra P. 2016. Rapid classification of
crisis-related data on social networks using convolutional neural networks. ArXiv e-prints
DOI 10.48550/arXiv.1608.03902.

Nguyen DT, Ofli F, Imran M, Mitra P. 2017. Damage assessment from social media imagery data
during disasters. In: The IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2017). Piscataway: IEEE, 569-576.

Olteanu A, Vieweg S, Castillo C. 2015. What to expect when the unexpected happens: social
media communications across crises. In: Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, CSCW 15. New York: ACM.

Park ], Babaei MR, Munoz SA, Venkat AN, Hedengren JD. 2023. Simultaneous multistep
transformer architecture for model predictive control. Computers ¢» Chemical Engineering
178(7):108396 DOI 10.1016/j.compchemeng.2023.108396.

Phengsuwan J, Shah T, Thekkummal NB, Wen Z, Sun R, Pullarkatt D, Thirugnanam H,
Ramesh MV, Morgan G, James P, Ranjan R. 2021. Use of social media data in disaster
management: a survey. Future Internet 13(2):46 DOI 10.3390/113020046.

Poria S, Cambria E, Howard N, Huang G-B, Hussain A. 2016. Fusing audio, visual and textual
clues for sentiment analysis from multimodal content. Neurocomputing 174(1):50-59
DOI 10.1016/j.neucom.2015.01.095.

Ramachandram D, Taylor GW. 2017. Deep multimodal learning: a survey on recent advances and
trends. IEEE Signal Processing Magazine 34(6):96-108 DOI 10.1109/MSP.2017.2738401.

Ritchie BW, Jiang Y. 2021. Risk, crisis and disaster management in hospitality and tourism: a
comparative review. International Journal of Contemporary Hospitality Management
33(10):3465-3493 DOI 10.1108/IJCHM-12-2020-1480.

Sakaki T, Okazaki M, Matsuo Y. 2013. Tweet analysis for real-time event detection and
earthquake reporting system development. IEEE Transactions on Knowledge and Data
Engineering 25(4):919-931 DOI 10.1109/TKDE.2012.29.

Saroj A, Pal S. 2020. Use of social media in crisis management: a survey. International Journal of
Disaster Risk Reduction 48(6):101584 DOI 10.1016/.ijdrr.2020.101584.

Shen Y, He X, Gao J, Deng L, Mesnil G. 2014. Learning semantic representations using
convolutional neural networks for web search. In: Proceedings of the 23rd International
Conference on World Wide Web, WWW 14. New York: ACM.

Srivastava N, Salakhutdinov RR. 2012. Multimodal learning with deep Boltzmann machines.
Advances in Neural Information Processing Systems, 25.

Sufi FK, Khalil I. 2022. Automated disaster monitoring from social media posts using Al-based
location intelligence and sentiment analysis. I[EEE Transactions on Computational Social Systems
1-11 DOI 10.1109/TCSS.2022.3157142.

Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2017. Inception-v4, Inception-ResNet and the impact
of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 31, No. 1.

Vinyals O, Toshev A, Bengio S, Erhan D. 2015. Show and tell: a neural image caption generator.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 3156-3164.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2262 16/17


http://dx.doi.org/10.1007/s41060-022-00311-6
http://dx.doi.org/10.48550/arXiv.1608.03902
http://dx.doi.org/10.1016/j.compchemeng.2023.108396
http://dx.doi.org/10.3390/fi13020046
http://dx.doi.org/10.1016/j.neucom.2015.01.095
http://dx.doi.org/10.1109/MSP.2017.2738401
http://dx.doi.org/10.1108/IJCHM-12-2020-1480
http://dx.doi.org/10.1109/TKDE.2012.29
http://dx.doi.org/10.1016/j.ijdrr.2020.101584
http://dx.doi.org/10.1109/TCSS.2022.3157142
http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

PeerJ Computer Science

Wang Y, Huang R, Song S, Huang Z, Huang G. 2021. Not all images are worth 16x16 words:
dynamic transformers for efficient image recognition. In: Ranzato M, Beygelzimer A,
Dauphin Y, Liang P, Vaughan JW, eds. Advances in Neural Information Processing Systems. Vol.
34. New York: Curran Associates, Inc, 11960-11973.

Wang D, Zhang W, Wu W, Guo X. 2023. Soft-label for multi-domain fake news detection. IEEE
Access 11(8):98596-98606 DOI 10.1109/ACCESS.2023.3313602.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R,
Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T,
Gugger S, Drame M, Lhoest Q, Rush A. 2020a. Transformers: State-of-the-art natural language
processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. New York: Association for Computational Linguistics.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R,
Funtowicz M, Davison J. 2020b. Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, 38-45.

Wut TM, Xu JB, Wong S-m. 2021. Crisis management research (1985-2020) in the hospitality and
tourism industry: a review and research agenda. Tourism Management 85(1):104307
DOI 10.1016/j.tourman.2021.104307.

Yang S, Jin Y, Lei J, Zhang S. 2024. Multi-directional guidance network for fine-grained visual
classification. The Visual Computer 1-12 DOI 10.1007/s00371-023-03226-w.

Yuan F, Li M, Liu R, Zhai W, Qi B. 2021. Social media for enhanced understanding of disaster
resilience during Hurricane Florence. International Journal of Information Management
57(3):102289 DOI 10.1016/j.jjinfomgt.2020.102289.

Zhang X, Ding X, Ma L. 2020. The influences of information overload and social overload on
intention to switch in social media. Behaviour & Information Technology 41(2):228-241
DOI 10.1080/0144929X.2020.1800820.

Zhang X, Zhao J, LeCun Y. 2015. Character-level convolutional networks for text classification.
Advances in Neural Information Processing Systems, 28.

Zhao J, Yan K, Zhao Y, Guo X, Huang F, Li J. 2021. Transformer-based dual relation graph for
multi-label image recognition. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Piscataway: IEEE, 163-172.

Zhou T, Gao L, Hua R, Zhou J, Li J, Guo Y, Zhang Y. 2024. Fine-grained image recognition
method for digital media based on feature enhancement strategy. Neural Computing and
Applications 36(5):2323-2335 DOI 10.1007/500521-023-08968-1.

Zou L, Liao D, Lam NS, Meyer MA, Gharaibeh NG, Cai H, Zhou B, Li D. 2023. Social media for
emergency rescue: an analysis of rescue requests on Twitter during Hurricane Harvey.
International Journal of Disaster Risk Reduction 85(1):103513 DOI 10.1016/.ijdrr.2022.103513.

Zhang et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2262 1717


http://dx.doi.org/10.1109/ACCESS.2023.3313602
http://dx.doi.org/10.1016/j.tourman.2021.104307
http://dx.doi.org/10.1007/s00371-023-03226-w
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102289
http://dx.doi.org/10.1080/0144929X.2020.1800820
http://dx.doi.org/10.1007/s00521-023-08968-1
http://dx.doi.org/10.1016/j.ijdrr.2022.103513
http://dx.doi.org/10.7717/peerj-cs.2262
https://peerj.com/computer-science/

	Multi-modal deep learning framework for damage detection in social media posts
	Introduction
	Method
	Dataset
	Results and discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


