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ABSTRACT

The Internet of Things (I0T) is revolutionizing diverse sectors like business, healthcare,
and the military, but its widespread adoption has also led to significant security
challenges. IoT networks, in particular, face increasing vulnerabilities due to the
rapid proliferation of connected devices within smart infrastructures. Wireless sensor
networks (WSNs) comprise software, gateways, and small sensors that wirelessly
transmit and receive data. WSNs consist of two types of nodes: generic nodes with
sensing capabilities and gateway nodes that manage data routing. These sensor nodes
operate under constraints of limited battery power, storage capacity, and processing
capabilities, exposing them to various threats, including wormhole attacks. This study
focuses on detecting wormhole attacks by analyzing the connectivity details of network
nodes. Machine learning (ML) techniques are proposed as effective solutions to address
these modern challenges in wormhole attack detection within sensor networks. The base
station employs two ML models, a support vector machine (SVM) and a deep neural
network (DNN), to classify traffic data and identify malicious nodes in the network.
The effectiveness of these algorithms is validated using traffic generated by the NS3.37
simulator and tested against real-world scenarios. Evaluation metrics such as average
recall, false positive rates, latency, end-to-end delay, response time, throughput, energy
consumption, and CPU utilization are used to assess the performance of the proposed
models. Results indicate that the proposed model outperforms existing methods in
terms of efficacy and efficiency.

Subjects Cryptography, Data Mining and Machine Learning, Distributed and Parallel
Computing, Emerging Technologies, Security and Privacy
Keywords IoT, Machine learning, Security, SVM, DNN, Attack detection

INTRODUCTION

Due to recent advancements in distributed computing and wireless transmission, ad hoc
and wireless sensor networks are becoming more and more common. These types of
networks are highly recommended in different applications like surveillance, security, and
environmental monitoring, in the military, homes, and the healthcare industry (Ali et al.,
2018; Wang et al., 2022; Luo et al., 2022; Jiang et al., 2021) technologies. Figure 1 shows a few
applications of WSN networks, like WSN, a low-budget network, because it requires small
sensing devices called sensors. These sensors can sense, process, and share the data among
the other nodes in the network. These sensors also have a unique identity number and are
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Figure 1 Applications of WSN.
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easy to deploy. These sensors use wireless mediums for communication. The limitation
of these sensors is that they cannot be protected using any conventional cryptographic
algorithm (Ramzan et al., 2022; Liu et al., 2022; Sun et al., 2018a). These nodes use wireless
mediums and are resource-constrained, so they must face different attacks. Wormhole
attack is one of them. In a wormhole attack, a pair of malicious nodes (Agdus et al., 2023;
Sun et al., 2019; Sun et al., 2018b) become the authorized nodes of the network and then
easily copy the important and secret data from that network. The wormhole attack was
identified for the first time in Zahra et al. (2022). To insert the wormhole in the network,
a pair of malicious nodes becomes the authorized nodes of the network. As in Fig. 2, two
different areas of the same network get these pairs of malicious nodes. After becoming
the authorized nodes of the network, these nodes maintain a channel or link. The red
lines in Fig. 2 represent these channels. These nodes also violate the currently running
protocol of the network and start sending the data packets somewhere else through these
channels. Other authorized network nodes consider these channels optimistic and send
their confidential data packet through these corrupted links.

The WSN and IoT/cloud are now connecting for different benefits (Hao et al., 2024;
Xuemin et al., 2024; Bi et al., 2019). IoT/cloud helps improve efficiency in everyday jobs.
Daily, a huge amount of data is generated, and then the IoT or cloud provides a suitable
path for data traveling. Using IoT, developer stores their valuable data and access it anytime.
It also handles the problem without any delay. The transmission of packets from one place
to another during a wormhole attack significantly disrupts the network (Wang, Yang ¢ Li,
2017; Zhang et al., 2023a; Zhang et al., 2023b). Compared to standard routing, the tunnel
has a greater capacity to transport packets. It has the potential to seriously harm the network
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Figure 2 Wormbhole attack in wireless sensor network.
Full-size & DOI: 10.7717/peerjcs.2257/fig-2

