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ABSTRACT
Single-image super-resolution technology based on deep learning is widely used in
remote sensing. The non-local feature reflects the correlation information between
different regions.Most neural networks extract various non-local information of images
in the spatial domain but ignore the similarity characteristics of frequency distribution,
which limits the performance of the algorithm. To solve this problem, we propose
a frequency distribution aware network based on discrete cosine transformation for
remote sensing image super-resolution. This network first proposes a frequency-
aware module. This module can effectively extract the similarity characteristics of the
frequency distribution between different regions by rearranging the frequency feature
matrix of the image. A global frequency feature fusion module is also proposed. It can
extract the non-local information of feature maps at different scales in the frequency
domain with little computational cost. The experiments were on two commonly-used
remote sensing datasets. The experimental results show that the proposed algorithm
can effectively complete image reconstruction and performs better than some advanced
super-resolution algorithms. The code is available at https://github.com/Liyszepc/
FDANet.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Spatial and Geographic
Information Systems, Visual Analytics, Neural Networks
Keywords Super-resolution, Remote sensing, Deep learning

INTRODUCTION
Remote sensing images have been used in a wide range of applications. However, in
remote sensing image acquisition, the image’s resolution may be limited by its hardware.
Image super-resolution (SR) technology (Pan et al., 2019) can utilize low-resolution
images to generate high-resolution images, increasing the details of the targets. It can
also be used as an image preprocessing method for other remote sensing tasks, such as
target recognition (Ding et al., 2017), land classification (Jamil & Bayram, 2018), target
detection (Wang et al., 2022a), and so on.

Image SR technology can be divided into multi-image SR (MISR) (Wang et al., 2018;
Liu et al., 2022a) and single-image SR (SISR) methods (Yu, Li & Liu, 2020). MISRmethods
utilize multiple images for image SR, such as hyperspectral image reconstruction tasks (Li
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et al., 2023). SISR methods can utilize a single-image to complete image SR tasks. Thus,
SISR technology is more widely used in remote sensing. SISR methods can be divided
into three kinds of algorithms, including interpolation-based (Zhou, Yang & Liao, 2012),
optimization-based (Tuo et al., 2021), and learning-based algorithms (Arun et al., 2020).
The interpolation-based algorithm utilizes the weighted sum of adjacent pixels for image
SR, which is fast but has limited performance. It can only handle simple image SR
tasks. The optimization-based algorithm utilizes prior knowledge, such as low-rank
priori and sparse priori, to complete image reconstruction. The performance of the
optimization-based algorithm is better than the interpolation-based algorithm. However,
the inference time of the optimization-based algorithm is long, which can not meet
the real-time requirements of the tasks. Optimization-based algorithms usually contain
multiple hyperparameters, which requires researchers to have more field experience.
Learning-based methods contain dictionary learning algorithms (Wang et al., 2012; Gou et
al., 2014; Ma et al., 2020) and neural networks (Tian et al., 2020). The performance of the
dictionary learning method is closely related to the quality of the learned dictionary and
requires much computation. Neural networks have been more widely studied in recent
years due to their high performance.

Since SRCNN (Dong et al., 2015) was proposed in 2015, neural networks have shown
superior performance in image SR. Liebe and Korner first introduced SRCNN into remote
sensing image (RSI) SR tasks (Liebel & Korner, 2016). Furthermore, Lei, Shi & Zou (2017)
proposed LGCNet for RSI SR, which was a local–global combined network. This network
can learn both local and global information about the image simultaneously. Haut et al.
(2019) introduced the attention mechanism into remote sensing SR tasks, enabling the
network to focus more on essential features using the method named RSRCAN. Moreover,
a mixed high-order attention network called MHAN (Chen, Deng & Hu, 2019) was also
proposed for RSI SR. It can mine high-frequency information for image reconstruction. A
generative adversarial network (GAN) (Creswell et al., 2018) is also widely applied to RSI
SR. Jiang et al. (2019) proposed EEGAN for image SR, which introduced an edge-enhanced
module to the SR network. Moreover, Lei, Shi & Zou (2019) also proposed a coupled-
discriminate GAN for RSI SR. Recently, the diffusion model has been extensively studied in
the SR field due to its high performance. Xu, Ma & Zhu (2023) proposed a dual-diffusion
model based on dual conditional denoising diffusion probabilistic models for RSI SR,
which achieved good results. Previous studies of RSI SR consider the image’s local and
global information in spatial domain for image reconstruction such as GLORIA (Wu et
al., 2020), which introduced non local information extraction modules in the network,
enabling the algorithm to extract image global features more fully. However, this global
information has not been studied in frequency domains. The previous super-resolution
methods that utilized frequency information in remote sensing usually only transformed
the image into the frequency domain without further extracting non local information
from the frequency domain. For remote sensing images, the distribution of frequency
information is also an important image feature. The similarity characteristics of frequency
distribution between different image regions have not yet been considered. The utilization
of this feature can effectively enhance the performance of super-resolution networks.

