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ABSTRACT
Point clouds are highly regarded in the field of 3D object detection for their superior
geometric properties and versatility. However, object occlusion and defects in
scanning equipment frequently result in sparse and missing data within point clouds,
adversely affecting the final prediction. Recognizing the synergistic potential between
the rich semantic information present in images and the geometric data in point
clouds for scene representation, we introduce a two-stage fusion framework (TSFF)
for 3D object detection. To address the issue of corrupted geometric information in
point clouds caused by object occlusion, we augment point features with image
features, thereby enhancing the reference factor of the point cloud during the voting
bias phase. Furthermore, we implement a constrained fusion module to selectively
sample voting points using a 2D bounding box, integrating valuable image features
while reducing the impact of background points in sparse scenes. Our methodology
was evaluated on the SUNRGB-D dataset, where it achieved a 3.6 mean average
percent (mAP) improvement in the mAP@0.25 evaluation criterion over the
baseline. In comparison to other great 3D object detection methods, our method had
excellent performance in the detection of some objects.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Point cloud, RGB image, Cross-modal, Object detection

INTRODUCTION
The advancement of computer vision has significantly enhanced various aspects of human
life, with 3D object detection emerging as a crucial subfield with widespread applications in
autonomous driving, assistive robotics, and numerous other tasks. The goal of 3D object
detection is to localize and identify objects within a scene, which necessitates efficient scene
understanding. Conventional research approach involves using RGB images as input
(Guizilini et al., 2020; Chen et al., 2021; Wang et al., 2021b; Huang et al., 2022a; Liu et al.,
2022; Zhang et al., 2023a; Wang et al., 2022c; Li et al., 2023). These methods use depth
estimation to compute depth information from RGB images, thereby simulating the spatial
coordinates of pixels in the 3D space to assist in 3D detection tasks. Although RGB images
provide rich texture and semantic information, 3D object detection emphasizes the need
for spatial depth, and the lack of depth information significantly impairs the effectiveness
of RGB images in 3D detection tasks. Compared to RGB images, point cloud data preserves
the geometric structure of objects in 3D space, with each point’s 3D coordinates
representing the corresponding depth information. Recent 3D object detection tasks
primarily use point clouds as input (Qi et al., 2019; Wang et al., 2021a; Liu et al., 2021;
Zhang et al., 2023b; Huang et al., 2022b; Hu et al., 2023), utilizing the geometric features of

How to cite this article Jiang G, Li S, Huang Z, Cai G, Su J. 2024. TSFF: a two-stage fusion framework for 3D object detection. PeerJ
Comput. Sci. 10:e2260 DOI 10.7717/peerj-cs.2260

Submitted 11 March 2024
Accepted 23 July 2024
Published 23 August 2024

Corresponding author
Jinhe Su, sujh@jmu.edu.cn

Academic editor
Simone Fontana

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.2260

Copyright
2024 Jiang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2260
mailto:sujh@�jmu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2260
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


3D data to achieve outstanding detection results. However, due to the limitations of data
acquisition methods and sensor errors, the sparsity of point clouds and data loss pose
significant challenges to 3D object detection tasks using point clouds.