when combined with other assaults, such as a sinkhole attack. There are several ways that
a wormbhole attack can be carried out, including encapsulation, out-of-band/high-quality
channel, and high-power transmission. Figure 3 demonstrates the integration of WSN in
IoT. WSN is a technique that is used in every field nowadays, it is used for monitoring
the domestic conditions of the home (Almakdi et al., 2023), to monitor and control the
different parameters of the greenhouse (Amin et al., 2021) like temperature, humidity,
water level, etc. Recent studies have shown that machine learning for IoT intrusion
detection is expanding quickly. However, for threat detection on large-scale IoT networks,
traditional machine-learning methods frequently exhibit low accuracy and/or reduced
scalability. Even with current research efforts, anomaly detection by machine learning is
still in its early phases. By focusing on deep-learning models for intrusion detection in an
IoT setting, this article seeks to further this study. In this research, to detect the wormhole’s
malicious nodes, the connectivity information of the network will be used rather than any
high computational algorithm (Xie et al., 2024; Li et al., 2024). This technique comes into
existence after keenly examining the behavior of the wormhole links. A wormhole attack
provides a new shortest path among the distant nodes of the network. This algorithm works
by isolating the neighborhood of each node directly affected by the attack. The path size is
different for the malicious node compared to the other nodes.

This study introduces a novel approach for detecting and mitigating wormhole attacks
in IoT and WSNs by harnessing the inherent connectivity information within the network.
Unlike conventional methods reliant on computationally intensive algorithms, our
approach offers a streamlined solution that maximizes efficiency without compromising
accuracy. We present a sophisticated hybrid detection model characterized by its scalability
and efficiency, tailored to meet the demands of large-scale IoT and WSN infrastructures.
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Through a judicious fusion of heuristic techniques and mathematical optimizations,

our model achieves a delicate balance between computational complexity and detection

accuracy, ensuring practical viability in real-world settings. Our contribution to this article

is as follows:

= To detect the malicious nodes in WSN, the connectivity information of the nodes in
the network is utilized. We are identifying the useful dataset characteristics for the
WSN and IOT framework for wormhole detection and isolation.

= This research addresses the state-of-the-art issues with wormhole detection in wireless
sensor networks and IoT, and Al and ML algorithms are recommended as the best
approach.

= A brand-new sophisticated hybrid method with polynomial complexity is created for
wormhole isolation and detection. The algorithm is simple to use and does not require
any special hardware.
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= The algorithm’s theoretical detection probability is calculated. Simulation assesses
performance regarding detection likelihood, network overhead, miss detection, and
false node alarm rates. Results demonstrate the algorithm’s effectiveness.

This article’s further structure is as follows: the ‘Related Work’ enlists the related work.
The ‘Proposed Methodology’ describes the proposed methodology. The ‘Simulation Setup’
illustrates the simulation setup. The ‘Results and Discussions’ elaborates on results and
discussions. Conclusions have been drawn in the ‘Conclusions’.

RELATED WORK

In WSN, all the nodes have great security threats all the time. A wormhole attack is one of
these threats. In the beginning, the problem of detecting wormhole attacks got the greatest
attention of the researchers, which is why different protocols and countermeasures have
been designed to detect wormholes in WSN. Different parameters like distance and time
are used to solve the wormhole attack. In addition to addressing security issues with mobile
ad-hoc networks (MANET), Kouanou et al. (2024) research suggests a novel machine
learning-based approach for identifying and averting assaults. Using NetSim (Network
Simulator) software, a 26-node MANET was created for the investigation. Wormhole and
black hole assaults were then put into practice. Then, black hole and wormhole attacks
were conducted. A machine-learning model was developed using a dataset generated from
the network traffic gathered during the simulations to predict and recognize these attacks.
Ryu & Kim (2024) Provide a brand-new multiple verification-based wormhole attack
detection technique that uses these assaults’ peculiarities. The suggested approach uses a
trust mechanism to calculate each node’s credit. Routing reduces the trustworthiness of
suspicious nodes; those whose trustworthiness falls below a certain threshold are deemed
evil. Based on federated deep learning and a dynamic trust factor (DTF), the suggested
Alghamdi & Bellaiche (2023) effort proposes a cascaded wormhole detection approach for
IoT networks. Although federated training guarantees data privacy and confidentiality
at the node level for convolutional neural network (CNN) and long short term memory
(LSTM) deep learning models, the DTF is predicated on two trust attributes.