Li and Yuan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2255 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2255


The frequency distribution feature represents the number of high and low frequency
components in the image, while the non-local frequency feature represents the correlation
between frequency features in the image.

To develop an effective frequency information extraction network for RSI SR, we
propose a frequency distribution aware network (FDANet). This network mainly focuses
on the frequency feature of images. FDANet consists of a frequency aware (FA) module
and a global frequency (GF) feature fusion module. These two modules focus on extracting
feature information from different regions and scales. The FA module can extract the
similarity characteristics of frequency distribution between different regions, which has not
been considered in previous works. Specifically, we divide the image into multiple patches
and perform discrete cosine transformation (DCT) (Ahmed, Natarajan & Rao, 1974). After
theDCT operation, low-frequency information is located in the upper left corner, and high-
frequency information is located in the lower right corner. Then, we combine the frequency
weights at the same pixel position in each patch to form new feature maps. Different feature
maps represent the distribution of different frequency components. A global feature fusion
block is used to extract the information of new features. Finally, we rearrange the pixels
and perform inverse discrete cosine transformation (IDCT) to obtain the reconstruction
image. Then, we propose the GF module to better extract the non-local information of
feature maps at different scales in the frequency domain. We first transform the image into
different scales and perform a DCT operation. Subsequently, we also use a global feature
fusion block to extract the image’s global information, consisting of matrix transpose and
convolution operations. It is worth noting that this global information extraction block
requires less computation compared to the other global information extraction methods,
such as the Transformer structure (Lu et al., 2022). The main contributions of this article
are summarized as follows:

(1) We propose a frequency distribution aware network for RSI SR. This network
can effectively extract the feature information in the frequency domain for image
reconstruction.

(2) The FA module is proposed to extract the similarity characteristics of frequency
distribution between different regions.

(3) The GF module is proposed to extract the non-local information of feature maps at
different scales in the frequency domain.

RELATED WORK
Degradation model
Due to hardware device limitations, the RSI resolution cannot meet the practical task’s
needs. Two degradation factors are considered: noising and downsampling. Thus, the
degradation model can be presented as Eq. (1).

y =Ax+n, (1)

where A denotes the downsampling matrix, x and y represent high-quality and low-quality
images, respectively. n is the white Gaussian noise. The function of the SR algorithm is to
predict high-quality image x through low-quality image y .
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DCT
Proposed algorithm mainly uses DCT operation to extract image information in the
frequency domain. DCT is a frequency domain transformation method (Khayam, 2003).
The two-dimensional DCT operation can be shown as Eq. (2).

A(i,j)=α(i)α(j)
M−1∑
x=0

N−1∑
y=0

I (x,y)cos
[
π(2x+1)i

2M

]
cos
[
π(2y+1)j

2N

]
, (2)

for i= 0,1,2,...,M −1 and j = 0,1,2,...,N −1. M is the number of rows and N is the
number of columns. The inverse transformation can be expressed as:

I (x,y)=
M−1∑
i=0

N−1∑
j=0

α(i)α(j)A(i,j)cos
[
π(2x+1)i

2M

]
cos
[
π(2y+1)j

2N

]
, (3)

and we have:

α(i)=


√

1
M
,i= 0√

2
M
,i 6= 0

(4)

