
Dynamic stacking ensemble for cross-
language code smell detection
Hamoud Aljamaan1,2

1 Information and Computer Science Department, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia

2 Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia

ABSTRACT
Code smells refer to poor design and implementation choices by software engineers
that might affect the overall software quality. Code smells detection using machine
learning models has become a popular area to build effective models that are capable
of detecting different code smells in multiple programming languages. However, the
process of building of such effective models has not reached a state of stability, and
most of the existing research focuses on Java code smells detection. The main
objective of this article is to propose dynamic ensembles using two strategies, namely
greedy search and backward elimination, which are capable of accurately detecting
code smells in two programming languages (i.e., Java and Python), and which are less
complex than full stacking ensembles. The detection performance of dynamic
ensembles were investigated within the context of four Java and two Python code
smells. The greedy search and backward elimination strategies yielded different base
models lists to build dynamic ensembles. In comparison to full stacking ensembles,
dynamic ensembles yielded less complex models when they were used to detect most
of the investigated Java and Python code smells, with the backward elimination
strategy resulting in less complex models. Dynamic ensembles were able to perform
comparably against full stacking ensembles with no significant detection loss. This
article concludes that dynamic stacking ensembles were able to facilitate the effective
and stable detection performance of Java and Python code smells over all base models
and with less complexity than full stacking ensembles.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Programming Languages,
Software Engineering, Neural Networks
Keywords Stacking ensemble, Ensemble learning, Code smell, Dynamic ensemble, Detection,
Machine learning

INTRODUCTION
Code smells refer to poor design and implementation choices by software engineers that
compromise overall software quality (Yamashita & Moonen, 2013). During the software
development process, there are many types of code smells that might be injected into the
code, such as the following: duplicated code, large class, long method, etc. In response,
software engineers are always encouraged to perform routine software refactoring to
counter these code smells and thereby improve the overall software maintainability and
quality (Fowler, 1999). However, identifying these refactoring opportunities (i.e., code
smells) is not an easy and straightforward task, and code smell identification is the first

How to cite this article Aljamaan H. 2024. Dynamic stacking ensemble for cross-language code smell detection. PeerJ Comput. Sci. 10:
e2254 DOI 10.7717/peerj-cs.2254

Submitted 1 March 2024
Accepted 22 July 2024
Published 15 August 2024

Corresponding author
Hamoud Aljamaan,
hjamaan@kfupm.edu.sa

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2254

Copyright
2024 Aljamaan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2254
mailto:hjamaan@�kfupm.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2254
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

crucial step in a successful software refactoring process (Kim, Zimmermann & Nagappan,
2012).

Several approaches have been proposed to detect code smells in source code, including
metrics-based (Charalampidou, Ampatzoglou & Avgeriou, 2015), rule-based (Moha et al.,
2009), machine learning-based (Fontana et al., 2013), and deep learning-based approaches
(Zhang & Jia, 2022). Ensemble learning (Rokach, 2010) has proven to be a reliable machine
learning paradigm, wherein multiple base models prediction outputs are aggregated into a
final model output. Nevertheless, the majority of the empirical studies conducted in this
area have focused on the utilization of conventional machine learning models (Di Nucci
et al., 2018; Arcelli Fontana et al., 2016; Alazba & Aljamaan, 2021; Aljamaan, 2021) within
the limited context of Java code smells. Code smell detection using ensemble learning has
not yet reached a stable state (Di Nucci et al., 2018; Azeem et al., 2019; Al-Shaaby,
Aljamaan & Alshayeb, 2020), and code smell detection studies should include smells from
languages other than Java to investigate the generalizability of machine learning models in
code smells detection.

In this article, we propose to build dynamic stacking ensembles using two strategies:
greedy search and backward elimination. Our main hypothesis is that dynamic ensembles
will produce less complex stacking ensembles with stable and superior code smells
detection performance across multiple languages. We will empirically evaluate the
effectiveness of dynamic stacking ensembles in code smell detection across four Java code
smells and two Python code smells. Dynamic ensembles detection performance will be
compared with all base models; we will also assess whether these ensembles will yield in
less complex models in comparison to full stacking ensembles without significant
performance loss in Java and Python code smells detection. Our article contributions can
be summarized as follows:

. Cross-language code smell detection. We extend the generalizability of our approach in
code smell detection across different programming languages.

. Reduced complexity. Proposed approach will simplify the stacking ensemble structure,
making it less computationally expensive without compromising the detection
performance.

. Comprehensive empirical evaluation. We validate our approach using a diverse Java and
Python datasets with multiple code smell types, providing a thorough assessment of the
proposed approach robustness and effectiveness.

This article is structured as follows: “Literature Review” discusses the literature review
with the targeted research gaps. “Dynamic Stacking Ensemble” explains the dynamic
ensembles building approaches. “Research Methodology” states our research objective and
followed methodology. “Empirical Study Design” outlines the empirical study design
details. “Results and Discussions” presents the empirical study results and answers the
research questions. “Threats to Validity” discusses the empirical study identified threats to
validity and the measures taken to address them. “Research Implications” discusses the

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 2/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

implications of our findings. “Conclusion” concludes the article with future work
directions.

LITERATURE REVIEW
In this section, we provide an overview of the related existing studies. Specifically, we
survey the literature on using ensemble learning for code smell detection. Studies included
in the survey must have a rigorous empirical design and published in reputable journals
and conferences within the last five years. This review not only contextualizes our current
study, but also identifies gaps and opportunities for further exploration, setting the stage
for the novel insights and contributions this article aims to deliver in the context of code
smell detection.

In early research, researchers used metrics (Charalampidou, Ampatzoglou & Avgeriou,
2015) and rule-based (Moha et al., 2009) approaches in code smell detection. In metrics-
based approach, software engineers needed to set the right thresholds for each metric to
detect targeted code smell, while in rule-based approaches, rules are manually created by
domain experts to detect each code smell type. Both approaches are challenging tasks.
Therefore, recently machine learning models have been utilized in code smell detection by
extracting code metrics to build machine learning models and create detection rules and
select thresholds automatically.

Code smell detection using machine learning models has been an active research area
recently. Researchers have tackled the code smell detection problem using various
approaches, such as treating it as a binary classification problem (Mahalakshmi et al.,
2023), addressing smell severity as a multi-class classification problem (Rao et al., 2023), or
handling it as a multi-label classification problem (Yadav, Rao & Mishra, 2024). In our
article, we aim to detect code smells as a binary classification problem, concentrating on
distinguishing between the presence and absence of code smells at both the class and
method levels.

The majority of the conducted empirical studies in this area focused on the utilization of
conventional machine learning models, such as, support vector machines (Di Nucci et al.,
2018; Arcelli Fontana et al., 2016; Alazba & Aljamaan, 2021; Aljamaan, 2021), Logistic
Regression (Di Nucci et al., 2018; Arcelli Fontana et al., 2016; Alazba & Aljamaan, 2021;
Aljamaan, 2021), etc. Arcelli Fontana et al. (2016) conducted the largest experiment on
code smell detection and provided a benchmark dataset of Java code smells. They showed
that random forest ensemble approach outperforms single models, which highlights the
effectiveness of using ensemble learning in code smell detection (Arcelli Fontana et al.,
2016; Alazba & Aljamaan, 2021). Nevertheless, code smell detection using ensemble
machine learning has not yet reached a stable state (Di Nucci et al., 2018; Azeem et al.,
2019; Al-Shaaby, Aljamaan & Alshayeb, 2020).

Arcelli Fontana et al. (2016) implemented AdaBoost ensemble model, wherein many
classifiers of the same type were combined. In the conducted experiment, it was
observed that the implementation of the boosting ensemble model yielded varying effects
on the performance of the basic classifier. In certain instances, the performance was
enhanced, while in other instances, it was diminished. This study was replicated

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 3/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

byDi Nucci et al. (2018) with a focus on identifying and discussing the limitations observed
in the original experiment. They employed the same experimental settings, but they
augmented each code smell dataset with real-world instances. The findings of their study
indicate that the accuracy of the performance was worse in comparison to the original
study. Therefore, the authors recommended that future research should focus on refining
the machine learning algorithms to improve their generalizability across different datasets.