Patel & Patel (2016) explained that two types of nodes exist in WSN: generic and
gateway. For processing, sensing, and computing, multipurpose nodes are used and they
are known as generic nodes, while for routing, gateway nodes are used. Every node in the
WOSN is assigned a random rank, and these nodes’ rank is improved if they magnificently
send the packet; otherwise, the rank is reduced. The adopted method (Patel ¢~ Patel, 2018)
used round trip time (RTT) and hop count to detect the wormhole attack. Experimental
results showed this technique has good accuracy in detecting the attack. The proposed
method in Harsdnyi, Kiss ¢ Szirdnyi (2018) detects and identifies the malicious nodes in the
network. No special measurement was used here to detect and identify the affected nodes;
only connectivity information was used. The adopted technique works in a distributed
manner, and accuracy is not affected by the number of affected nodes in the network. In
Dwivedi, Sharma ¢ Kumar (2018), the detection and prevention of wormbhole attacks were
revised by comparing different methods. Also, different models and modes of wormhole
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attack were deliberated. In some techniques (Khalil, Bagchi ¢ Shroff, 2005; Khalil, Bagchi
& Shroff, 2008; Poovendran ¢ Lazos, 2007) for malicious node detection, some particular
nodes are also used. These nodes are known as guard nodes. These nodes know about their
physical location and use their higher transmit power and different antenna appearances.
The limitation of these techniques is that they are highly dependent on guard nodes.
The proposed method in Aliady ¢ Al-Ahmadi (2019), the experiment was performed on
network simulator 3 using ADOV routing protocol. Results came up with 100% accuracy
in detecting the affected nodes in the network. No additional hardware was required to
experiment, so the cost was also minimal. Wormbhole attack, attack on the network layer
and this attack had various modes however in (Kumar Dwivedi, Sharma ¢ Kumar, 2018)
high transmission power was considered and the received sign strength indicator (RSSI)
was used to detect the affected nodes. In As” Adi, Keshavarz-Haddad ¢ Jamshidi (2018), a
decentralized scheme is introduced in which the number of new neighbors and number of
neighbors are considered as parameters. This scheme has low detection delay and traffic
overhead. The experiment is performed on NS-3 and experimental results show high
accuracy of detecting malicious nodes. However, all the authors try to detect the wormhole
attack by using a complex algorithm. These algorithms required high computational time to
solve the problem as the number of nodes increased. In our technique, only the information
of the neighbor’s nodes is enough to detect the malicious nodes in the networks, and it also
requires less computation.

PROPOSED METHODOLOGY

Our methodology has practical implications across various domains where IoT and WSNs
are pivotal. In business, IoT devices manage inventory, logistics, and environmental
monitoring, necessitating secure data transmission to protect operations and sensitive
information. Healthcare relies on IoT for patient monitoring and telemedicine, demanding
robust security against wormhole attacks to safeguard patient data and device reliability.
In military applications, IoT enables battlefield surveillance and communication; our
approach enhances network security to ensure secure communication channels in hostile
environments. Smart cities utilize IoT for traffic management and public safety; our method
strengthens network resilience against cyber threats, ensuring efficient city operations. By
advancing ML-based detection techniques for wormhole attacks, our research secures IoT
deployments across diverse applications, advancing wireless sensor network security. In our
proposed solution, we leverage support vector machines (SVM) and deep neural networks
(DNN) to address the challenges of detecting and mitigating wormhole attacks in wireless
sensor networks (WSNs). SVM, a supervised learning model, is utilized for its effectiveness
in binary classification tasks, enabling the identification of malicious nodes based on
features extracted from network data. By training SVM on labeled datasets, it learns

to distinguish between normal network behavior and anomalous patterns indicative of
wormhole attacks. On the other hand, DNN, a powerful class of artificial neural networks,
offers a more sophisticated approach to feature learning and abstraction, enabling the
model to automatically extract hierarchical representations of network data. By leveraging
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Figure 4 (Left) Network with wormhole attack. The shortest path length between the source node and
destination nodes is three hop size. (Right) Network without wormhole attack. The length of the shortest
path between the source node and the destination node is four hop length.