α(j)=


√

1
N
,i= 0√

2
N
,i 6= 0

. (5)

By performing Eqs. (3) and (4), we can complete the DCT and IDCT operations.
DCT converts image data from the spatial domain to the frequency domain, which

can make the features of the image more prominent in the frequency domain, facilitating
further feature extraction and processing. DCT coefficients reflect the frequency energy
distribution of the image. The low-frequency signal is distributed in the upper left corner
of the image after transformation, and the high-frequency signal is in the lower right
corner. DCT is often used for image compression. Here, the DCT operation is used to
extract the frequency features of the image. Specifically, we extract the features after the
DCT operation, including the correlation information of frequency components between
different regions and the non-local information of frequency feature maps at different
scales. Therefore, two DCT operations complete the extraction of frequency information
in different aspects. The mining of frequency information is helpful for the network to
make full use of image features for image reconstruction.

PROPOSED SCHEME
The structure of FDANet is presented based on the degradation model shown in Eq. (1).
FDANet consists of two parts, the FA module and the GF module. The FA module mainly
learns the frequency distribution features between different regions of the image through
DCT operation. The GF module mainly uses DCT to mine the non-local information of
the image at different scales in the frequency domain.
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Figure 1 The structure of FDANet.
Full-size DOI: 10.7717/peerjcs.2255/fig-1

FDANet
The structure of FDANet is shown in Fig. 1. Low-resolution images can be reconstructed
into high-resolution images through the network. It is worth noting that this network
utilizes a recursive neural network strategy to iterate the basic network multiple times,
thereby improving its performance and reducing the parameter quantity. Figure 2 depicts
a more detailed introduction to the FA and GF modules.

FA module
In this section, we present the structure of the FA module. The FA module consists of
five operations: the DCT operation, rearrange operation, global feature fusion operation,
rearrange operation, and IDCT operation. The structure of the FA module is shown in
Fig. 3.We first divide the image into 8×8 pixel patches. Then, we perform aDCT operation
for each patch. DCT can reach the energy weight of the low-frequency signal at the upper
left corner of the matrix and the energy weight of the high-frequency signal at the lower
right corner of the matrix. Therefore, the distribution of different frequency components
in the image can be extracted to complete image reconstruction. The image processing
flowchart of the FA module is shown in Fig. 4. In other words, the frequency component of
each patch can be divided into 64 classes through the DCT operation. The new 64 feature
maps represent the distribution of 64 frequency components from low-to-high frequency,
which means the new feature maps are composed of the same frequency components in
different regions. This arrangement concentrates the frequency component of the image
so that the network can better learn the frequency correlation between different patches.
Moreover, a global feature fusion block can fully fuse the featuremaps of different frequency
components.
The structure of the global fusion block is shown in Fig. 5. It is a row-column decoupling

strategy. The size of the input image is b×n×h×w , where bdenotes the batch size, ndenotes
the channel number, h, and w denotes the height and weight of the feature maps. We first
perform a convolution operation on the input features. This step will complete information
fusion between different feature maps. Then, we transpose the feature maps, and the size
of the feature maps is h×n×w . After the convolution operation, the column pixels are
fused. Next, we transpose the feature maps, and the size of the feature maps is w×n×h.
The convolution operation will complete the feature fusion between row pixels. Finally, we
transpose the feature map to the original dimension. The non-local information extraction
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Figure 2 The structure of FAmodule and GFmodule. The first part is the FA module, and the second
part is GF module.