Alazba & Aljamaan (2021) investigated the detection performance of 14 individual
classifiers and three stacking heterogeneous ensemble models. Their findings demonstrate
that the ensemble models showed significantly higher performance in detecting both class-
level and method-level code smells compared to the individual classifiers. This suggests
that combining the predictions of multiple classifiers can improve the overall detection
performance. In addition, the study highlights the potential of using stacking ensembles as
a reliable approach for code smell detection. In another study, Aljamaan (2021) conducted
an empirical investigation of the voting ensemble strategy, including heterogeneous
classifiers. In this approach, the prediction outputs generated by several classifiers were
combined using soft voting. By leveraging the strengths of different classifiers, the voting
ensemble approach can effectively detect a wide range of code smells. The statistical
analysis of pairwise comparisons reveals that the voting ensemble achieved higher
performance in detecting all code smells.

In a recent study, Dewangan et al. (2022) employed a selection of ensemble machine
learning algorithms, including Adaboost, Bagging, Max voting, gradient boosting, and
XGBoosting, as well as two deep learning algorithms, namely artificial neural network and
convolutional neural network. After conducting a comparative analysis of the results
obtained from the different approaches on different datasets, it was concluded that the
Max voting algorithm has the highest overall accuracy. In another study, Kaur & Kaur
(2021) utilized two ensemble approaches, namely Bagging and random forest, employing
two aggregation techniques: Majority Voting and Smaller is Heavier (Saeys, Abeel & Van
de Peer, 2008). Although the results are positive, the utilization of ensemble learning
methodologies necessitates extensive validation across diverse datasets before
standardizing the use of ensemble learning approaches.

Zhang & Jia (2022) introduced a novel methodology that integrates deep learning
techniques with ensemble methods. The optimization of these two methods is achieved
through three key aspects: incorporating the attention mechanism, modifying the model
structure, and utilizing Snapshot ensemble approach (Huang et al., 2017). The
fundamental concept of the Snapshot ensemble approach involves the periodic adjustment
of the learning rate. After saving the M total snapshots, the integration process is
performed using a subset of the last m snapshots (where m < M). The outcome is
determined by calculating the weighted average of all the m snapshots. Overall, by
combining these three aspects, the model achieves enhanced performance.

Recently, Alazba, Aljamaan & Alshayeb (2024b) proposed Code Representation with
Transformers (CoRT), a new code smell detection approach utilizing self-supervised
learning. CoRT was trained to learn the structural and semantic features that are useful for
multiple downstream tasks, such as the detection of two class-level smells (God Class and

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 4/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Data Class), and two method-level smells (Feature Envy and Long Method). Detection
approach was assessed against supervised and feature-based approaches and CoRT
achieved high detection performance in all code smells. Later, Alazba, Aljamaan &
Alshayeb (2024a) introduced Model Representation with Transformers (MoRT), an
automated detection approach of class diagram smells using self-supervised learning.

Overall, this survey highlights the potential of ensemble learning in improving code
smell detection and suggests further research and experimentation with different ensemble
techniques. Table 1 summarizes the related studies that utilized ensemble learning in code
smells detection, showing the different datasets, code smells types, and ensemble
approaches. Most of these studies have significant limitations, as follows:

. Gap 1: Generalizability. Majority of empirical studies in this area have focused on Java
code smells to evaluate the performance of their proposed techniques. However, it would
be beneficial to explore other programming languages as well, to ensure the
generalizability, validity, and applicability of the findings.

. Gap 2: Ensemble models stability. Code smell detection using ensemble learning has not
yet reached a stable state. The performance of these models can be inconsistent, and they
often require extensive tuning and validation.

. Gap 3: Ensemble models complexity. Many ensemble learning models, such as full
stacking ensembles, result in complex models that are computationally expensive and

Table 1 Ensemble learning models utilized in code smells detection.

Ref. Dataset Prog.
Lang.

Code smell types* Input Ensemble approach

DC FE GC LC LM LPL SS Other

Dewangan et al.
(2022)

Arcelli Fontana et al. (2016) Java ✓ ✓ ✓ ✓ Metrics Adaboost, Bagging, Max voting,
Gradient boosting, and
Xgboosting.

Alazba & Aljamaan
(2021)

Arcelli Fontana et al. (2016) Java ✓ ✓ ✓ ✓ ✓ ✓ Metrics Static stacking ensemble

Zhang & Jia (2022) Liu et al. (2019) Java ✓ Code Snapshot ensemble.

Aljamaan (2021) Arcelli Fontana et al. (2016) Java ✓ ✓ ✓ ✓ ✓ ✓ Metrics Soft voting ensemble.

Kaur & Kaur
(2021)

In-house Java ✓ ✓ ✓ Metrics Bagging and Random Forest.

Di Nucci et al.
(2018)

In-house Java ✓ ✓ ✓ ✓ Metrics ADABOOSTM1 boosting.

Arcelli Fontana
et al. (2016)

In-house Java ✓ ✓ ✓ ✓ Metrics Boosting.

This work Arcelli Fontana et al. (2016),
Sandouka & Aljamaan
(2023)

Java &
Python

✓ ✓ ✓ ✓ ✓ ✓ ✓ Metrics Novel Dynamic Stacking
ensemble.

Note:
* DC, Data Class; FE, Feature Envy; GC, God Class; LC, Large Class; LM, Long Method; LPL, Long Parameter List; SS, Switch Statements; Other, Brain Method, Shotgun
Surgery, Dispersed coupling, and Message Chains.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 5/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

difficult to interpret. There is a need for approaches that allow ensemble models to
achieve high performance without such complexity.

In this research, we aim to address these gaps by introducing a dynamic stacking
ensembles approach, which is designed to be less complex while maintaining a robust
performance across different programming languages (Java and Python). This approach
will provide a more generalizable, stable, and efficient detection method for code smell
detection.

DYNAMIC STACKING ENSEMBLE
Stacking ensemble (Wolpert, 1992) is a well known ensemble learning algorithm that
consists of a two layered architecture, as illustrated in Fig. 1. In the first layer, the base
models are trained using the training dataset, and then, the base models predictions are
then aggregated to construct a new training dataset for the second layer. In the second
layer, the new constructed dataset is used to train a meta learner to produce the final
stacking ensemble prediction.

A stacking ensemble algorithm can be formalized as outlined in Table 2, into three main
steps: train ensemble base models; construct new dataset; and train meta learner. Stacking
ensembles are often heterogeneous in nature, meaning that the base models are from
different machine learning classification families (e.g. decision trees, support vector
machines). Base models are expected to have different skills on the training dataset that
can benefit the meta learner training. For classification purposes, stacking ensemble meta
learners are recommended to be logistic regression (Alazba & Aljamaan, 2021) due to the
linearity nature of the base models predictions.

In this article, we propose an enhancement to Full Stacking Ensembles (FSE) by
introducing Dynamic Stacking Ensembles (DSE) with the following two strategies related
to stacking base models selection, namely: Greedy Search (GS) and Backward Elimination
(BE). These two strategies will be used to select base models from a candidate base models
list allowing the stacking ensemble to be created dynamically by selecting different base
models in different datasets. Dynamic stacking complexity will be determined by the
number of base models required to build the dynamic stacking ensemble. The lower
number of base models indicates less complex dynamic stacking ensemble model.

Greedy search
Greedy search (GS) (Cormen et al., 2022) is a heuristic algorithm that aims to find a global
optimum solution by making locally optimal choices at each step. Dynamic Stacking
Ensemble with Greedy Search algorithm (DSE-GS) is the first strategy to build a dynamic
stacking ensemble by selecting the ensemble base models in a forward greedy selection
approach, as outlined in Table 3. Our algorithm begins with an empty list of base learners,
and assumes that a stacking ensemble can still be built using only base model. Thus, in the
first initial step, we will iterate over all base models, and build stacking ensembles for each
base model accordingly and select the base model with the highest performance. The
algorithm will then iterate over the remaining base models and select one base model in

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 6/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

each iteration with the greatest contribution to the stacking ensemble performance. Lastly,
the algorithm will halt when none of the remaining base models will contribute to the
stacking ensemble performance.

Figure 1 Stacking ensemble architecture. Full-size DOI: 10.7717/peerj-cs.2254/fig-1

Table 2 Stacking ensemble algorithm.

Input:

Training data D ¼ xi; yi
� �

i¼1...m, where xi is the feature vector of the i-th sample, yi is the

target value, and m is the number of samples.

Base Models Bi¼1...N : Set of N base models.

