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ABSTRACT
Particle swarm optimization (PSO) stands as a prominent and robust meta-heuristic
algorithm within swarm intelligence (SI). It originated in 1995 by simulating the
foraging behavior of bird flocks. In recent years, numerous PSO variants have been
proposed to address various optimization applications. However, the overall
performance of these variants has not been deemed satisfactory. This article
introduces a novel PSO variant, presenting three key contributions: First, a novel
dynamic oscillation inertia weight is introduced to strike a balance between
exploration and exploitation; Second, the utilization of cosine similarity and dynamic
neighborhood strategy enhances both the quality of solution and the diversity of
particle populations; Third, a unique worst-best example learning strategy is
proposed to enhance the quality of the least favorable solution and consequently
improving the overall population. The algorithm’s validation is conducted using a
test suite comprised of benchmarks from the CEC2014 and CEC2022 test suites on
real-parameter single-objective optimization. The experimental results demonstrate
the competitiveness of our algorithm against recently proposed state-of-the-art PSO
variants and well-known algorithms.

Subjects Data Science, Optimization Theory and Computation, Scientific Computing and
Simulation
Keywords Particle swarm optimization, Inertia weight, Cosine similarity, Dynamic neighborhood
strategy, Single-objective optimization

INTRODUCTION
Optimization algorithms are methodologies crafted to explore solutions for optimization
problems, with the goal of identifying the most favorable solution based on a predefined
criterion (Engelbrecht, 2007). The primary objective of the optimization process is to
discover viable solutions that effectively address the given problem while satisfying any
constraints. The intricate nature of specific optimization problems has contributed to the
increasing prominence of meta-heuristic algorithms employed for solving optimization
problems. Intelligent optimization algorithms have gained significant attention in recent
years due to their ability to efficiently solve complex problems across various domains,
such as, medicine, engineering, etc. These algorithms, inspired by natural phenomena or
artificial intelligence principles, leverage advanced computational techniques to explore
solution spaces and find optimal or near-optimal solutions. The intersection of
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nature-inspired computing, machine learning, and optimization has paved the way for the
development of highly adaptive and efficient algorithms capable of addressing real-world
challenges. One prominent category within this realm is metaheuristic algorithms, which
encompass a diverse set of optimization techniques. Metaheuristics, such as genetic
algorithm (GA) (Wang, 2003), artificial bee colony (ABC) (Karaboga, 2010), differential
evolution (DE) (Price, 1996), simulated annealing (SA) (Bertsimas & Tsitsiklis, 1993), ant
colony optimization (ACO) (Dorigo, Birattari & Stutzle, 2006) and Particle swarm
optimization (PSO) (Kennedy & Eberhart, 1995), mimic natural processes or societal
behaviors to iteratively improve candidate solutions.

PSO has emerged as a powerful optimization algorithm, drawing inspiration from the
collective behavior of birds and fish. In 1995, Kennedy and Eberhart introduced the PSO
algorithm, which navigates the problem space through the continuous adjustment of
particles’ velocity and position (Kennedy & Eberhart, 1995). Its simplicity, ease of
implementation, and ability to explore high-dimensional solution spaces have made it a
popular choice for solving complex optimization problems in various domains.
Nevertheless, the investigation uncovered shortcomings in the PSO algorithm, particularly
in terms of premature convergence and diminished convergence performance, especially
as the optimization problem dimension increases (Liang et al., 2006; Mendes, Kennedy &
Neves, 2004; Qu, Suganthan & Das, 2012).

The design of a rational and efficient evolutionary strategy has been a prevalent focus
among researchers in the current year. Employing a single learning strategy may constrain
the intelligence level of each particle, thereby diminishing the performance of PSO in
addressing optimization problems with intricate fitness scenarios. Consequently,
employing a hybrid learning strategy throughout the entire search process is considered to
enhance the diversity of particle populations. In this study, we propose a dynamic
oscillation inertia weight, cosine similarity based on dynamic neighborhood strategy and a
worst-best example learning strategy based on PSO (DCWPSO), which introduces
enhancements not only in the selection of inertia weights but also in the learning strategy.
The contributions of this article have the following aspects:

. A novel dynamic oscillation inertia weight is proposed to strike a more effective balance
between exploration and exploitation in the algorithm.