Full-size DOI: 10.7717/peerjcs.2255/fig-2
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Figure 3 The structure of FAmodule.
Full-size DOI: 10.7717/peerjcs.2255/fig-3
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Figure 4 FAmodule image processing flowchart.
Full-size DOI: 10.7717/peerjcs.2255/fig-4

of the row and column pixels is equivalent to the non-local information extraction of all
pixels about the image. This process can extract global information from frequency domain
feature maps by performing matrix transpose and convolution operations. It requires less
computation than the other global information extraction methods.
The information fusion process is shown in Fig. 6. The central pixel is fused with pixels

along the x-axis, then with pixels along the z-axis, and finally with the y-axis. It is equivalent
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Figure 5 The structure of global feature fusion block.
Full-size DOI: 10.7717/peerjcs.2255/fig-5
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Figure 6 Schematic diagram of pixel information fusion area.
Full-size DOI: 10.7717/peerjcs.2255/fig-6

to fusing the central pixel with all pixels in the feature maps. Our row-column decoupling
strategy can extract the global information and avoid directly calculating the correlation
information between all pixels. The computational complexity of the network is effectively
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Figure 7 Two remote sensing datasets: the UCMerced Land-Use dataset and theWHU-RS19 dataset.
Images are from the UC Merced Land Use Dataset (http://weegee.vision.ucmerced.edu/datasets/landuse.
html) and the the WHU-RS19 dataset (https://paperswithcode.com/dataset/whu-rs1); photographs are in
the public domain. Dai & Yang (2011), Xia et al. (2010), Yang & Newsam (2010).

Full-size DOI: 10.7717/peerjcs.2255/fig-7

reduced. Finally, the image is rearranged and IDCT operations are performed to obtain
the output image.

The FA module rearranges the characteristic information of frequency components
so that the network can extract the frequency distribution information more effectively,
which facilitates image SR reconstruction.

GF module
The GF module is shown in the second part of Fig. 2. Its basic structure is Unet. Unet
is a classical neural network structure that can extract the multi-scale information of the
images; it consists of the encoder and decoder. The structure of Unet has four layers and the
size of the feature maps are b×n×h×w , b×2n× h

2×
w
2 , b×4n×

h
4×

w
4 and b×8n× h

8×
w
8 ,

respectively. The feature maps of each layer in the encoder will be transmitted to the
corresponding layer of the decoder. This operation can effectively retain the shallow
information of the network. We add a frequency information extraction block to the
original Unet structure during feature transmission. For example, in the first layer we
perform a DCT operation on the feature maps to get the features in the frequency domain.
Then, we extract the global features of the image in the frequency domain by global feature
fusion block. This global feature fusion block is the same as in the FA module. After the
IDCT operation, the features can be transmitted to the decoder.

We perform frequency feature extraction operations on each layer of Unet so that
the network can learn the global frequency information of different scales. The feature
maps with different scales will contain different frequency components. Therefore, this
multi-scale information mining strategy takse advantage of image reconstruction.

EXPERIMENTS
We perform the experiments on two remote sensing datasets to evaluate the effectiveness
of the proposed method (Fig. 7). We have shown several typical scenes. The scenario of the
WHU-RS19 dataset is more complex than the UC Merced Land-Use dataset. Therefore,
the image reconstruction task under the WHU-RS19 dataset is also difficult.
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The UC Merced Land-Use dataset is a typical remote sensing dataset containing 21
kinds of scenes and 100 samples in each class. The pixel resolution of this dataset is 1 foot.
The WHU-RS19 dataset is collected from Google Earth by Wuhan University. It contains
19 categories of physical scenes in the satellite imagery, including airports, beaches, bridges,
commercial, deserts, rivers, etc. For the convenience of the experiment, we select a total of
ten scenes from each dataset. Moreover, we select 40 samples for training and five samples
for testing. Ultimately, each dataset has 400 training images and 50 testing images.

The experiments are performed under the Pytorch framework, and are trained on
NVIDIA Titan RTX GPUs. Adam is selected as the optimizer. For each training sample,
the image is cropped to the patches of 96 ×96 pixels as the input. The scale factors are set
to 2, 3 and 4. To verify the robustness of the proposed algorithm, the noise levels are set
to 0, 3 and 7. We chose additive white Gaussian noise (AWGN) for the experiment. The
noise intensity is σ