Step 1: Train Base Models

for n 1 to N do . N: number of base models

Train base model Bn on D . Bn: n-th base model

end for

Step 2: Construct New Dataset

for i 1 to m do

Construct a new dataset D0 ¼ x0i; yi
� �

, . x0i: base model predictions vector

where x0i ¼ B1 xið Þ;B2 xið Þ; . . . ;BN xið Þf g
end for

Step 3: Train Meta Learner

Train a meta learner M based on D0

Output:

Stacking Ensemble SðxÞ ¼M B1ðxÞ;B2ðxÞ; . . . ;BNðxÞð Þ . x: input

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 7/29

http://dx.doi.org/10.7717/peerj-cs.2254/fig-1
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Backward elimination
Backward elimination (BE) (Guyon & Elisseeff, 2003) is a recursive elimination algorithm
that iteratively removes the least contributing models, thus, refining the models selection
based on their contributions. Dynamic Stacking Ensemble with Backward Elimination
algorithm (DSE-BE) is another strategy to select a refined list of base models to build a
dynamic stacking ensemble. In BE algorithm as outlined in Table 4, we start with the full
base models list to build the stacking ensemble, then, iterate over each base model to build
a new stacking ensemble without the selected base model. Remove the base model from the
list that yielded a positive impact on the stacking ensemble performance. The algorithm
will be repeated until none of the base models removal will yield a positive impact on the
stacking ensemble performance.

Table 3 Greedy search algorithm.

Input:

Training data D ¼ xi; yi
� �

i¼1...m, where xi is the feature vector of the i-th sample, yi is the

target value, and m is the number of samples.

Base Models Bi¼1...n: Set of n base models.

Step 1: Select First Base Model

for i 1 to n do . n: number of base models

Build Stack S with Bi . S: stack built with the i-th base model

if skillðSÞ is highest: . skill: measures the detection performance

model Bi . model: selected base model

end for

B0 model . B0: selected set of base models

B B�model . B: original set of base models

Step 2: Forward Base Model Selection

while a model has been selected do

for i 1 to n� 1 do

Build Stack S with B0 . B0: set of selected base models

Build Stack S0 with B0 + Bi

if skillðS0Þ > skillðSÞ: . skill: measures the detection performance

model Bi . model: selected base model for inclusion

end for

if a model has been selected:

B0 B0 þmodel . B0: selected set of base models

B B�model . B: original set of base models

end while

Output:

New Base Models B0i¼1...s . s: set of selected base models

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 8/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

DISCUSSION
In this article, we aim to employ both GS and BE strategies to optimize the selection of base
models in our dynamic stacking ensemble approach. The choice of either approach can be
determined by their respective strengths and limitations. GS is a heuristic algorithm that
makes locally optimal choices at each step with the goal of finding a global optimum
solution. Despite not guaranteeing a global optimal solution due to lack of backtracking,
GS strategy is simple and fast in navigating large solution spaces, making it a practical
solution to select the first initial base model to build the dynamic stacking ensemble.
Meanwhile, BE strategy is a recursive base model elimination approach that starts with a
full base models and iteratively removes the least significant base models. Despite being
computationally intensive, BE allows for a thorough evaluation of each base model
contribution to the dynamic stacking ensemble ensuring that the final base models list
includes only those that positively contribute to ensemble performance.

In this research, we aim to investigate the applicability of constructing dynamic stacking
ensembles using both strategies in cross-language code smell detection. Our hypothesis is
that using both strategies, we will be able to construct less complex DSE in contrast to FSE,
with comparable detection performance (Zhou, 2012; Chatzimparmpas et al., 2020). DSEs
are designed to reduce the number of base models included in the final stacking ensemble,
thus reducing the overall space and inference time complexity. The stacking space
complexity is computed as the space required to store all base models and the meta learner,
while inference time complexity for a stacking ensemble is computed as the time taken to

Table 4 Backward elimination algorithm.

Input:

Training data D ¼ xi; yi
� �

i¼1...m, where xi is the feature vector of the i-th sample, yi is the

target value, and m is the number of samples.

Base Models Bi¼1...n: Set of n base models.

Step: Backward Model Elimination

while a model has been selected do

for i 1 to n� 1 do . n: number of base models

Build Stack S with B . S: stack built with B

Build Stack S0 with B - Bi . S0: stack built excluding the i-th base model

if skillðS0Þ � skillðSÞ: . skill: measures the detection performance

model Bi . model: base model to be removed

end for

if a model has been selected:

B B�model . B: Updated set of base models

end while

Output:

Refined Base Models Bi¼1...s . s: set of selected base models

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 9/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

generate predictions from all base models and the time taken by the meta learner to
combine these predictions. Space and inference time complexity can be measured as
follows (Zhou, 2012; Tsoumakas, Partalas & Vlahavas, 2008):

Space Complexity ¼ OðN � Sbase þ m � N þ SmetaÞ (1)

where N is the number of base models in the stacking ensemble, Sbase is the space required
to store each base model, m is the number of samples, and Smeta is the space required to
store the meta learner.

Time Complexity ¼ OðN � Tpredict þ Tmeta predictÞ (2)

where N is the number of base models in the stacking ensemble, Tpredict is the time
complexity for making a prediction with each base model and Tmeta predict is the time
complexity for the meta learner to make the final prediction.

Stacking ensemble complexity will be measured based on the number of the base models
needed to construct the ensemble (Chatzimparmpas et al., 2020). Specifically, we will
evaluate how effectively GS can quickly identify a subset of high performing base models,
and how BE can fine-tune this subset by eliminating base models that do not contribute
significantly to the ensemble performance. Both strategies aim to balance computational
efficiency with effectiveness, ultimately reducing the overall ensemble complexity in terms
of both the number of base models and the computational resources required for training
and inference. In our empirical study, we will empirically evaluate to which extent DSEs
can achieve efficient and effective code smell detection across programming languages,
offering a practical solution for maintaining software quality in multi-language
development environments.

RESEARCH METHODOLOGY
The main objective of this empirical study is to investigate the complexity and detection
performance stability of our proposed dynamic stacking ensembles in code smells
detection across Java and Python programming languages code smells. Our study goal is
formulated as follows: evaluate dynamic stacking ensembles built using the greedy search
and backward elimination strategies for the purpose code smell detection with respect to
their detection performance measured in accuracy, F1-score, and AUC scores from the
perspective of both researchers and software engineers within the context of four Java and
two Python code smells datasets. We have formulated the following research questions to
achieve our research objective:

. RQ 1. Will greedy search and backward elimination dynamic ensembles strategies yield
to two different base models lists?

Rationale. We will investigate if both dynamic ensembles creation strategies will result in
different base models. We will contrast between the two strategies in terms of size and the
type of selected base models used to detect each investigated Java and Python code smell.

. RQ 2. Will dynamic ensembles have stable code smell detection performance across
different languages in comparison to all candidate base models?

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 10/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Rationale. Greedy search and backward elimination will result in different base models to
build the dynamic stacking ensembles. In this research question, we aim to examine the
detection performance stability of dynamic ensembles against all candidate base models
(i.e., both selected and eliminated base models) in detecting Java and Python code smells

. RQ 3. Will dynamic stacking ensembles result in less complex ensembles with
comparable detection performance to full stacking ensembles?

Rationale. One of study goals is to empirically prove that we can build less complex
dynamic ensembles without sacrificing significant detection performance. In this research
question, we will contrast the dynamic ensembles complexity against full stacking
ensembles, and to which degree there will be a detection performance loss.

Figure 2 illustrates the followed research methodology of the dynamic stacking
ensemble approach in cross-language code smell detection. The methodology consists of
several key stages. First, each Java and Python code smell dataset undergoes a data pre-
processing pipeline: imputation, normalization, and models hyperparameters
optimization. Then, dynamic stacking ensembles are created using the greedy search and
backward eliminations algorithms. In greedy search, the stacking ensemble base models

Figure 2 Research methodology. Full-size DOI: 10.7717/peerj-cs.2254/fig-2

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 11/29

http://dx.doi.org/10.7717/peerj-cs.2254/fig-2
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

are selected incrementally based on the model that is locally optimal at each step. On the
other hand, in backward elimination, the stacking ensemble base models are the result of
full base models list, and then incrementally removing the least contributing model.
Finally, the approach is validated using the cross validation method, and statistical analysis
is employed to analyze the models detection performance ensuring the reliability of our
performance assessment.

EMPIRICAL STUDY DESIGN
In this section, we will discuss the details of our empirical study design details and any
choices that were made before the execution of the study. The empirical study was fully
implemented using Python programming language utilizing the Scikit-Learn library to
build all the machine learning models. Our code is made open source with a replication
package uploaded in Zenodo (https://doi.org/10.5281/zenodo.11488752).