Figure 1 illustrates two indoor point cloud scenes. The missing points in the point cloud
lead to significant empty areas on the table surface (see Fig. 1B), severely compromising the
geometric integrity of the table. Additionally, mutual occlusion between objects results in
sparse point clouds of target objects (see Fig. 1F). VoteNet (Qi et al., 2019) attempts to
address this by using point clouds as input, voting to cluster points towards object centers
and selecting object centers through a region aggregation module. However, the
aggregation mechanism often fails to handle neighboring object centers properly, leading
to erroneous predictions (see Figs. 1C, 1G). Some methods (Cheng et al., 2021; Yu et al.,
2023; Wang et al., 2022a) have tried to address feature sparsity by leveraging geometric
relationships in surrounding point clouds on top of voting. Nonetheless, the inherent lack
of semantic information in point cloud data limits their ability to capture the relationships
between objects within a scene. Early studies (Ren & Sudderth, 2016; Lahoud & Ghanem,
2017; Song & Xiao, 2016) attempted to integrate semantic features from RGB images with
point features, but the coarse feature matching resulted in suboptimal detection
performance. Cross-modal feature fusion has become a popular research topic in 3D object
detection as natural language processing has achieved success in image and text features.
PointFusion (Xu, Anguelov & Jain, 2018) employs two branches to separately process RGB
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Figure 1 The 3D scene under the point cloud suffers from sparse and missing data under the
influence of object occlusion and scanning equipment. Facing point clouds with corrupted geo-
metry, the prediction ability of VoteNet for object categories is insufficient (C, G). In contrast, our
proposed method demonstrates superior performance (D, H). (A, E) Ground truth for both scenes. For a
more intuitive representation of the point cloud scene, the background points of the floor (B, F) are
optimized and viewed from the top. Figure source credit: SUN RGB-D dataset.
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images and point cloud data, using a fusion network to directly predict object positions
and categories. EPNet (Huang et al., 2020) attempts to achieve point-wise fusion of image
features and point features using point-guided methods. However, the sparsity of point
clouds inherently limits the utilization of image features, and the distinct characteristics of
each data modality make effective fusion challenging. Therefore, this article investigates
the effective use of image semantic features to enhance point cloud features, aiming to
achieve more effective indoor 3D object detection.

In this article, we explore the supplementary role of images in 3D object detection and
propose a two-stage fusion framework tailored for this task. Addressing the challenge
posed by sparse point clouds on object surfaces, which results in a scarcity of available
point features, we introduce a voting fusion module. This module projects seed points onto
the 2D image of the corresponding scene using a mapping matrix to obtain the respective
pixel coordinate points. Subsequently, the image features at these pixels are extracted and
combined with the point features, serving as inputs for the voting stage. Our aim is to
leverage the rich semantic features to enhance the voting set by biasing the process towards
gathering more points related to the target object. To mitigate the impact of background
noise points on the final detection, we designed a constraint fusion module. This module
restricts the selection of 3D voting points using the 2D detection frame obtained from the
2D detection head, aiming to retain as many foreground points within the voting set as
possible while discarding the background points. Additionally, the bias introduced by the
voting operation causes some mapping coordinates to exceed the image boundaries. To
address this, we normalize the pixel coordinates of these mapping points, ensuring they fall
within the image limits. To further enhance the expressiveness of the point features, we
perform an additional round of feature fusion. Subsequently, the secondary fused point
features are used as inputs for the sampling aggregation operation to predict the 3D object.
Finally, 3D non-maximum suppression (NMS) is employed to select the prediction results
with high confidence.

Our key contributions are as follows:

. In scenarios characterized by sparse available point features, image features are fused
with seed point features to ensure that the voting points are more significantly influenced
during the bias adjustment phase.

. A constraint fusion module is introduced to refine the selection of voting points and
reduce the interference from background points.