255 , where σ denotes the noise level.
We choose the other five image SR algorithms for comparison, including IMDN (Hui

et al., 2019), HSENet (Lei & Shi, 2022), LGCNet (Lei, Shi & Zou, 2017), FENet (Wang et
al., 2022c) and MAN (Wang et al., 2022b). IMDN is a lightweight image SR network with
information multi-distillation. LGCNet introduces a local–global combined network for
RSI SR. It also utilizes the multi-scale information of the image. HSENet utilizes the
self-similarity features of RSIs for image SR. FENet is a feature enhancement network for
lightweight RSI SR. MAN is an attention network that consists of a multi-scale large kernel
attention structure. To ensure the fairness of the experiment, we make the comparison
algorithms have similar computational complexity. The computational complexity of
IMDN, HSENet, LGANet, FENet, MAN, and FDANet are 7.65G, 6.27G, 56.23G, 10.76G,
7.92G, and 4.37G, respectively. Here, we use PSNR and SSIM to evaluate the performance
of the algorithms. They are two classic image evaluation indices (Wang et al., 2022c; Liu et
al., 2022b). PSNR can be calculated by Eq. (6).

PSNR= 20log10
Max(IHR)

√
MSE(IHR,G(ILR))

, (6)

where Max(IHR) denotes the maximum pixel value in the original image. G(ILR) denotes
the SR image. MSE represents the mean squared error of the two images. MSE can be
expressed as Eq. (7).

MSE =
1

MN

∑N

i=1

∑M

j=1
(I ijHR−G(I

ij
LR))

2. (7)

And SSIM can be calculated by Eq. (11).

L(X ,Y )=
2µxµy+C1

µ2
x+µ

2
y+C1

(8)

C(X ,Y )=
2σxσy+C2

σ 2
x +σ

2
y +C2

(9)

S(X ,Y )=
σxy+C3

σxσy+C3
(10)
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SSIM (X ,Y )= L(X ,Y )×C(X ,Y )×S(X ,Y ) (11)

where µx and µy denote the average values of pixels in image X and Y , respectively. σx
and σy denote the variance of image X and Y . σxy represents the covariance of image X
and Y . C1, C2 and C3 are constants.

We first perform the experiments on two remote sensing datasets. Then, several ablation
experiments are performed to further demonstrate the proposed module’s contribution to
improving the algorithm’s performance.

Remote sensing dataset1
The algorithms were applied to the UC Merced LandUse dataset. The experiment results
are shown in Table 1.

FDANet performs best. HSENet achieves the second-best results, which may be due
to the algorithm’s utilization of image multi-scale self-similarity features. We average the
algorithm’s results for image reconstruction under different conditions, including multiple
scale factors and noise levels. The average PSNR values of IMDN, HSENet, LGCNet, FENet,
MAN, and FDANet are 26.89 dB, 27.56 dB, 27.41 dB, 27.55 dB, 27.28 dB, and 27.78 dB,
respectively. The average SSIM values of IMDN, HSENet, LGCNet, FENet, MAN, and
FDANet are 0.724, 0.744, 0.748, 0.734, 0.749, and 0.775, respectively. Table 1 shows that
FDANet outperforms the other competitive methods under various noise levels and scaling
factors, which shows the algorithm’s effectiveness.

Remote sensing dataset2
The experimental results on theWHU-RS19 dataset are shown in Table 2. TheWHU-RS19
dataset is more complex, thus its average PSNR and SSIM values are lower than the UC
Merced Land-Use dataset. The proposed algorithm still performs best. HSENet has the
second-best performance. The average PSNR values of IMDN, HSENet, LGCNet, FENet,
MAN, and FDANet are 25.97 dB, 26.54 dB, 26.41 dB, 26.53 dB, 26.20 dB, and 26.59
dB, respectively. The average SSIM values of IMDN, HSENet, LGCNet, FENet, MAN,
and FDANet are 0.675, 0.702, 0.705, 0.676, 0.695, and 0.731, respectively. Table 2 shows
that FDANet performs well in more complex remote sensing datasets, which verifies the
algorithm’s robustness.