Code smell datasets
The primary objective of this study is to investigate the performance and stability of
dynamic stacking ensembles in detecting code smells across different programming
languages. Therefore, the models were trained and evaluated on datasets from two
programming languages: Java and Python. Table 5 shows a summary of the used datasets.
Each code smell dataset was pre-processed in a pipeline consisting of two steps: missing
data imputation and feature scaling. In data imputation, we imputed the missing data in
the feature with the mean values in that feature. Next, we scaled the features using Min-
Max normalization into values between [0,1]. Both steps will assist us in producing robust
and faster models (Acuna & Rodriguez, 2004; Singh & Singh, 2020). All the pre-processing
steps were performed within a pipeline and using the training data only, to prevent data
leakage.

Java dataset
Arcelli Fontana et al. (2016) introduced Java datasets (https://essere.disco.unimib.it/
machine-learning-for-code-smell-detection) containing 2,520 samples of two class-level
code smells (God Class and Data Class) and four method-level code smells (Long Method,
Feature Envy, Long Parameter List, and Switch Statements). These datasets contain 420
samples for each code smell type, where the independent variables are Object Oriented
(OO) metrics and the dependent variable is a class indicating whether the sample is smelly
or non-smelly.

Python dataset
Sandouka & Aljamaan (2023) developed a recent open access Python datasets (https://doi.
org/10.5281/zenodo.7512516) for code smell detection. This dataset contains 2,000
samples of a class-level (Large Class) and a method-level (Long Method) code smells. The
independent variables are classified into two groups: raw metrics that do not need complex
calculations (e.g., number of code lines) and Halstead complexity metrics to extract a
quantitative complexity measures (e.g., program vocabulary). The dependent variable is a
binary value: smelly or non-smelly.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 12/29

https://doi.org/10.5281/zenodo.11488752
https://essere.disco.unimib.it/machine-learning-for-code-smell-detection
https://essere.disco.unimib.it/machine-learning-for-code-smell-detection
https://doi.org/10.5281/zenodo.7512516
https://doi.org/10.5281/zenodo.7512516
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Code smell definition
Code smells were introduced by Fowler (1999) back in 1999, with refactoring strategies to
counter them. Code smells were defined and categorized according to their granularity
(e.g., class-level, method-level). In this article, we are targeting class-level and method-level
code smells from two different programming languages: Java and Python. These smells are
defined as follows (Fowler, 1999):

. God Class (GC): is a class-level code smell indicating a class with many responsibilities
and encapsulating most the software functionalities.

. Data Class (DC): is a class-level code smell representing a class that stores data by
having a large number of attributes with accessors.

. Large Class (LC): is a class-level smell indicating a class that is bloated with many fields,
methods, and lines of code.

. LongMethod (LM): is a method-level code smell representing a method with many lines
of code with multiple functionalities making it difficult to read and maintain.

. Long Parameter List (LPL): is a method-level code smell that occurs when a method
have too many parameters relatively to other methods in the same class.

. Feature Envy (FE): is a method-level code smell representing a method that extensively
used other classes attributes and methods, more than its own class.

. Switch Statements (SS): is a method-level code smell that occurs when your code has
complex switch statements or a series of if-conditions.

The rationale behind selecting the above code smells is driven by three main factors that
highlight their impact on software quality (Al-Shaaby, Aljamaan & Alshayeb, 2020; Kaur,
2020; Alazba, Aljamaan & Alshayeb, 2023; Yang et al., 2022), as follows: (i) they have
significant impact on software maintainability and quality, thus, their detection is
important for improved code quality. (ii) They represent smells from different levels of
granularity, i.e. class-level and method-level smells, providing diverse set of smells. (iii)

Table 5 Datasets distribution.

Dataset Level Code smell Independent variables Number of samples

Smelly Non-smelly Total

Arcelli Fontana et al. (2016) Class God class 61 OO metrics 140 280 420

Data class

Method Feature envy 82 OO metrics

Long method

Long parameter list 55 OO metrics

Switch statements

Sandouka & Aljamaan (2023) Class Large class 18 code metrics 200 800 1,000

Method Long method

Total 1,240 3,280 4,520

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 13/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

They impose different challenges in their detection by machine learning models due to
their unique characteristics. (iv) These smells are the most investigated smells in the
literature and can provide a benchmark performance for our models.

Stacking ensembles
In this section, we will overview the six models that were selected as candidate base models
to build our dynamic stacking ensembles. These models were selected from different
classification families to diverse the candidate base models list. Next, we will explain the
hyperparameters tuning process followed to tune the base models.

Base models
In this section, we briefly present a description of each base model used in this research.

Decision tree (DT). It is one of the powerful ML algorithms for both classification and
regression tasks. One of the most prevalent and widely used training algorithms for
constructing decision trees is the Classification and Regression Trees (CART) algorithm,
which is implemented by Scikit-Learn library. In binary classification, CART finds the
optimal data splits at each internal node to divide each set using Gini Index impurity. This
process is accomplished by using the Gini Index impurity metric, that is calculated as
Quinlan (2014):

GI ¼ 1�
X2
i¼0

p2i (3)

where p is the probability of class i. The splitting procedures is recursively repeated until
the algorithm reaches a maximum depth or if impurity cannot be further reduced.

K-nearest neighbors (KNN). It is characterized by its extreme simplicity and its unique
attribute of not requiring training the data. The core of KNN is the underlying assumption
that similar datapoints are spatially positioned next to each other within the space. It uses
the whole training samples to represent the model and predicts the label of a new sample
by finding the nearest k neighbors (samples) using the Euclidean distance, as Peterson
(2009):

dðp; qÞ ¼
ffiXn
i¼1
ðpi � qiÞ2

s
(4)

where dðp; qÞ is the distance between datapoints p and q, pi and qi are the vectors values of
the two datapoints, and n is the space dimensions.

Logistic regression (LR). It is a statistical model primarily designed for binary
classification tasks, in which a given data point is assigned to one of two mutually exclusive
classes. Its core idea is calculating the probability of each datapoint to be classified to one
class. The algorithm sets a threshold value, typically 0.5, upon which it bases its final
classification decision. Consequently, datapoints with probabilities exceeding the threshold

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 14/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

are assigned to one class, while those falling below it are assigned to the other class. The
probability value is calculated as Hilbe (2009):

p̂ ¼ rðWX þ BÞ (5)

where X is the input features, B is a bias value, W is the weights of the model, and r is the
logistic sigmoid function.

Multi-layer perceptron (MLP). It is Feedforward Neural Network (FFN) that is fully
connected. It is composed of an input layer, one (or more) hidden layer(s), and an output
layer. Each layer feeds its output to the next layer until the last layer is reached. Upon
reaching the final output layer, the backpropagation algorithm is initiated, a crucial phase
in the neural network training process. During this phase, the cost function is computed to
guide the iterative adjustment of the network’s weights. This iterative optimization process
aims to minimize the cost function, ultimately leading to maximizing the model’s
performance (Haykin, 1998).

Naive Bayes (NB). It is a probabilistic models that is grounded in the principles of
Bayes’ theorem, expressed as Eq. (6). The term “naive” signifies the model’s assumption
that the features are completely independent. We used the Bernoulli variant of NB as it is
more suitable for data characterized by binary features (Rish, 2001).

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ (6)

Support vector machine (SVM). It is considered as one of the most popular and
versatile ML algorithms. It can be used to address different machine learning tasks,
including both linear and nonlinear classification, regression analysis, as well as outliers’
detection. SVM uses the training data with objective of identifying the optimal hyperplane
that can effectively separates the datapoints into their respective classes. To learn the
optimal line, SVM finds the closest points (i.e., support vectors) of each class and calculates
the distance (i.e., margin) between the line and the support vectors, such that the margin is
maximized (Vapnik, 2013).

Hyperparameters optimization
In training machine learning models, hyperparameters optimization holds profound rule
in a model’s behavior and performance, affecting factors such as accuracy, generalization,
and training efficacy (Hoque & Aljamaan, 2021). It ensures that machine learning models
are optimized for a given task, maximizing their potential and utility.

In this research, we utilized Optuna (Akiba et al., 2019), a powerful and versatile Python
library used for automating the hyperparameters tuning process of machine learning
models. It efficiently explores the hyperparameters space and adjusts the hyperparameters
values to maximize the model’s performance metrics, typically using cross-validation.

In our comprehensive model training and optimization process, we conducted
hyperparameters tuning for each individual base model. The hyperparameters space is
shown in Table 6, where round brackets “()” indicate a value selected from a range with a

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 15/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

minimum and maximum value, and curly brackets “{}” indicate a choice selected from the
available options.