RELATED WORK
3D object detection has advanced due to technological progress in sensor devices. Over the
past decade, researchers have employed stereo cameras to capture images enriched with
depth information. These images are utilized to estimate the geometric coordinates of
pixels in 3D space, facilitating 3D object detection. With the emergence of point cloud data
types, detection methodologies in various scenarios have evolved into point-based and
voxel-based approaches.
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Point cloud based 3D object detection: Point clouds possess rich spatial geometric
information, which indirectly results in their large data volume. To efficiently process
point cloud data from different scenes, they are typically categorized into point-based
methods (Xie et al., 2020; You et al., 2022; Zhao & Qi, 2022; Liang, An & Ma, 2022; Duan
et al., 2022;Wang et al., 2022b; Shen et al., 2023;Wei et al., 2023) and voxel-based methods
(Yin, Zhou & Krahenbuhl, 2021; Zheng et al., 2022; Fan et al., 2022b, 2022a;Wu et al., 2023;
Fan et al., 2023) based on their representation forms. Point-based methods use raw point
clouds as input. MLCVNet (Xie et al., 2020) processes point features enhanced by a self-
attention mechanism, performs voting, and integrates multi-scale features to capture scene
context. However, this approach overlooks the interference of background noise on the
voting points. RGBNet (Wang et al., 2022b) addresses the issue of background point
interference leading to voting bias and ineffective utilization of surface point clouds by
focusing on how the surface geometry of foreground objects aids in the voting grouping. It
aggregates point-wise features of object surfaces using uniform rays emitted from
clustering centers and employs a foreground-biased sampling strategy to obtain more
surface point clouds. Nevertheless, in practice, foreground point clouds are often sparse,
resulting in inaccurately angled prediction boxes. CanVote (You et al., 2022) decomposes
the direct offset during the voting process, constrains the prediction of the target box
direction with a local normalized coordinate system, and eliminates erroneous predictions
through reverse projection. Voxel-based methods are predominantly used for outdoor
open scenes. Unlike the confined environments indoors, the data volume of 3D point
clouds in outdoor scenes increases exponentially. Therefore, point clouds are often divided
into voxel grids, from which voxel features are extracted to reduce computational
overhead. SST (Fan et al., 2022a) proposes the single-stride sparse transformer, which
addresses information loss due to down-sampling by grouping voxelized point clouds into
regions and performing regional shifts, benefiting small object detection. Although
regional shifts mitigate down-sampling issues, the limitation in receptive field size leads to
significant computational costs. FSD (Fan et al., 2022b) introduces a sparse detector that
eliminates data redundancy by utilizing temporal information, drastically reducing
computational overhead and enabling multi-frame perception. FSDv2 (Fan et al., 2023)
further extends FSD by integrating 2D instance segmentation into the point cloud layer,
achieving a leap in inference speed through the proposed sparse architecture.

Cross-modal fusion based 3D object detection: Purely point cloud-based 3D object
detection is affected by inherent data deficiencies. Some efforts (Qi et al., 2018; Liang et al.,
2019; Zhang, Chen & Huang, 2022; Zheng et al., 2022; Zhao et al., 2023; Chen et al., 2023)
attempt to integrate image features into point cloud features. F-PointNet (Qi et al., 2018)
obtains 2D object proposals from images, elevates them to a 3D perspective using depth
information, aligns point features and image features within the region, and predicts 3D
bounding boxes. The post-fusion method that directly defines 3D candidate regions based
on 2D bounding boxes heavily relies on the detection accuracy of the 2D branch, which is
disadvantageous for scenes with significant occlusion. LIF-Seg (Zhao et al., 2023) is no
longer dependent on a single modality. UNet (Ronneberger, Fischer & Brox, 2015) was used
to learn the coarse features of point clouds after obtaining concatenated features of point

Jiang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2260 4/18

http://dx.doi.org/10.7717/peerj-cs.2260
https://peerj.com/computer-science/


clouds and images through projection matrices. Leveraging the learned coarse features, it
predicts the offset between point cloud and image semantic features for feature alignment
and fusion. PiMAE (Chen et al., 2023) attempts to mask images and point clouds and
learns the mutual relationship between the two modal features through attention
mechanisms, but the design of masks also limits the network’s utilization of local features.
The above methods overlook significant background semantic interference when fusing
with image features. In contrast, our TSFF can focus the attention on regions of interest in
the network, thereby extracting and utilizing more useful 2D semantic information.

METHODS
As illustrated in Fig. 2, the two-stage fusion framework (TSFF) model we propose is
founded on the Deep Hough Voting framework, which enables reliable detection of object
positions and categories with the help of voting operations. In this section, we first
introduce the feature extraction methods for both point cloud and image data.
Subsequently, considering the unsatisfactory prediction performance of VoteNet on sparse
point cloud surfaces, we introduce the voting mapping module and try to enhance the
point features with image features. The improvement of the voting bias phase is achieved
by assigning semantic features to the seed points at the corresponding 2D image locations.
Next, we use the constraint fusion module to eliminate the interference of background
noise points and sample the voting points with a 2D bounding box as a restriction to obtain
voting points with higher applied weights. At the end of this section, we illustrate the loss
design.