Full-size G4l DOI: 10.7717/peerjcs.2257/fig-4

the deep architecture of DNN, we aim to capture intricate patterns and relationships
within the network data, enhancing the detection accuracy of wormhole attacks. Through
a combination of SVM and DNN, our proposed solution seeks to provide a robust and
comprehensive defense mechanism against evolving threats in WSNs, offering improved
detection performance and resilience to sophisticated attack strategies. Many state-of-the-
art methods have been proposed to deal with the problem of wormhole detection. However,
all of these ended with some limitations. Some of these methods demanded special and
expensive hardware or guard nodes. Our method identifies and isolates malicious nodes
based merely on the connection information of the network nodes. The length of the
shortest pathways connecting some of the sensing nodes was predicted to vary drastically
with the removal of the wormhole channel. Some sensing nodes, however, will always
have the same shortest route length. This assumption is shown in Fig. 4. As in Fig. 4A, the
shortest path length from source to destination is three hop size. However, after removing
the wormhole channel, the length of the new shortest path from source to destination
becomes four hops, represented in Fig. 4B. In our article, we must examine the changes in
the shortest path length, which is why we use a breadth-first search algorithm. To apply
BEFS in our graph, we randomly selected the source node. Breadth-first search sends the
packet to its directly next hop. After receiving the packet, these nodes add one in the depth
and forward it to its next hop directly. After receiving, they add one to its depth, and the
same process is repeated until the destination is reached. Later when every node calculates
its depth from source to destination, they send this information to its selected source node.
In our methodology, determining the optimal number of source nodes (‘n’) is crucial for
the effectiveness of our approach in detecting wormhole attacks. We employ an iterative
algorithm where initially, all network nodes are considered as potential source nodes. The
algorithm prioritizes selecting the initial source node based on the smallest node identifier
and then identifies and retains nodes within a certain hop distance (‘n’) from this source
node. This iterative process refines the set of selected source nodes until no additional nodes
can be added or until a predefined condition is met. The value of ‘n’ is strategically chosen
to balance detection sensitivity with computational efficiency, considering factors such as
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network size, density, and potential attack scenarios. In our proposed methodology, the
determination of the smallest node ID, which serves as the initial source node, is crucial for
the effectiveness of our wormhole attack detection strategy. We adopt an algorithm-based
approach for assigning node IDs, ensuring a systematic and predictable distribution. Each
node in the network is allocated an ID based on its geographical location and network
topology. This location-based assignment allows for efficient and organized identification
of nodes, facilitating seamless integration with our breadth-first search (BFS) algorithm for
detecting wormhole attacks. By using a consistent and algorithmic ID assignment method,
we can easily identify the smallest ID node, ensuring that our source node selection
process is both logical and reproducible. This approach not only streamlines the initial
selection but also enhances the overall accuracy and reliability of our wormhole detection
mechanism, providing a robust defense against sophisticated attack strategies in wireless
sensor networks. Implementation of this algorithm leverages a breadth-first search (BFS)
strategy for efficient exploration of network connectivity, with parameters and heuristics
fine-tuned through rigorous testing and validation to ensure robust performance across
diverse network configurations.