. A dynamic neighborhood strategy is proposed, deviating from the singular selection of
Pbest and Gbest. Instead, particles are randomly chosen from their respective
neighborhoods. This modification shows beneficial in enhancing both the diversity of
particle motions and the diversity of particle populations. Additionally, the evolution of
particles is fine-tuned by considering the cosine similarity between Pbest and Gbest.

. Worst-best example learning strategy is introduced to fine-tune the worst particle
population, thereby enhancing the overall performance of the particle population.

The proposed algorithm undergoes analysis in terms of accuracy, stability, convergence
and statistical analysis through experiments compared with PSO variants and well-known
algorithms.
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The remainder of this article is organized as follows: “Related Work” introduces classic
PSO, parameter adjustment and strategy hybridization. “Proposed Algorithm” introduces
the proposed algorithm. “Experimental Results and Analysis” discusses setup of
experiments and analyzes experimental results. “Conclusions and Future Works” gives the
conclusion and directions for future work.

RELATED WORK
In this section, the primary focus is on the speed update mechanism of the canonical PSO
algorithm and the key strategies employed by researchers to enhance the PSO algorithm.

Canonical PSO

viðt þ 1Þ ¼ xviðtÞ þ c1r1ðPbestiðtÞ � xiðtÞÞ þ c2r2ðGbestðtÞ � xiðtÞÞ (1)

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ (2)

where Pbesti denotes the historical optimal solution of the particle i, Gbest represents the
historical optimal solution of the entire population, the position of the ith particle at the tth
iteration is denoted as xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ; . . . ; xiDðtÞÞ, the velocity of particle i at the tth
iteration is represented by viðtÞ ¼ ðvi1ðtÞ; vi2ðtÞ; . . . ; viDðtÞÞ. The parameter x, known as
the inertial weight, regulates the impact of the previous velocity on the current velocity.
Additionally, r1 and r2 are two randomly selected numbers from a uniform distribution
[0,1]. c1 represents the individual cognitive acceleration coefficient, while c2 represents the
social acceleration coefficient. These coefficients play a crucial role in shaping the behavior
of the PSO algorithm.

Parameter adjustment
Parameter adjustment in PSO primarily centers on the inertia weight coefficients x and
acceleration coefficients c1, c2.

The effectiveness of an optimization algorithm typically relies on achieving a balance
between global search and local search across the entire search space. In light of this
consideration, an inertia weight is introduced into the Eq. (1) for a particle. In previous
studies, researchers have proposed various enhancements to inertia weights (Chatterjee &
Siarry, 2006; Arumugam & Rao, 2008; Al-Hassan, Fayek & Shaheen, 2006; Panigrahi,
Pandi & Das, 2008; Feng et al., 2007). In PSO, c1 and c2 are referred to as the cognitive
component and the social component, respectively. They serve as stochastic acceleration
coefficients responsible for adjusting the particle velocity with respect to Pbest and Gbest.
Hence, these two components play a crucial role in achieving the optimal solution rapidly
and accurately. Some researchers have dedicated efforts to the selection of these two
parameters (Chen et al., 2018; Tian, Zhao & Shi, 2019; Kassoul, Belhaouari &
Cheikhrouhou, 2021; Moazen et al., 2023; Sedighizadeh et al., 2021; Harrison, Engelbrecht
& Ombuki-Berman, 2018).