Model validation
Stacking ensembles and base models were validated using 10 stratified folds cross
validation repeated 10 times. In this validation approach, the dataset is divided into 10
stratified folds; nine folds for training and the remaining fold for testing. The approach will
be repeated 10 times, where each fold will be used for testing exactly once. This whole
approach will be repeated again 10 times, where the model performance estimate will be
the average of 100 testing sets. With this 10 repetition of the 10 fold cross validation, we
ensure that we produce unbiased model estimates with low variance (Tantithamthavorn
et al., 2016).

Evaluation measures
The purpose of this study is to investigate cross-language code smells detection. This
problem is considered as a binary classification problem, where the ML models take a code
instance and output one of two classes: smelly or non-smelly code. Two threshold-
dependent evaluation metrics (Accuracy and F1-score) were employed, along with one
threshold-independent metric (AUC).

Accuracy
Accuracy (Witten et al., 2005) stands out as one of the most commonly used metrics for
binary classification problems. Therefore, it is an essential metric in evaluating the

Table 6 Hyperparameters space of the optimization process.

Model Hyperparameter Values

DT Max depth (2–12)

Splitter {best, random}

Max features {None, sqrt, log2}

KNN Weights {uniform, distance}

Metric {euclidean, manhattan, minkowski}

Neighbors (1–20)

LR Penalty {11, 12}

C (0–100)

MLP Activation {relu, identity, logistic,tanh}

Solver {adam, lbfgs, sgd}

Alpha (0.0001–100)

Learning rate {constant, invscaling, adaptive}

NB Alpha (0.0001–100)

binarize (0.0–10.0)

SVM Kernel {rbf, linear, poly, sigmoid}

Gamma {scale, auto}

C (0.001–100)

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 16/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

performance of code smells detection models. Accuracy is defined as the percentage of
correctly classified instances (i.e. true positive (TP) and true negative (TN) predictions)
over all samples (i.e. including false positive (FP) and false negative (FN) predictions), as
shown in Eq. (7).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 (7)

F1-score

F1-score is calculated as the harmonic average of precision and recall, assigning equal
importance to both. Precision uses TPs and FPs to find how many of the detected code
smells are correct, whereas recall uses TPs and FNs to find how many code smells are
detected correctly. Eqs. (8)–(10) show how precision, recall, and F1-score are calculated
(Witten et al., 2005), respectively.

Precision ¼ TP
TP þ FP

(8)

Recall ¼ TP
TP þ FN

(9)

F1�score ¼ 2� Precision� Recall
Precisionþ Recall

: (10)

AUC
Area Under the Curve (AUC) (Witten et al., 2005) is a threshold-independent metric that
provides a better understanding of the models performance than threshold-dependent
metrics. It represents the percentage of the area underneath the Receiver Operator
Characteristic (ROC) curve, that plots the relationship between the TP and FP rates. AUC
values ranges from 0 to 1, with a higher value indicating a better performance.

Statistical analysis
A statistical test was conducted to examine whether the performance of the dynamic
stacking ensemble approaches significantly differ from the performance of full stacking
ensemble and the six base models (Demšar, 2006). This empirical study has a total of 576
comparisons (72 pairwise comparisons per dataset × eight datasets). We used the F1-score
metric resulting from 100 runs (10 folds CV repeated 10 times) as it is the most used metric
in binary classification problems and it combines both precision and recall. The non-
parametric Wilcoxon signed-rank test is used to perform the pairwise comparisons due to
the independence of the samples. Moreover, Wilcoxon signed-rank test is more fixable
since it does not require the data to be normally distributed. The tests are performed with
95% confidence interval (i.e., at a significance level a = 0.05). For each pairwise
comparison, the p-value will be used to accept/reject the following hypotheses:

. H0 : F1�Scorex ¼ F1�Scorey (there is no difference in the detection performance
between the two models)

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 17/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

. H1 : F1�Scorex 6¼ F1�Scorey (there is a significant difference in detection performance
between the two models)

Nevertheless, multiple statistical tests on the same dataset leads to an increase of Type I
error. To reduce this error, we followed Bonferroni correction that adjusts the p-value as
follows:

adj:p�value ¼ 1� ð1� aÞ
T

(11)

where a is the old p-value and T is the number of the performed comparisons.

RESULTS AND DISCUSSIONS
This section discusses our empirical study’s results and addresses the previously
formulated research questions.

Dynamic stacking ensembles algorithms
This section answers the first formulated research question: “Will greedy search and
backward elimination dynamic ensembles strategies yield to two different base models lists?”.
We constructed our DSE using greedy search and backward elimination strategies to detect
each investigated code smell, and the resulting base models for each DSE are listed in
Table 7. It can be observed that both strategies to build the DSE resulted in different base
model lists. Each DSE had varying base model list sizes with different combinations.

Figure 3 presents a summary of base models lists created via greedy search and
backward elimination strategies based on code smell and base model type. We can observe

Table 7 DSE base models for each code smell.

Dataset Ensemble Base model Size

(J) GC DSE-GS MLP, DT, SVM, KNN, LR, NB 6

DSE-BE KNN, LR 2

(J) DC DSE-GS KNN, LR 2

DSE-BE KNN, DT, SVM 3

(J) LM DSE-GS DT, SVM, KNN 3

DSE-BE KNN, LR 2

(J) LPL DSE-GS DT, LR, MLP, KNN, NB, SVM 6

DSE-BE DT, SVM 2

(J) FE DSE-GS KNN, SVM, DT, NB 4

DSE-BE DT, SVM 2

(J) SS DSE-GS KNN, SVM, LR, DT, MLP, NB 6

DSE-BE KNN, LR, NB 3

(P) LC DSE-GS LR, DT, MLP 3

DSE-BE DT, LR 2

(P) LM DSE-GS KNN, DT, MLP, SVM, LR, NB 6

DSE-BE KNN, DT, LR, SVM, MLP, NB 6

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 18/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

that the base models list sizes varied based on the code smell detected. In Python code
smells detection, the LM code smell was the most challenging smell to detect, since the
resulting base models for both DSEs were equivalent to an FSE (i.e., six base models), while
the LC code smell required a smaller base model list in both dynamic ensembles.

Similarly, In Java code smells detection, different code smells resulted in different base
models lists for both DSE strategies. The SS code smell was the most challenging smell to
detect, while the DC code smell, required fewer base models. After comparing the DSE
strategies, we can conclude that backward elimination strategy resulted in smaller base
models list as compared to the greedy search strategy. In fact, in 50% of the code smells,
base models created via the greedy search strategy were equivalent to an FSE. Figure 3
presents another perspective regarding base models selection count per DSE. We can
observe that NB and MLP models were the least favored models in relation to both DSE
strategies, while the KNN and DT models were the most commonly selected base models
by both DSE strategies.

RQ1 Answer. Greedy search and backward elimination strategies yielded different base
models lists to build dynamic ensembles for code smell detection. It was notable that
backward elimination strategy to build the dynamic ensembles resulted in smaller base
model lists compared to the greedy search strategy. Among the six base models, KNN
and DT models were favored to be selected as base models in both greedy search and
backward elimination strategies, while MLP and NBmodels where the least selected base
models.

Dynamic stacking ensemble vs. base models
This section addresses the second formulated research question: “Will dynamic ensembles
have stable code smell detection performance across different languages in comparison to all

Figure 3 DSE base models summary. (A) Per code smell. (B) Per base model. Full-size DOI: 10.7717/peerj-cs.2254/fig-3

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 19/29

http://dx.doi.org/10.7717/peerj-cs.2254/fig-3
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

candidate base models?”. After constructing our DSE, we will examine their code smell
detection stability against all candidate base models across all code smells. Table 8 presents
the models detection performance in terms of accuracy, F1-score, and AUC scores in
detecting Java and Python code smells.

For Java code smells detection, base models struggled to achieve a stable and
consistently high detection performance across all Java code smells. Base models were able
to achieve high detection performance in detecting DC and GC code smells, but had far
lower detection performance in more challenging smells, such as: LPL and SS code smells.
For instance, KNN achieved an F1-score of 92% in detecting DC, but the performance was
degraded significantly to 43% when the model was used to detect LPL smells. Similarly, in
Python code smells detection, base models struggled to achieve stable and high detection
performance in detecting both Python code smells. Rather, stacking ensembles both (DSE-
GS and DSE-BE) exhibited a stable and consistently high detection performance for Java
and Python smells in comparison to all base models.