Selection of source nodes

The accuracy of our work is directly dependent on the number of source nodes. If we select
a single node as a source node, the attack might be less affected by the picked node. So, that
is why we try to select enough as source nodes. These nodes are also selected from different
locations of the network because if the distance of the source node from both wormhole
nodes is the same or too far from the source node, we cannot examine the changes caused
by the removal of wormhole nodes. If we select many nodes as source nodes, it will increase
the computational time. So, we use an algorithm to decide how many nodes are needed to
be selected as source nodes. In that algorithm, all the nodes are initially considered to be
the source nodes. Afterward, the nodes with the smallest node ID are selected from that set
of expected source nodes as the first source node. For that time, this node behaves like the
source node in the network and all the remaining nodes which are n-hop distance from
the source are removed from the set of expected source nodes. This process iteratively
continues until the set is not empty. According to this algorithm, the number of selected
nodes directly depends on the value of n. If this value is small, too many nodes are selected
as source nodes. However, if the value of n is large, the number of selected source nodes
is small. Algorithm 1 outlines a method for selecting source nodes from a network based
on a connectivity matrix and a specified value of ‘n’. The algorithm initializes by setting
the source nodes as all nodes in the network. Then, it iteratively selects the node with
the smallest ID as the source node and identifies its ‘n’-hop neighbors using breadth-first
search (BES). These neighbors are then removed from the set of source nodes. This process
continues until all nodes have been considered as potential source nodes. When selecting
the initial node, the decision is typically based on a predetermined criterion, such as the
node with the smallest ID. Alternatively, other criteria such as node centrality measures or
random selection may be employed depending on the specific requirements of the network
and the application scenario.
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Algorithm 1: Selection of source nodes from the network
Input: Network (in the form of connectivity matrix), value of n, set of all the
nodes

Output: set of source nodes

Step 1: initialization

Source nodes set = set of all the nodes

Step 2: selection

Select the smallest ID node as the source node

Find the n-hop nodes for that source (using BFS.)

Remove them from the set of Source nodes set.

Step 3: iteration

Repeat the above step until the set of all the nodes is not empty

Detecting the malicious nodes

We get the complete set of source nodes and search for the malicious nodes in the network.
The first step is creating a matrix (size of matrix = no. of nodes in the network x no.
of the source nodes). Then every node from the set of source nodes is picked and the
following steps are performed on it. The distance of each source node from other nodes in
the network is measured using a breadth-first search. These distances are stored in a vector.
Now, we select a node from the set of all nodes, if that node is not in the set of source nodes
as well as not even in the distance vector, we will perform the following steps to check the
behavior of that node in a network as shown in Fig. 5.

e Analyze the data derived from network topology discovery statistically. If strange
patterns appear, move on to step 2. Alternately, select a few routes for providing
feedback to the source node.

e Send (test) data packets via the suspect pathways and watch for an ACK.

e If an attack is verified, alert the security legitimacy, the source, and/or the attackers’
neighbours to isolate them from the network.

e The number of routes used in step 1 of routing protocols with numerous paths is a

design parameter.

Although these paths depend on the multi-path data delivery strategy, maximum disjoint
routes are preferred. Whether the hypothesized route is affected might be ascertained by the
test in Step 2. When the attacker refuses to forward data packets but acts correctly during
routing, it could be easy to identify a distinct kind of Denial-of-Service (DoS) attack.
Step 3: To identify the malicious nodes, use the attack connection with the greatest relative
frequency. The third step is very important and might be part of the signaling messages sent
by an intrusion detection system (IDS) between local and global synchronized detection.
These steps are performed for each network node, excluding the source nodes. After
determining the distance for each node, the average variance is calculated individually.
Then, the average of all these calculated variances is computed. Each node’s variance is
subsequently compared with this overall average. If a node’s variance exceeds the computed
average, it is identified as a candidate node. When we have a complete set of all the candidate

Alshehri (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2257 9/22


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2257

PeerJ Computer Science

I v v

/ N
N Input Im auack
plementation
Dataset Qutput
simulation
\_»_» {_. J Y
I Wormhole
Network model ' \
. Deep Neural
- > Training data
and topology > S Network Model
creation > 4 4

y,

Y
IoT attack
Feature
. detection
Extraction

. | " E———

A
Testing | Model
.4 data Evaluation

Features
Embedding

Figure 5 Conceptual design and architecture of the proposed model.
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nodes, we will use a sub-graph inducted by these candidate nodes. If the inducted graph of
any candidate node is of only one node, the node is not malicious. So, it must be removed
from the candidate list. Afterward, we will close all the sensors other than candidate
nodes. If they still communicate successfully its means they are malicious nodes. Extended
malicious node detection and response in more detail are as follows:

Fine-grained statistical analysis

Extend the statistical analysis in step 1 by incorporating fine-grained metrics, also as shown
in Fig. 6. Explore features such as traffic patterns, node behavior, and communication
anomalies.