Feature extraction
Point branch: Indoor point clouds, unlike their large-scale outdoor counterparts, typically
represent scenes with a lower data burden. This allows point-based methods to offer
greater efficiency compared to voxel-based approaches when choosing a suitable
representation for the point cloud data. To address the inherent redundancy within the
raw point cloud, we leverage PointNet++ (Qi et al., 2017) as our core network for pre-
processing. The input point cloud consists of N (typically N = 20k) points, each with four
features. The network first employs four set abstraction (SA) layers to reduce the number
of points and extract informative features. Subsequently, two feature propagation (FP)
layers perform upsampling and propagate features, resulting in K seed points with
enhanced features. Here, K is set to 1,024 and each seed point has F = 256 dimensional
features. These refined seed points serve as the foundation for subsequent processing
stages.

Image branch: RGB images are significantly different from point clouds in terms of
data types, although the limitation of dimensionality makes it impossible to obtain
geometrical information about objects, the semantic nature between pixel values gives 2D
graphs a rich expressive capability. In image branch, we adopt the common Faster-RCNN
as the edge detection framework. ResNet-50 is used as the backbone of the detector and
image feature extraction is performed on the input image with the help of feature pyramid
network (FPN) to obtain the image feature map corresponding to the point cloud data.
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Vote mapping module
Point clouds and RGB images represent two distinct data modalities that differ
significantly at the data representation level. To effectively integrate data from these two
modalities, a matrix transformation must be applied to one of the data types to achieve
alignment between them. When capturing 3D scene data using a sensor, we can
simultaneously obtain RGB images from the same viewpoint along with the corresponding
camera parameters. By utilizing the camera coordinate system as an intermediary and
employing the camera’s intrinsic matrix K and rotation matrix Rt , we can achieve the
transformation between 3D and 2D coordinates, as illustrated in Eq. (1):

XI ¼ M � xp; (1)

M is the mapping matrix which can be specifically denoted as K � Rt , where the
projected 2D coordinates are denoted as XI ¼ ðu; vÞ, the raw point cloud coordinates are
denoted as xp ¼ ðx; y; zÞ.

As depicted in Fig. 1C, the final scanned point cloud of an object’s surface is often sparse
and incomplete, a result of object occlusion and device defects. To estimate the
approximate centroid of the target object from this sparse point cloud, we utilize the voting
mechanism of VoteNet. Figure 3 illustrates the voting mapping module we have
developed. Unlike the original voting mechanism, which only biases the point cloud
features, our approach aims to provide the seed points with additional reference factors
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Figure 2 3D object detection pipeline for TSFF. The original point cloud and the RGB image are used as inputs for two branches: seed point
feature extraction of the original point cloud with PointNet++ (Qi et al., 2017) as the backbone network, optimization processing of the voting points
using the projection fusion module, selective sampling and feature fusion of reliable voting points with the help of the constraints fusion module,
enhancement of the expression ability of the point features, and finally the final 3D bounding box using the region aggregation and the 3D NMS to
predict the final 3D bounding box. Figure source credit: SUN RGB-D dataset. Full-size DOI: 10.7717/peerj-cs.2260/fig-2
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during the bias stage. This is achieved by fusing the previously extracted image features FI
with the point features FP, as demonstrated in Eq. (2).

Ffuse ¼ FusionðFP þ FIÞ; (2)

By utilizing seed points that are enhanced with image semantic features as inputs to the
voting module, we can secure a higher number of object-related points during the voting
bias phase. Consequently, the central voting point obtained is more representative of the
actual object. The conclusion will be confirmed by the ablation experiments in the
following content.

Constraint fusion module
Based on the representational effects of point clouds, they can be divided into foreground
point clouds and background point clouds. However, in the 3D scene represented by point
cloud, the background points occupy a large portion of the data volume. The voting
mechanism to add bias prompts the seed points to be offset to the object center, however,
there still exists the problem of the interference of the background points. In order to deal
with the interference of background points, the constrained fusion module (CFM) was
developed.

As shown in Fig. 4, under the action of image branching, objects in RGB images can be
represented by 2D bounding boxes. We project the obtained voting points onto the image
again through the mapping matrix (Eq. (1)), then we sample the voting points using the 2D
Bounding box as a constraint. When the coordinates of the mapped pixel fall within the
object box, the corresponding polling point is recorded and retained, and the polling point
will be ignored, referring to Eq. (3).