To further examine the detection performance distribution, we plotted the F1-scores
boxplots for dynamic ensembles and base models for Java and Python code smells, as
illustrated in Fig. 4. The base models demonstrated varying levels of performance in

Table 8 Code smell detection performance for stacking ensembles and base models.

Classifiers (J) Data class (J) Feature envy (J) God class (J) Long method

Acc. F1-score AUC Acc. F1-score AUC Acc. F1-score AUC Acc. F1-score AUC

KNN 94.5 92.56 0.99 89.9 83.2 0.96 93.81 89.85 0.98 93.21 88.88 0.99

DT 98.81 98.24 0.99 96.38 94.73 0.97 95.67 93.42 0.96 98.83 98.26 0.99

LR 97.55 96.43 0.99 93.86 90.6 0.98 96.33 94.37 0.99 98.93 98.41 1

SVM 96.33 94.7 0.99 94.33 91.38 0.97 96.36 94.28 0.99 96.81 95.26 1

MLP 93.21 90.05 0.98 93.02 89.09 0.98 93.1 88.43 0.99 93.81 89.75 0.99

NB 91.31 87.02 0.97 85 81.13 0.91 92.86 90.1 0.98 85.69 81.34 0.92

FSE 98.71 98.06 1 96.21 94.42 0.99 96.74 95.1 1 99.14 98.69 1

DSE-GS 98.71 98.04 1 96.26 94.48 0.99 96.81 95.21 0.99 99.29 98.91 1

DSE-BE 98.79 98.16 1 96.17 94.29 0.99 96.71 95.09 0.99 99.19 98.78 1

Classifiers (J) Long parameter list (J) Switch statements (P) Large class (P) Long method

Acc. F1-score AUC Acc. F1-score AUC Acc. F1-score AUC Acc. F1-score AUC

KNN 74.52 43.63 0.8 80.76 63.44 0.88 90.63 71.59 0.92 91.48 79.25 0.97

DT 91.67 87.01 0.95 84.83 75.04 0.91 89.96 71.74 0.87 94.77 89.05 0.97

LR 91.05 85.86 0.97 88.07 79.58 0.95 91.89 76.6 0.94 91.45 80.03 0.96

SVM 88.64 79.42 0.97 85.21 73.84 0.93 92.81 79.55 0.94 93.51 85.63 0.98

MLP 76.02 42.11 0.91 84.86 72.7 0.93 92.59 79.55 0.94 78.96 18.85 0.89

NB 61.48 47.52 0.67 70.24 63.23 0.79 76.8 51.88 0.79 72.63 47.24 0.75

FSE 91.69 86.67 0.92 87.79 79.08 0.95 92.73 79.72 0.94 95.08 89.39 0.98

DSE-GS 91.86 87.12 0.93 87.71 79.14 0.95 92.74 79.74 0.94 95.07 89.4 0.98

DSE-BE 91.95 87.21 0.93 87.45 78.57 0.95 92.86 80.09 0.94 95.04 89.34 0.99

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 20/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Figure 4 F1-score boxplots for stacking ensembles and base models performance per code smell. (A) (Java) Data Class. (B) (Java) Feature Envy.
(C) (Java) God Class. (D) (Java) Long Method. (E) (Java) Long Parameter List. (F) (Java) Switch Statement. (G) (Python) Large Class. (H) (Python)
Long Method. Full-size DOI: 10.7717/peerj-cs.2254/fig-4

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 21/29

http://dx.doi.org/10.7717/peerj-cs.2254/fig-4
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

detecting Java code smells. For instance, in LPL code smell detection, base models
exhibited perceptible variations in detecting this code smell; conversely, dynamic
ensembles exhibited higher detection performance. In addition, for Python code smells
detection, base models failed to maintain high detection rates across both smells; for
example, the MLP model detection varied significantly between LC and LM Python code
smells detection. Overall, we can observe the stability of dynamic ensembles in detecting
Java and Python code smells by having their boxes in the top right corner above most of
the base models boxes. In addition, dynamic ensembles had smaller boxes and shorter
whiskers, thus confirming their detection performance stability.

We performed a statistical pairwise comparison to examine whether the observed
detection performance was statistically significant or not. The results from the models
pairwise comparison are presented in Table 9. Each model has a total of 64 pairwise
comparisons against eight other models to detect eight code smells. This table can be read
row and column wise. When reading it row wise, the number in the table indicates the
number of row model wins against the column model, and vice versa, when reading it
column wise, the number indicates the column model losses against the row model. Each
pairwise comparison will have three possible outcomes: (1) win, (2) loss, or (3) tie,
meaning that the difference is insignificant.

For example, the DSE-GS model as an example. It shows that this dynamic ensemble
won against the SVM model in six comparisons (i.e., code smells); this can also be
interpreted as indicating the loss of the SVM model lost against DSE-GS in six
comparisons. The table outcomes confirms our previous findings that base models had
varying detection performances based on winning and losing in relation to code smells
detection. Conversely, dynamic ensembles had the highest percentage of wins and never
had a single loss against any base model. Previously reported pairwise comparisons can
also be viewed as well per code smell, as presentred in Table 10. Different numbers of wins
and losses have been reported per code smell, indicating the models’ different challenges in
detecting them. Python LM code smell was the most challenging smell to detect.

Table 9 Models pairwise comparison results.

Classifier SVM NB MLP LR KNN DT FSE DSE-GS DSE-BE # Wins % Wins

SVM – 8 5 1 7 1 0 0 0 22 34%

NB 0 – 1 0 0 0 0 0 0 1 2%

MLP 0 5 – 0 3 1 0 0 0 9 14%

LR 3 8 6 – 7 2 0 0 0 26 41%

KNN 0 4 2 0 – 0 0 0 0 6 9%

DT 5 8 6 3 7 – 0 0 0 29 45%

FSE 6 8 7 4 8 1 – 0 0 34 53%

DSE-GS 6 8 7 3 8 1 0 – 0 33 52%

DSE-BE 6 8 7 2 8 1 0 0 – 32 50%

Losses 26 57 41 13 48 7 0 0 0

% Losses 41% 89% 64% 20% 75% 11% 0% 0% 0%

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 22/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

RQ2 Answer. Base models showed varying detection performance in detecting Java and
Python code smells. DT and LR models were the highest performing base models, while
KNN and NB models were the lowest performing models. Both dynamic ensembles
(DSE-GS and DSE-BE) have proven to be the most stable models in detecting cross
language smells by achieving the highest detection performance and not losing to any
base model.

Dynamic stacking vs. full stacking
This section answers the third formulated research question: “Will dynamic stacking
ensembles result in less complex ensembles with comparable detection performance to full
stacking ensembles?”DSEs were proven to be stable models in term of detecting code smells
over all base models. Below, we will contrast the the DSE against the FSE in terms of
complexity and detection performance.

Figure 5 contrasts the FSE and DSE ensembles base models size across Java and Python
code smells. The FSEs were built using all six base models, while, the DSEs had varying
base models sizes for each code smell. DSE-GS had an equal base models size relative to the
FSE for four smells, while exhibiting a lower size in the other four smells. Conversely, DSE-
BE had lower base models sizes than FSE for seven code smells, and only one smell
required DSE-BE for the use of the full base models. Overall, we can conclude that for most
code smells, DSE resulted in less complex models in comparison to FSE.

Detection performances differences between FSE and DSE were marginal, as outlined in
Table 8. FSEs were not able to perform significantly higher than DSEs in detecting any of
the Java and Python code smells, as confirmed in Table 9. Moreover, as indicated in Fig. 4
boxplots of both FSE and DSE exhibit similar sizes and whiskers lengths, with no
noticeable differences.

Table 10 Models results per code smell.

Classifier (J) DC (J) FE (J) GC (J) LM (J) LPL (J) SS (P) LC (P) LM

W L W L W L W L W L W L W L W L

SVM 2 4 2 4 3 0 3 5 3 5 2 4 3 0 4 4

NB 0 8 0 7 0 6 0 8 0 6 0 7 0 8 1 7

MLP 1 7 2 4 0 6 1 6 0 6 2 4 3 0 0 8

LR 3 3 2 4 3 0 4 0 4 0 5 0 3 1 2 5

KNN 2 5 0 7 0 6 1 6 0 6 0 7 1 6 2 5

DT 5 0 5 0 3 0 4 0 4 0 2 1 1 6 5 0

DSE-GS 5 0 5 0 3 0 4 0 4 0 4 0 3 0 5 0

DSE-F 5 0 5 0 3 0 4 0 4 0 4 0 4 0 5 0

DSE-BE 4 0 5 0 3 0 4 0 4 0 4 0 3 0 5 0

Total 27 26 18 25 23 23 21 29

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 23/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

RQ3 Answer. Dynamic ensembles in comparison to full stacking ensembles yielded less
complex models in terms of detecting most of the investigated code smells, with the
backward elimination strategy resulting in less complex models. Dynamic ensembles
were able to perform comparably against full stacking ensembles and there was no
significant detection difference between them in detecting any code smell.