Traffic profiling for anomaly detection

Enhance the anomaly detection process in step 1 by implementing traffic profiling
techniques. Create behavioral profiles for each node based on historical data and
continuously update these profiles.

Predictive analysis for path impact

Augment the impact analysis in step 2 by introducing predictive modeling. Utilize historical
data and machine learning algorithms to predict the potential impact of a suspected path
on network performance. This proactive approach allows preemptive measures to be taken
before an attack occurs, minimizing potential disruptions.

Adaptive route testing
Improve the route testing mechanism in step 2 by introducing adaptability. Dynamically
adjust the frequency and intensity of route testing based on network conditions.
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Behavior profiling of attack connections
Extend the analysis in step 3 by incorporating behavior profiling for identified attack
connections. Create detailed profiles of attack connections, including traffic patterns,

payload analysis, and temporal characteristics.

Self-learning mechanisms
Implement self-learning mechanisms that allow the system to adapt to evolving threats
continuously. The system can autonomously update its detection models based on real-time
observations and feedback by leveraging machine learning algorithms.

SIMULATION SETUP

In our experimentation, a laptop computer (Core i5, 8 GB RAM) and NS§3.37 simulator
were used to simulate the adopted technique to detect and isolate the wormhole attack in
WSN. It is an effective tool for simulating mobile ad hoc networks and offers low-level
analytical operations to analyze the network architecture, including sensor nodes, network
links, application protocols, and queuing. We use different conditions to calculate the
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performance of our result, like node development, communication models, and network
density. The development models are random placement and a perturbed grid. Nodes in
random placement are placed uniformly and independently within the given area. In the
other model, the sensing nodes are perturbed from their initial locations (x, y) in a grid. This
perturb is represented by the help of an equation, i.e., [x-ab, x+ab] x [y-ab, y+ab]. Where
‘a’ is the displacement parameter and ‘b’ represents the square side length of the original
grid. After deployment of these two models, the results show that random placement
comes up with irregularities, while other models present good results. Two different types
of graphs are used here to show the connections in the network. The first is a Unit Disk
Graph (UDG) and the other is a quasi-UDG. In UDG the connection between the two
nodes is established only when the distance between them is less than a communication
radius. In the quasi-UDG model, the connection between two sensing nodes is established
when the distance between them is less than some radius, also there exists another channel
with some probability, i.e., the distance between the radius and another radius that is equal
to half of the first radius. The distance between the centers of the studied wormhole is
also an important feature. If there are different end-nodes in the wormhole, that generates
great distortion and increases the network’s data traffic. Here, the wormholes are placed
in such a way that in the original wireless sensor network, the set of wormholes are at a
distance of at least eight hops. An average of false positives and recall are used to show the
performance of this work.

In conducting our experiments, NS3.37 proved to be a valuable tool for modeling
mobile ad hoc networks, offering detailed analytical capabilities to examine network
components such as sensor nodes, links, and application protocols. We meticulously
selected routing protocols to evaluate the network’s efficacy and efficiency under various
conditions, including detection and isolation of wormhole attacks. Our experimental setup
encompassed diverse scenarios, including node deployment models (random placement
and perturbed grid), communication models, and varying network densities. Providing
details on data partitioning would involve explaining how the dataset was divided into
training and testing sets, ensuring unbiased evaluation. Describing hyperparameter
selection would entail clarifying the parameters chosen for algorithms or models and
how they were optimized or tuned to achieve optimal performance.