Strategy hybridization
In general, there are two main ways to improve PSO through hybrid strategies, as shown in
the following:
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Improving PSO’s performance by combining it with other search approaches.
Engelbrecht (2016) introduced two adaptations of a parent-centric crossover PSO
algorithm, leading to enhancements in solution accuracy compared to the original parent-
centric PSO algorithms. The amalgamation of GA and PSO involves the partial integration
of gene operations from GA, encompassing selection, crossover, and mutation, into PSO to
enhance population diversity (Molaei et al., 2021; Shi, Gong & Zhai, 2022). Inspired by the
bee-foraging search mechanism of the artificial bee colony algorithm, Chen, Tianfield &
Du (2021) proposed a novel bee-foraging learning PSO (BFL-PSO) algorithm. Singh, Singh
& Houssein (2022) proposed a novel hybrid approach known as the hybrid salp swarm
algorithm with PSO (HSSA-PSO) for the exploration of high-quality optimal solutions in
standard and engineering functions. Hu, Cui & Bai (2017) modified the constant
acceleration coefficients by employing the exponential function, based on the combination
of gravitational search algorithm (GSA) and PSO(PSO-GSA). Khan & Ling (2021)
proposed a novel hybrid gravitational search PSO algorithm (HGSPSO). The fundamental
idea behind this approach is to integrate the local search ability of GSA with the social
thinking capability (Gbest) of PSO.

Incorporating topology in the PSO algorithm. Liu & Nishi (2022) proposed a novel
strategy for exploring the neighbors of elite solutions. Additionally, the proposed
algorithm was equipped with a constraint handling method to enable it to address
constrained optimization problems. Lee, Baek & Kim (2008) proposed the repulsive PSO
(RPSO) algorithm as a relatively recent heuristic search method. This algorithm was
proposed as an effective approach to enhance the search efficiency for unknown radiative
parameters. Mousavirad & Rahnamayan (2020) proposed a center-based velocity,
incorporating a new component known as the “opening center of gravity factor”, into the
velocity update rule to formulate the center-based PSO (CenPSO). The center of gravity
factor leveraged the center-based sampling strategy, a novel direction in population-based
metaheuristics, particularly effective for addressing large-scale optimization problems. Xu
et al. (2019) proposed the Two-Swarm Learning PSO (TSLPSO) algorithm, which was
based on different learning strategies. One subpopulation constructed learning exemplars
using the Dynamic Learning Strategy (DLS) to guide the local search of the particles, while
the other subpopulation constructed learning exemplars using a comprehensive learning
strategy to guide the global search. Meng et al. (2022) proposed a sorted particle swarm
with hybrid paradigms to enhance optimization performance.

PROPOSED ALGORITHM
The pseudo-code for the DCWPSO algorithm is presented in detail as Algorithm 1. The
novelty of t proposed algorithm is encapsulated in the following discoveries: (1) A new
dynamic oscillation inertia weight that better balance between global and local exploration.
(2) The change involves altering the single method of selecting Pbest and Gbest, fostering
increased population diversity. Additionally, cosine similarity is employed to assess the
similarity between Pbest and Gbest, directing populations with low similarity to advance.
(3) Strengthening the p worst particles within the population to enhance the overall
performance of the particle swarm.
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Dynamic oscillation inertia weight
Within the context of PSO, the inertia weight holds significance as a pivotal parameter
governing the dynamics of particle movement. Primarily, the role of the inertia weight lies in
harmonizing the historical velocities of particles with the influences arising from individual
experiences and group synergies. Traditional PSO employs a fixed-value inertia weight,
limiting particles’ ability to adapt to diverse environments and making the algorithm
susceptible to local optima (Kennedy & Eberhart, 1995). Recognizing this limitation, Shi &
Eberhart (1999) observed substantial enhancements in PSO performance by introducing a
linearly changing inertia weight. While some investigations have utilized linear adaptive
weights (Xu & Pi, 2020; Van Den Bergh, 2001; Eberhart & Shi, 2000), it has been
acknowledged that, especially in the case of intricate optimization problems, nonlinear
adaptive weights offer a better fitness to the environment and possess superior dynamic
adjustment capabilities (Ratnaweera, Halgamuge & Watson, 2004; Liu, Zhang & Tu, 2020;
Chatterjee & Siarry, 2006). This article introduces a novel nonlinear inertia weight
represented by Eq. (3).

Algorithm 1 DCWPSO algorithm.