P� ¼ M � Constraintðx�; cÞ; (3)

P� stands for vote points after sampling, and Constraintðx�; cÞ represent limitations of
the 2D bounding box to the projected coordinates. With x� indicating the coordinates of
the projected point and c 2 ð0; 1Þ indicating whether or not it falls inside the box.
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Figure 3 Vote mapping module. Figure source credit: SUN RGB-D dataset.
Full-size DOI: 10.7717/peerj-cs.2260/fig-3

Jiang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2260 7/18

http://dx.doi.org/10.7717/peerj-cs.2260/fig-3
http://dx.doi.org/10.7717/peerj-cs.2260
https://peerj.com/computer-science/


Considering the two-dimensional characteristics of RGB, the occlusion between objects
is unavoidable. Cross overlapping may occur between 2D bounding boxes, when the pixel
coordinates converted from 3D coordinates happen to fall in the overlapping region, their
attribution become problematic. In the CFM, we assign attribution labels to each mapped
coordinate. When it falls in the overlapping region, the correlation of the coordinate is
copied and backed up, with different labels to facilitate the subsequent differentiation.
Meanwhile, since the biases added in the voting stage can cause part of the point cloud to
fall outside the image boundaries during projection, we have also added an additional step
of normalizing the coordinates of the projected points to constrain them to the image
region.

Loss function
Our loss design references VoteNet (Qi et al., 2019), which includes voting loss, object loss,
3D bounding box estimation loss, and semantic categorization loss. Specifically, it can be
expressed as Eq. (4)

L ¼ Lvote þ w1 � Lobj þ w2 � Lsem þ Lbox; (4)

EXPERIMENTS
In this section, we first provide a brief overview of the characteristics of the SUNRGB-D
dataset (Song, Lichtenberg & Xiao, 2015). We then present a visualization comparing the
detection results of our method with those of the baseline within the same scene. Finally,
we present the results of ablation studies to illustrate the contribution of different modules
to the overall architecture and to demonstrate the robustness of our design modules.

Datasets and comparing
Dataset: The SUNRGB-D dataset is an RGB-D image dataset specifically designed for 3D
scene understanding. It is curated and expanded from SUN3D (Xiao, Owens & Torralba,
2013), NYU Depth v2 (Silberman et al., 2012), and Berkeley B3DO (Janoch et al., 2013),
culminating in a collection of 10,335 indoor images depicting various scenes. Each image is
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Figure 4 Constraint fusion module. Figure source credit: SUN RGB-D dataset.
Full-size DOI: 10.7717/peerj-cs.2260/fig-4
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accompanied by corresponding depth information, camera parameters, and object labeling
information. Of these, 5,285 images constitute the training set, with the remainder serving
as the test set. The dataset encompasses annotations for a total of 37 object classes.
Utilizing depth maps, the 3D point cloud information of the scene can be generated, with
each point featuring a semantic label and object bounding box information. The alignment
between the RGB image and the depth channel is achieved using the camera parameters.
VoteNet was used as the baseline, with which to train our model and report prediction
results for the ten most prevalent categories in indoor scenes. Given that the ScanNet
dataset includes instances where a single point cloud scene encompasses multiple image
views and considering the complexity of multi-view processing, our method did not
undergo evaluation on this aspect for validation.

Comparison: As shown in Table 1, we evaluated TSFF using the SUNRGB-D dataset
and compared it with previous indoor 3D object detection methods. We categorized the
experimental results based on whether RGB image features were utilized after considering
the differences in input data used by different indoor 3D object detection methods. Earlier
experiments (Ren & Sudderth, 2016; Song & Xiao, 2016; Lahoud & Ghanem, 2017; Xu,
Anguelov & Jain, 2018; Qi et al., 2018) often fused the two modalities during the proposal
stage. EpNet (Huang et al., 2020) attempted to integrate image features at the early stage of
feature learning through point guidance. PiMAE (Chen et al., 2023) utilized a multimodal
pre-training framework for fine-tuning downstream tasks to achieve better detection
results.

Additionally, we compared TSFF with recent outstanding single-modal 3D object
detection results and from the final detection results, it is evident that leveraging image
features greatly benefits 3D object detection. MLCNet (Xie et al., 2020) takes point clouds

Table 1 Briefly 3D object detection results on SUN RGB-D.