RESULTS AND DISCUSSIONS

To detect wormhole attacks in WSN and IoT only the connectivity information of the
sensing node in the network is used. To implement this technique, no special and expensive
hardware or guard nodes are required. The communication cost of each node in the network
is also the same. Also, complex and expensive computations are essential for that detection.
The accuracy of that technique is not affected by the number of nodes in the WSN. In Figs. 7
and 8 random placement UDG shows average numbers of false positives and average recall,
along the x-axis average degree is represented and along the y-axis, the average number of
false positives is represented. TF is a parameter that is the trade-off between the number of
false positives and the detection rate. Here, three different values of TFs are used.
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Figure 7 Random placement UDG shows average numbers of false positives, along the x-axis average
degree of nodes is represented and along the y-axis average number of false positives is represented.
TF is a parameter that is the trade-off between the number of false positives and detection rate. Here three
different values of TFs are used.
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Latency rate

The term “latency” refers to the amount of time required for an event to take place. The time
it takes for data to go from location A to location B is sometimes expressed as a round-trip
delay. The round-trip delay is crucial because a computer using a TCP/IP network only
transmits a limited amount of data to its destination before waiting for an acknowledgment.
The round-trip delay, therefore, has a big impact on network performance. Often, the delay
is expressed in milliseconds (ms). The results show in Fig. 9 that even when a large volume
of epoch’s requests per second is met, there is only a tiny increase in overhead. The
controller manages a large volume of requests per second, translating to a variety of service
transmission rates. The system ought to be able to handle more requests if additional flows
are used.

End-to-end delay

IoT apps are used by systems that are constantly monitored thus it’s crucial to do all
activities as soon as feasible. That is why each cluster’s head (CH) should be carefully
selected. This issue is addressed by an algorithm that uses the Gdist distance measure to
swiftly choose the CHs while considering the energy level of the sensors. A node is then
marked when it is selected as the CH or when it is linked to another head. While choosing
the cluster head, the CH must be chosen to reduce end-to-end latency. Figure 10 curves
show the end-to-end latency as a function of simulation time for the proposed technique,
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Figure 8 Random placements UDG through average recall are represented along the x-axis average
degree of nodes and along the y-axis average recalls. TF is a parameter that is the trade-off between the
number of false positives and the detection rate.
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Figure 10 End-to-end delay comparison with existing techniques of proposed model.
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naive Bayes, logistic, random forest, and KNN methods when they are run for seconds.
Throughout the simulation process, the end-to-end delay of all techniques converges,
however, the recommended way consistently has lower end-to-end latency than naive
Bayes, logistic, random forest, and KNN methods. As a consequence, our design provides
sufficient performance to make the right CH selections and enable efficient communication
among routing devices.

Response time

It relates to the time it takes for data to be sent between two IoT devices. Our method
is quicker than the traditional one given that the controller uses a proprietary routing
protocol. Figure 11 displays the average response time for file transfers in different bulks
across IOT nodes. Due to its reduced overhead, our solution outperforms the naive Bayes,
logistic, random forest, and KNN protocols. Figure 11 successfully depicts an efficiency
analysis based on the number of nodes. Both response times increase as nodes increase in
number. Additionally, when less frequent attacks are involved, it has been claimed that the
suggested strategy performs better than the naive Bayes, logistic, random forest, and KNN
techniques. By leveraging the provided architecture of the cloud platform, all nodes get a
quick response.

Throughput
The suggested SVM with the DNN algorithm can recognize wormhole attacks and lessen
their effects. Additionally, the throughput-based performance of the same network using
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both techniques is shown in Fig. 12. The network’s characteristics and the number of
nodes are the same as in the prior experiment. The capacity of the channel determines this.
Throughput is often defined as the bandwidth used out of the allotted amount. The unit of
measurement for network throughput is megabytes per second (MBPS). The performance
of the suggested SVM with DNN is more acceptable based on experimental findings. The
random forest-based strategy among them outperforms the two implemented methods.

Energy consumption and CPU utilization

Energy consumption is the quantity of energy needed for various network functions. A joule
measures how much energy is used by the proposed model, naive Bayes, logistic, random
forest, and KNN procedures. The proposed model is more secure and energy-efficient than
the formerly supplied naive Bayes, logistic, random forest, and KNN methods, as shown
by the actual effects of nodes’ energy usage.