THREATS TO VALIDITY
In this section, we will discuss potential threats to validity of our study and the measures
taken to mitigate them. By discussing these threats, we aim to provide a transparent and
reliable assessment of our study findings. An internal threat to validity might rise from our
implementation choices in building the machine learning models. To mitigate this risk, we
adhered to standard programming practices in building our machine learning models, and
used well known machine learning libraries to perform our study. Scikit-Learn library was
utilized to build all machine learning models, while Optuna was used to automate the
models hyperparameters tuning process. Moreover, our code is open sourced and publicly
available making our results replicable and verifiable by other researchers. Another
internal threat to validity is related to our models evaluation metrics. The choice of
evaluation metrics could introduce a bias in our results. To mitigate this threat, we used a
comprehensive set of metrics, including accuracy, auc, and F1-score to provide a balanced
assessment of our models detection performance.

An external threat to validity involves the generalizability of our study findings. This can
be effected by the targeted programming languages and the smell types. Our study focused
on Java and Python smells and this choice can limit the generalizability of our results to

Figure 5 Dynamic stacking ensembles size against full stack.
Full-size DOI: 10.7717/peerj-cs.2254/fig-5

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 24/29

http://dx.doi.org/10.7717/peerj-cs.2254/fig-5
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

other programming languages. Nonetheless, in contrast to existing literature focusing
primarily on Java smells, we included Python for cross language smell detection.
Moreover, we selected the most commonly investigated smells in both languages from
different levels of granularity (class-level and method-level). However, we can’t generalize
our findings to other smell types (e.g. Middle Man smell). Future research should include
additional languages and smell types to validate the broader applicability of our approach
in cross language smell detection.

We used statistical tests to compare between the models detection performance and
whether the observed difference is statistically significant or not. The choice of the
employed statistical test as well as the number of runs in our study can influence the
conclusion validity of our study results. To mitigate this threat, we employed a non-
parametric Wilcoxon signed-rank test to perform the models pairwise comparisons due to
data non-normal distribution. In addition, we adjusted the p-value by apply Bonferroni
correction to reduce the hypothesis testing Type I error. Lastly, the models detection
performance was the average of 100 runs, generated by a 10 stratified folds cross validation
repeated 10 times. Thus, ensuring unbiased model estimates with low variance.

RESEARCH IMPLICATIONS
The findings of our conducted empirical study have several important research and
practical implications for both software engineers and machine learning practitioners. We
aimed in our study to contribute to the knowledge advancement in the field of code smell
detection and provides practical insights that can enhance the overall software quality. We
can list our study implications as follows:

. Enhanced detection tools. Dynamic stacking ensembles offers a reliable code smell
detection models across Java and Python programming languages. These ensemble
models can be integrated with code analysis tools to enhance the overall code smell
detection capabilities. This improvement can assist software engineers in the refactoring
process to counter these smells and enhance the overall software maintenance and
quality.

. Practical usability. Dynamic stacking ensembles result in less complex models in
comparison to full stacking ensembles without any noticeable performance degrade.
This reduction in complexity is achieved through the selection of the most significant
base models using GS and BE approaches, reducing both the number of base models and
computational resources required. Practitioners can utilize these advanced stacking
models in code smell detection with fewer resources. Moreover, our open source code
allows practitioners to deploy these models for the purpose of code smell detection in
their projects and suggest any further improvements to these ensembles.

. Cross-language applicability. By extending code smell detection to include Python, in
addition to the most investigated Java language, our research promotes the development
of cross-language code smell detection models that is applicable across multiple
languages. Future research should include more programming languages to enhance the
generalizability of code smell detection models.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 25/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

CONCLUSION
In this article, we introduced two strategies to build dynamic ensembles: greedy search and
backward elimination. For the greedy search strategy, we built our dynamic ensemble
incrementally in a forward search fashion by adding the most contributing model to the
stacking ensemble base model list in each iteration. Conversely, in the backward
elimination strategy, we started with a list of candidate base models, and iteratively
eliminated the least contributing model from the base models list. We performed a
comprehensive empirical study to investigate the effectiveness and stability of dynamic
ensembles in detecting four Java and two Python code smells.

Our article presents interesting empirical evidence for machine learning and software
engineers regarding the detection capabilities of dynamic stacking ensembles to detect
code smells across languages. Our findings can be summarized as follows: (1) Greedy
search and backward elimination strategies resulted in different base models and model
complexities when constructed to detect different code smells. (2) The backward
elimination strategy yielded less complex dynamic ensembles. (3) Dynamic ensembles
demonstrated stable and high detection performance across Java and Python code smells.
(4) Dynamic ensembles were less complex than full stacking ensembles without any
significant performance detection loss.

This work can be extended further into many future directions: First, our empirical
study can be replicated with additional Java and Python code smells to examine the
stability of dynamic stacking ensembles in detecting these smells. Second, other
programming languages (e.g., C# and C++) smells detection can be further investigated
using dynamic ensembles to increase the study outcomes generalizability. Third, future
work can explore additional strategies (e.g. evolutionary algorithms) to provide a more
comprehensive evaluation against our investigated strategies. Lastly, we can consider a
larger set of candidate base models to build the dynamic ensembles. We selected six
versatile models as base models, however a study can be designed to examine the
effectiveness of greedy search and backward elimination strategies in building less complex
models, when a larger candidate base models is used.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by King Fahd University of Petroleum and Minerals (KFUPM).
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Fahd University of Petroleum and Minerals (KFUPM).

Competing Interests
The authors declare that they have no competing interests.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 26/29

http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Author Contributions
. Hamoud Aljamaan conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code is available at Zenodo:
Aljamaan, H. (2024). Dynamic Stacking Ensemble for Cross-language Code Smell

Detection. Zenodo. https://doi.org/10.5281/zenodo.11488752.
The Java datasets are available at ESSeRE Lab: https://essere.disco.unimib.it/machine-

learning-for-code-smell-detection/.
The Python datasets are available at Zenodo:
Sandouka, R., & Aljamaan, H. (2023). Python code smells detection using conventional

machine learning models. Peerj Computer Science, 9, e1370. https://doi.org/10.5281/
zenodo.7512516.

REFERENCES
Acuna E, Rodriguez C. 2004. The treatment of missing values and its effect on classifier accuracy.

In: Classification, Clustering, and Data Mining Applications: Proceedings of the Meeting of the
International Federation of Classification Societies (IFCS), Illinois Institute of Technology. Cham:
Springer, 639–647.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. 2019.Optuna: a next-generation hyperparameter
optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2623–2631.

Al-Shaaby A, Aljamaan H, Alshayeb M. 2020. Bad smell detection using machine learning
techniques: a systematic literature review. Arabian Journal for Science and Engineering 45:2341–
2369 DOI 10.1007/s13369-019-04311-w.

Alazba A, Aljamaan H. 2021. Code smell detection using feature selection and stacking ensemble:
an empirical investigation. Information and Software Technology 138:106648
DOI 10.1016/j.infsof.2021.106648.

Alazba A, Aljamaan H, Alshayeb M. 2023. Deep learning approaches for bad smell detection: a
systematic literature review. Empirical Software Engineering 28(3):77
DOI 10.1007/s10664-023-10312-z.

Alazba A, Aljamaan H, Alshayeb M. 2024a. Automated detection of class diagram smells using
self-supervised learning. Automated Software Engineering 31(1):29
DOI 10.1007/s10515-024-00429-w.

Alazba A, Aljamaan H, Alshayeb M. 2024b. Cort: transformer-based code representations with
self-supervision by predicting reserved words for code smell detection. Empirical Software
Engineering 29(3):59 DOI 10.1007/s10664-024-10445-9.

Aljamaan H. 2021. Voting heterogeneous ensemble for code smell detection. In: 2021 20th IEEE
International Conference on Machine Learning and Applications (ICMLA). IEEE, 897–902.

Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A. 2016. Comparing and experimenting
machine learning techniques for code smell detection. Empirical Software Engineering
21(3):1143–1191 DOI 10.1007/s10664-015-9378-4.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 27/29

https://doi.org/10.5281/zenodo.11488752
https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/
https://essere.disco.unimib.it/machine-learning-for-code-smell-detection/
https://doi.org/10.5281/zenodo.7512516
https://doi.org/10.5281/zenodo.7512516
http://dx.doi.org/10.1007/s13369-019-04311-w
http://dx.doi.org/10.1016/j.infsof.2021.106648
http://dx.doi.org/10.1007/s10664-023-10312-z
http://dx.doi.org/10.1007/s10515-024-00429-w
http://dx.doi.org/10.1007/s10664-024-10445-9
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Azeem MI, Palomba F, Shi L, Wang Q. 2019. Machine learning techniques for code smell
detection: a systematic literature review and meta-analysis. Information and Software
Technology 108(9):115–138 DOI 10.1016/j.infsof.2018.12.009.

Charalampidou S, Ampatzoglou A, Avgeriou P. 2015. Size and cohesion metrics as indicators of
the long method bad smell: an empirical study. In: Proceedings of the 11th International
Conference on Predictive Models and Data Analytics in Software Engineering. 1–10.

Chatzimparmpas A, Martins RM, Kucher K, Kerren A. 2020. Stackgenvis: alignment of data,
algorithms, and models for stacking ensemble learning using performance metrics. IEEE
Transactions on Visualization and Computer Graphics 27(2):1547–1557
DOI 10.1109/TVCG.2020.3030352.

Cormen TH, Leiserson CE, Rivest RL, Stein C. 2022. Introduction to algorithms. Cambridge: MIT
Press.

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research 7:1–30.

Dewangan S, Rao RS, Mishra A, Gupta M. 2022. Code smell detection using ensemble machine
learning algorithms. Applied Sciences 12(20):10321 DOI 10.3390/app122010321.

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A. 2018. Detecting code smells
using machine learning techniques: are we there yet? In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (saner). Piscataway: IEEE, 612–
621.

Fontana FA, Zanoni M, Marino A, Mäntylä MV. 2013. Code smell detection: towards a machine
learning-based approach. In: 2013 IEEE International Conference on Software Maintenance.
Piscataway: IEEE, 396–399.

Fowler M. 1999. Refactoring: improving the design of existing code. Boston, MA, USA: Addison-
Wesley.

Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. Journal of Machine
Learning Research 3:1157–1182.

Haykin S. 1998. Neural networks: a comprehensive foundation. Upper Saddle River: Prentice Hall
PTR.

Hilbe JM. 2009. Logistic regression models. New York: Chapman and Hall/CRC.

Hoque KE, Aljamaan H. 2021. Impact of hyperparameter tuning on machine learning models in
stock price forecasting. IEEE Access 9:163815–163830 DOI 10.1109/ACCESS.2021.3134138.

Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ. 2017. Snapshot ensembles: Train 1,
get m for free. ArXiv preprint DOI 10.48550/arXiv.1704.00109.

Kaur A. 2020. A systematic literature review on empirical analysis of the relationship between code
smells and software quality attributes. Archives of Computational Methods in Engineering
27(4):1267–1296 DOI 10.1007/s11831-019-09348-6.

Kaur I, Kaur A. 2021. A novel four-way approach designed with ensemble feature selection for
code smell detection. IEEE Access 9:8695–8707 DOI 10.1109/ACCESS.2021.3049823.

Kim M, Zimmermann T, Nagappan N. 2012. A field study of refactoring challenges and benefits.
In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. 1–11.

Liu H, Jin J, Xu Z, Zou Y, Bu Y, Zhang L. 2019. Deep learning based code smell detection. IEEE
Transactions on Software Engineering 47(9):1811–1837 DOI 10.1109/TSE.2019.2936376.

Mahalakshmi D, Kasinathan P, Elangovan D, Bhat CR, Balamurugan M, Sivakumar S. 2023.
Code smell detection using hybrid machine learning algorithms. In: 2023 5th International

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 28/29

http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1109/TVCG.2020.3030352
http://dx.doi.org/10.3390/app122010321
http://dx.doi.org/10.1109/ACCESS.2021.3134138
http://dx.doi.org/10.48550/arXiv.1704.00109
http://dx.doi.org/10.1007/s11831-019-09348-6
http://dx.doi.org/10.1109/ACCESS.2021.3049823
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

Conference on Inventive Research in Computing Applications (ICIRCA). Piscataway: IEEE,
633–638.

Moha N, Guéhéneuc YG, Duchien L, LeMeur AF. 2009.Decor: a method for the specification and
detection of code and design smells. IEEE Transactions on Software Engineering 36(1):20–36
DOI 10.1109/TSE.2009.50.

Peterson LE. 2009. K-nearest neighbor. Scholarpedia 4(2):1883 DOI 10.4249/scholarpedia.1883.

Quinlan JR. 2014. C4. 5: programs for machine learning. Amsterdam: Elsevier.

Rao RS, Dewangan S, Mishra A, Gupta M. 2023. A study of dealing class imbalance problem with
machine learning methods for code smell severity detection using pca-based feature selection
technique. Scientific Reports 13(1):16245 DOI 10.1038/s41598-023-43380-8.

Rish I. 2001. An empirical study of the naive bayes classifier. In: IJCAI 2001Workshop on Empirical
Methods in Artificial Intelligence. Vol. 3. Citeseer, 41–46.

Rokach L. 2010. Ensemble-based classifiers. Artificial Intelligence Review 33(1–2):1–39
DOI 10.1007/s10462-009-9124-7.

Saeys Y, Abeel T, Van de Peer Y. 2008. Robust feature selection using ensemble feature selection
techniques. In: Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2008, September 15-19, 2008, Proceedings, Part II 19. Cham: Springer, 303–325.

Sandouka R, Aljamaan H. 2023. Python code smells detection using conventional machine
learning models. PeerJ Computer Science 9(4):e1370 DOI 10.7717/peerj-cs.1370.

Singh D, Singh B. 2020. Investigating the impact of data normalization on classification
performance. Applied Soft Computing 97(5):105524 DOI 10.1016/j.asoc.2019.105524.

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K. 2016. An empirical comparison of
model validation techniques for defect prediction models. IEEE Transactions on Software
Engineering 43(1):1–18 DOI 10.1109/TSE.2016.2584050.

Tsoumakas G, Partalas I, Vlahavas I. 2008. A taxonomy and short review of ensemble selection.
In: Workshop on Supervised and Unsupervised Ensemble Methods and their Applications. 1–6.

Vapnik V. 2013. The nature of statistical learning theory. Cham: Springer Science & Business
Media.

Witten IH, Frank E, Hall MA, Pal CJ, Data M. 2005. Practical machine learning tools and
techniques. In: Data Mining. Vol. 2. The Netherlands: Elsevier Amsterdam, 403–413.

Wolpert DH. 1992. Stacked generalization. Neural Networks 5(2):241–259
DOI 10.1016/S0893-6080(05)80023-1.

Yadav PS, Rao RS, Mishra A. 2024. An evaluation of multi-label classification approaches for
method-level code smells detection. IEEE Access 12:53664–53676
DOI 10.1109/ACCESS.2024.3387856.

Yamashita A, Moonen L. 2013. Exploring the impact of inter-smell relations on software
maintainability: an empirical study. In: 2013 35th International Conference on Software
Engineering (ICSE). Piscataway: IEEE, 682–691.

Yang Y, Xia X, Lo D, Bi T, Grundy J, Yang X. 2022. Predictive models in software engineering:
challenges and opportunities. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31(3):1–72 DOI 10.1145/3503509.

Zhang M, Jia J. 2022. Feature envy detection with deep learning and snapshot ensemble.
In: 2022 9th International Conference on Dependable Systems and their Applications (DSA).
Piscataway: IEEE, 215–223.

Zhou ZH. 2012. Ensemble methods: foundations and algorithms. Routledge: CRC Press.

Aljamaan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2254 29/29

http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.4249/scholarpedia.1883
http://dx.doi.org/10.1038/s41598-023-43380-8
http://dx.doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.7717/peerj-cs.1370
http://dx.doi.org/10.1016/j.asoc.2019.105524
http://dx.doi.org/10.1109/TSE.2016.2584050
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1109/ACCESS.2024.3387856
http://dx.doi.org/10.1145/3503509
http://dx.doi.org/10.7717/peerj-cs.2254
https://peerj.com/computer-science/

	Dynamic stacking ensemble for cross-language code smell detection
	Introduction
	Literature review
	Dynamic stacking ensemble
	Discussion
	Research methodology
	Empirical study design
	Results and discussions
	Threats to validity
	Research implications
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