Visual results
In this section, we present the visual results for algorithm comparison. We randomly
selected several scale factors and noise levels to demonstrate the effectiveness of the
algorithm in various conditions. Figure 8 is the aircraft scene with a scale factor of 2
and noise level of 0. LR and HR denote low-resolution and high-resolution images,
respectively. The low-resolution image is obtained by the nearest neighbor interpolation
method. The large image on the left is the whole HR image. We enlarge the area in the red
box for algorithm comparison. The large image on the left is the whole HR image. The
low-resolution image has severe sawtooth effects. The edge information of the image is lost.
Multiple SR algorithms can restore image details to varying degrees. The edges of FDANet
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Table 1 Scores of PSNR and SSIM for different SR algorithms with remote sensing dataset 1. The best results are shown in bold, and the second-
best results are underlined.

Dataset Scale Noise Metrics IMDN HSENet LGCNet FENet MAN FDANet
(2019) (2022) (2017) (2022) (2022)

x2 0 PSNR 30.54 31.21 31.15 31.01 31.01 31.38
SSIM 0.841 0.859 0.855 0.839 0.866 0.879

x3 0 PSNR 26.68 27.45 27.30 27.42 27.17 27.83
UCMerced SSIM 0.723 0.751 0.756 0.740 0.753 0.784
Land-Use x3 3 PSNR 26.56 27.23 27.16 27.24 26.99 27.61
dataset SSIM 0.716 0.739 0.748 0.732 0.744 0.771

x3 7 PSNR 26.19 26.53 26.69 26.68 26.49 27.01
SSIM 0.698 0.701 0.724 0.703 0.718 0.740

x4 0 PSNR 24.49 25.40 24.73 25.42 24.73 25.08
SSIM 0.642 0.671 0.657 0.658 0.664 0.699

Table 2 Scores of PSNR and SSIM for different SR algorithms with remote sensing dataset 2. The best results are shown in bold, and the second-
best results are underlined.

Dataset Scale Noise Metrics IMDN HSENet LGCNet FENet MAN FDANet
(2019) (2022) (2017) (2022) (2022)

x2 0 PSNR 28.62 28.97 29.13 28.91 28.89 29.18
SSIM 0.798 0.828 0.821 0.788 0.821 0.842

x3 0 PSNR 25.80 26.71 26.30 26.52 26.10 26.60
SSIM 0.671 0.705 0.709 0.677 0.694 0.739

WHU-RS19 x3 3 PSNR 25.69 26.40 26.16 26.32 25.96 26.42
dataset SSIM 0.665 0.694 0.701 0.670 0.687 0.728

x3 7 PSNR 25.38 25.91 25.76 25.76 25.60 26.00
SSIM 0.650 0.661 0.680 0.645 0.667 0.702

x4 0 PSNR 24.35 24.69 24.68 25.17 24.47 24.76
SSIM 0.591 0.623 0.614 0.600 0.606 0.645

are clearer than the other algorithms. HSENet and FDANet have similar performance. The
performance of IMDN is limited. Therefore, FDANet performs best.

Figure 9 shows an intersection scene with a scale factor of 3 and noise level of 0. The task
of the three times SR is more challenging than two times SR task. LR image will lose more
details. SR algorithms can effectively reconstruct image details. Both FDANet and MAN
have good image reconstruction results. FDANet can fully mine the image’s frequency and
spatial domain information, so it can effectively reconstruct the image details and has the
best performance.

Figure 10 shows a baseball field scene with a scale factor of 3 and noise level of 7. This is
themost challenging task. The edge of the LR image is no longer clear. All SR algorithms can
recover partial edge information. Moreover, FDANet has the best reconstruction results.
The edge of the image is sharper, and noise removal is more effective.
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Figure 8 Aircraft (UCMerced Land-Use dataset). The scale factor is 2 and the noise level is 0. Images
are from the UC Merced Land Use Dataset (http://weegee.vision.ucmerced.edu/datasets/landuse.
html) and in the public domain).
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Figure 9 Intersection (WHU-RS19 dataset). The scale factor is 3 and the noise level is 0. Images are from
the WHU-RS19 dataset (https://paperswithcode.com/dataset/whu-rs1) and in the public domain.
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Figure 10 Baseball field (UCMerced Land-Use dataset). The scale factor is 3 and the noise level is 7. Im-
ages are from the UC Merced Land Use Dataset (http://weegee.vision.ucmerced.edu/datasets/landuse.html)
and in the public domain.
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Table 3 Ablation experiments. The best results are shown in bold.