SUNRGB-D Input mAP@0.25

DSS (Song & Xiao, 2016) Geo+RGB 42.1

COG (Ren & Sudderth, 2016) Geo+RGB 47.6

2D-Driven (Lahoud & Ghanem, 2017) Geo+RGB 45.1

PointFusion (Xu, Anguelov & Jain, 2018) Geo+RGB 45.4

F-PointNet (Qi et al., 2018) Geo+RGB 54.0

EpNet (Huang et al., 2020) Geo+RGB 59.8

PiMAE † (Chen et al., 2023) Geo+RGB 59.4

votenet (Qi et al., 2019) Geo 57.7

MLCVNet (Xie et al., 2020) Geo 59.8

H3DNet (Zhang et al., 2020) Geo 60.1

BRNet (Cheng et al., 2021) Geo 61.1

DAVNet (Liang, An & Ma, 2022) Geo 60.3

SCNet (Wei et al., 2023) Geo 60.8

Ours Geo+RGB 61.3

Note:
Geo, Geometric Features for Point Clouds; RGB, RGB images. PiMAE † is a pre-training framework and 3DETR is used a
downstream task for 3D object detection.
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as input and introduces different levels of contextual information in the voting and
classification stages, along with a global scene context module to learn global scene context.
DAVNet (Liang, An & Ma, 2022) emphasizes object refinement and localization quality
estimation, refining discriminative features through adaptive perception fields to provide
reliable localization confidence. SCNet (Wei et al., 2023) focuses on the direct semantic
properties of point clouds and the consistency of geometric clues, achieving more robust
detection results by analyzing the relationship between proposals and semantic
segmentation points.

Results and analytics
Result: Table 2 presents the 3D object detection results for ten common categories on the
SUNRGB-D dataset. We employ VoteNet as the baseline for experimental comparison.
Our method demonstrates an improvement of 3.6 mAP over the baseline, utilizing
mAP@0.25 as the evaluation criterion, and achieves notable enhancements in detection
accuracy for several categories (bookshelf: +9.9% AP, dresser: +9.7% AP, sofa: +6.5% AP).
In comparison with other state-of-the-art methods, TSFF exhibits superior performance in
detecting objects within categories such as bookshelf, dresser, nightstand, and sofa. Given
that these object categories frequently co-occur with other categories in realistic scenarios,
there is a propensity for misdirection during the clustering operation. The benefit of
employing 2D bounding boxes to sample voting points in the constraint fusion module is
effectively validated here.

Table 2 3D object detection results from the SUN RGB-D v1 val set. Values in bold indicate the highest precision within the respective category.
PiMAE † is a pre-training framework, and 3DETR is used as a downstream task for 3D object detection.