It was also shown that the suggested approach effectively provides enough protection
against these assaults by continuing the attack after a certain amount of time. The
performance of the suggested SVM with DNN is shown to be more acceptable based
on experimental findings than naive Bayes, logistic, random forest, and KNN methods.
While the proposed solution demonstrates higher CPU utilization, it concurrently exhibits
lower energy consumption. This seeming inconsistency can be attributed to the intricate
relationship between CPU utilization and energy consumption, influenced by factors such

as algorithmic efficiency, computational complexity, and resource allocation strategies. The
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proposed solution may prioritize computational tasks that elevate CPU utilization while
concurrently employing energy-efficient algorithms or resource management techniques
to minimize overall energy consumption.

Comparing the proposed solution with state-of-the-art methods

The proposed solution distinguishes itself from state-of-the-art methods by its reliance
on existing network infrastructure, minimizing the need for specialized hardware or
guard nodes. Unlike previous approaches that often make assumptions about network
division or forged links, the proposed solution detects and isolates malicious nodes
solely based on network node connectivity information. It employs a breadth-first search
algorithm to analyze changes in shortest path lengths and dynamically adjusts the number
of source nodes based on network topology and operational parameters. Moreover, the
detection process integrates a comprehensive suite of advanced techniques including fine-
grained statistical analysis, traffic profiling, predictive modeling, adaptive route testing,
behavior profiling, self-learning mechanisms, decentralized alert propagation, cross-layer
collaboration, and continuous improvement.

LIMITATIONS AND FUTURE WORK

Despite the promising results achieved by our proposed methodology, several limitations
warrant discussion. First, the detection accuracy of our approach heavily relies on the quality
and representativeness of the training data used for the SVM and DNN. In real-world
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deployments, acquiring extensive labeled datasets that capture all possible variations of
normal and attack behaviors can be challenging. Moreover, the computational complexity
associated with training and deploying DNN models could pose constraints on resource-
limited WSNSs, necessitating further optimization for efficiency. Another limitation lies in
the assumption that node IDs are allocated based on geographical location and network
topology. While this approach facilitates the identification of the smallest ID node, its
practical implementation in dynamic and large-scale networks may face challenges such as
frequent topology changes and node mobility. Furthermore, the BFS-based shortest path
recalculations might become computationally expensive in very large networks, especially
when real-time or near-real-time detection is required. Additionally, our methodology
assumes a fixed communication radius for establishing connections, which may not account
for variations in real-world environments where signal strength and connectivity can be
influenced by factors such as interference and obstacles.

For future research, several directions can be explored to enhance the robustness and
applicability of our proposed solution. One area of focus could be the integration of
adaptive learning mechanisms that continuously update the detection models based on
real-time network observations and feedback, thereby improving resilience to evolving
attack patterns. Additionally, exploring the incorporation of cross-layer information could
provide a more comprehensive view of network security, allowing for the detection of
sophisticated attacks that span multiple protocol layers. Another promising direction is
the investigation of decentralized and collaborative detection frameworks, where nodes
share and verify alerts autonomously, reducing dependence on centralized entities and
enhancing the robustness of the detection mechanism against network partitions and
node compromises. Finally, extending the evaluation of our methodology to diverse
and real-world network scenarios, including varying network sizes, densities, and mobility
patterns, would provide valuable insights into its generalizability and practical effectiveness.

CONCLUSION

Wormbhole detection in WSN & IoT using machine learning was thoroughly studied
and analyzed in this research conceptually and via simulation. This research suggested
two strategies for identifying and avoiding wormhole attacks: hop-count analysis and
specification-based intrusion detection. Wormhole attacks and suggested approaches were
both simulated This study used the ML-based techniques as the best solutions for the
highlighted state-of-the-art challenges in wormhole attack detection since they have a
great deal of promise for controlling sensor networks efficiently. The base station employs
machine learning models called SVM and DNN to categorize traffic data and identify
malicious nodes in the network. This method is tested using traffic produced by the
NS3.37 simulator in real-world environments. Evaluation metrics are used to assess the
efficacy and efficiency of the suggested algorithms. These metrics include average recall
and false positive rate, latency rate, end-to-end delay, response time, throughput, energy
consumption, and CPU utilization. The results clearly show that the suggested model
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performs better than the current approaches 93.12%, 89.34%, 87.34%, 79.67%, 81.94%,
72.90%, 75.76%, 84.56% and 90.32%, respectively.
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