Model Scale PSNR1 SSIM1 PSNR2 SSIM2

x2 30.92 0.861 28.78 0.821
Base model x3 26.39 0730 25.81 0.715

x4 23.90 0.635 24.67 0.621
x2 31.27 0.883 29.18 0.842

Base model+FA x3 27.27 0.774 26.20 0.735
x4 24.05 0.643 24.78 0.648
x2 31.09 0.874 28.85 0.831

GF x3 26.44 0.737 26.01 0.720
x4 24.67 0.655 24.63 0.622
x2 31.38 0.879 29.18 0.842

FDANet x3 27.83 0.784 26.60 0.739
x4 25.08 0.699 24.76 0.645

In summary, the proposed algorithm has a good visual reconstruction result. The
algorithm is robust to different scale factors and different noise levels. Therefore, FDANet
can effectively reconstruct image details and edges.

Ablation experiments
In this section, we will perform the ablation experiments. The ablation experiment results
are shown in Table 3. PSNR1 and PSNR2 indicate that the experiments are conducted
under the UC Merced LandUse dataset and the WHU-RS19 dataset. This article has
two innovation modules: the FA and GF modules. Thus, we perform four models for
comparison. The backbone of the base model is Unet., which was first proposed in 2015
(Ronneberger, Fischer & Brox, 2015). The base model with the FA module denotes the
FDANet model without the gobal frequency feature fusion blocks in the GF module. The
GF model denotes the FDANet model without the FA module. The structure of the base
model with the FA module is shown in Fig. 11, and the structure of the GF model is shown
in Fig. 12. As shown in Fig. 11, the upper half of Fig. 11 is the FA module and the lower half
is the base model. The comparison between Fig. 11 and the basic model can demonstrate
the effectiveness of the FA module. Blocks of the same color represent Unet feature maps
of the same scale. Skip connections were used for feature concatenation between the same
scales. The global feature fusion module is specifically introduced in Fig. 6. The global
feature fusion module was used during the skip connection process on the basis of Unet,
which consists of GF model (Fig. 12). The comparison between Fig. 12 and the basic model
can demonstrate the effectiveness of the GF module. Finally, the FA model can extract the
similarity characteristics of frequency distribution between different regions and GF model
can extract the non-local information of feature maps at different scales in the frequency
domain.

Comparing the base model alone and the base model with the FA module proves
the validity of the FA module. This frequency-aware strategy is effective. Comparing
the base model and the GF module proves the validity of the global frequency feature
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Figure 12 GFmodel.
Full-size DOI: 10.7717/peerjcs.2255/fig-12

fusion strategy. This extraction of the global frequency feature is beneficial to image
reconstruction. Therefore, the two proposed modules are both effective. FDANet achieves
the best performance.

CONCLUSION
This article proposes a frequency distribution aware network for RSI SR. The network
utilizes the FA and GF modules to extract frequency information from images. The FA
module extracts the similarity characteristics of frequency distribution between different
regions. The GF module effectively extracts the non-local information of feature maps
at different scales in the frequency domain. Therefore, FDANet may fully utilize the
frequency domain information of the image for image reconstruction. We conducted
multiple experiments on two remote sensing datasets to verify the effectiveness of the
algorithm under different scale factors and noise levels. The proposed method provides
two information perspectives that can be used for image super-resolution reconstruction,
which are the frequency distribution characteristics and non local frequency characteristics.
The utilization of these two types of information can compensate for the shortcomings of
traditional spatial convolutional neural networks in extracting image features for image
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super-resolution. However, the proposed method does not consider more complex image
degradation issues, such as image blurring. The blurring factor can significantly change the
frequency distribution information of the image. Therefore, whether the proposed method
is still applicable is an aspect that needs to be studied in the future. Based on the proposed
algorithm, the future research directions can be considered:

(1) Unsupervised methods can effectively utilize unlabeled data, therefore future work
will use unsupervised networks for remote sensing image processing.

(2) Future work will consider more complex degradation factors in RSI SR tasks, such as
blurring kernels.
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