Methods Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toliet mAP@0.25

DSS 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

COG 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

2D-Driven 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1

PointFusion 37.3 68.6 37.7 55.1 17.2 23.9 32.3 53.8 31.0 83.8 45.4

F-PointNet 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

EpNet 75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 59.8

PiMAE † 80.3 85.4 30.4 69.0 28.2 33.0 62.8 62.5 48.9 93.8 59.4

VoteNet 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

MLCVNet 79.2 85.8 31.9 75.8 26.5 31.3 61.5 66.3 50.4 89.1 59.8

H3DNet 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.3 50.8 88.2 60.1

BRNet 76.2 86.9 29.7 77.4 29.6 35.9 65.9 66.4 51.8 91.3 61.1

DAVNet 78.9 84.6 29.4 77.1 27.5 32.2 65.0 66.4 52.1 90.0 60.3

SCNet 74.5 85.9 31.7 76.9 30.3 34.2 67.1 66.9 52.3 88.6 60.8

Ours 73.4 86.6 38.7 75.3 25.7 39.5 66.8 70.5 47.3 89.2 61.3

Note:
The evaluation metric is the average precision with 3D IOU threshold as 0.25.
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Visual analytics: To visually demonstrate the improvement in detection accuracy of our
method compared to the baseline, we visualize the detection results of Ground Truth (GT),
VoteNet, and our TSFF in Fig. 5, accompanied by indications of detection errors. In the
four scenarios shown in Fig. 5, scenarios A and B exhibit small and densely packed chair
objects. During the process of clustering and grouping the voting points, the clustering
centers are susceptible to interference from surrounding objects, leading to errors in center
point predictions. As observed in the first and second instances of errors, instances of false
positives are evident in both scenarios. Scenarios C and D are relatively more complex than
the previous, with more background noise around the detected objects. By observing the
third error instance, it can be seen that the presence of background noise points causes the
VoteNet model to incorrectly identify them as desks. In the fourth error instance, the
bookshelf is influenced by wall noise, and the object surface point cloud is mistakenly
identified as background noise, resulting in a missed detection. In contrast, our method
fully exploits the excellent semantic representation of image features, resulting in
consistent detection results with the GT.

Figure 6 illustrates the distribution of voting points projected onto the 2D image after
being processed by the CFM, compared with the distribution of voting points without
using this module. From the figure, it can be seen that, with the same number of projection
points, the voting points processed by the CFM are more concentrated around the center
of the detected objects compared to those without the CFM. This suggests that, with the

Image Ground Truth VoteNet Ours

1

2

3

4

A

B

C

D

Figure 5 Visualization of the 3D object detection results from different methods on the SUNRGB-D
dataset. Figure source credit: SUN RGB-D dataset. Full-size DOI: 10.7717/peerj-cs.2260/fig-5
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RGB image Without CFM With CFM

Figure 6 Visualization of projected points after constraint projection module processing. Figure
source credit: SUN RGB-D dataset. Full-size DOI: 10.7717/peerj-cs.2260/fig-6
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Figure 7 Visualization of 3D object detection results in complex scenes. Figure source credit: SUN
RGB-D dataset. Full-size DOI: 10.7717/peerj-cs.2260/fig-7
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assistance of 2D bounding boxes in the CFM, we can effectively filter out voting points
outside the target region, thereby suppressing background noise interference.

We also demonstrate the effectiveness of our method in complex scenarios (see Fig. 7).
The detection results indicate that our method surpasses VoteNet in terms of accuracy.
Additionally, while maintaining consistency with the ground truth (GT), our method
accurately detects objects that were missed in the dataset annotations. In contrast, although
VoteNet successfully detected these objects, it incorrectly classified them as ‘bed’,
highlighting the robustness of our method in complex scenes.

Alabtion study
In this subsection, to further analyze the detection performance of our designed TSFF
model, we conduct experimental analyses on the VMM and CFM separately, discussing
the contributions of different modules to the model’s performance. Additionally, we
visualize the voting point clouds processed by CFM to demonstrate the module’s handling
of background points. All of our experiments are conducted using the SUNRGB-D dataset
and evaluated using mAP@0.25.

As presented in Table 3, we conducted experiments to assess the impact of adding the
VMM and the CFM individually to the baseline, with VoteNet serving as the baseline, and
compared these results with those of the complete module. The addition of a single
module, while not yielding a significant improvement, demonstrates that the vote mapping
module aids in acquiring better voting points. Conversely, the inclusion of only the
constraint fusion module did not produce satisfactory results. This indicates a synergistic
relationship between the two modules, where both the ability to secure high-quality voting
points and the utilization of superior image features significantly contribute to the final
detection outcomes.

CONCLUSIONS
In this research, we focus on the instability problems of indoor object detection in the
presence of sparse point clouds on the object surface and severe interference from
background noise points. Our TSFF model enhances the point cloud features with image
features containing rich semantic information and aids 3D object recognition with the help
of a 2D image detection frame. Our results show that the use of a 2D bounding box as a

Table 3 Alabtion study for our TSFF.

Baseline VMM CFM mAP@0.25

✓ ✗ ✗ 57.7

✓ ✓ ✗ 58.3

✓ ✗ ✓ 56.6

✓ ✓ ✓ 61.3

Note:
Baseline stands for VoteNet.
✓ The module was selected.
✗ The module was not selected.
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constraint limiting the sampling of voting points can effectively mitigate the interference of
background points, thus obtaining more robust detection results.
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