Input: FEs ¼ 0; t ¼ 1;MaxFEs;K;N;D; p; c1; c2; r1; r2;

Output: Gbest;

Randomly initialize position vector xið1 � i � NÞ, velocity vector við1 � i � NÞ;
1: while FEs < MaxFEs do

2: Generate xðtÞ by Eq. (3);

3: Evaluate xiðtÞð1 � i � NÞ; FEs ¼ FEsþ N ;

4: Update PbestiðtÞð1 � i � NÞ and Gbest(t);

5: Sort PbestiðtÞð1 � i � NÞ according to the fitness values;

6: for i ¼ 1 to N do

7: if FEs � 0.8*MaxFEs and i is the worst p agents index then

8: Update the ith particle’s velocity by Eq. (8);

9: else

10: Calculate the cosine similarity of PbestiðtÞ and Gbest neighborhoods, cosh;

11: if cosh < 0:5 then

12: Update the ith particle’s velocity by Algorithm 2;

13: else

14: Update the ith particle’s velocity by Eq. (1);

15: end if

16: end if

17: Update xið1 � i � NÞ based on Eq. (2);

18: end for

19: t ¼ t þ 1;

20: end while
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xðtÞ ¼ r � MaxFEs� FEs
MaxFEs

� �2

� ðxmax � xminÞ þ xmin (3)

where, r is a random number uniformly distributed in the interval of [0,1]. The parameters
xmax and xmin are defined as 0.9 and 0.4, respectively. Function evaluations (FEs) denote
the current number of evaluations, while maximum number of function evaluations
(MaxFEs) represents the predefined maximum number of evaluations. Figure 1 depicts the
trends of proposed and original weights curves.

From Fig. 1, it can be observed that with the progression of population iterations, the
right side of Fig. 1 exhibits a linear decrease, while the left side of Fig. 1 demonstrates a
fluctuating descent pattern. Incorporating this fluctuation strategy into the inertia weights
aids the population in transitioning more frequently between the searching, following and
scaping stage. This approach enhances the diversity of particle movement and contributes
to an increased population diversity. This method of dynamic oscillation achieves a more
optimal balance between the global and local search capabilities of particles, preventing
them from becoming ensnared in local optima.

Cosine similarity and dynamic neighborhood strategy
Throughout the evolution of the particle swarm algorithm, particles guide the population
in the pursuit of the optimal solution by assimilating knowledge from historical personal
best experiences (Pbest) and global best experiences (Gbest), however, depending solely on
these two learning paradigms might not be adequate to convey the population with a
comprehensive search knowledge. As the iteration progresses into its later stages, the Pbest
and Gbest particles gradually converge towards the identified optimal regions, the particle
population may incline towards local optimal solutions due to a shortage of search
information. Hence, specific measures can be employed to assess the similarity between
particles, followed by the selection of an appropriate learning paradigm. This ensures that
all particles gain access to informative search information throughout the evolutionary
process. There are two primary methods for assessing the similarity between two vectors in
a high-dimensional space (Qian et al., 2004). Generally, whereas cosine similarity
characterizes the relative distinction in direction, Euclidean distance characterizes the
absolute distinction in objective value. In PSO algorithm, Pbest and Gbest mainly guide the
movement of the particle swarm in the direction. Therefore, in this article we use the
cosine similarity to compute the similarity between these two vectors to guide population
evolution through angular information. Cosine similarity is independent of vector length,
relying solely on the direction in which the vector is oriented. The mathematical
expression for cosine similarity is denoted by Eq. (4). Figure 2 shows the cosine similarity
of two particles from each of neighborhood.

cosðhÞ ¼ M � N
kMk2� kNk2 (4)

where M ¼ ½y1; y2; . . . ; yD� and N ¼ ½z1; z2; . . . ; zD�. M � N denotes the inner product of
vector M and vector N. kMk2 and kNk2 represents the 2-Norm of vector M and vector N.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2253 6/23

http://dx.doi.org/10.7717/peerj-cs.2253
https://peerj.com/computer-science/


The characteristic of neighborhood has been employed in the variable neighborhood
search (VNS) (Mladenović&Hansen, 1997) algorithm. It has the capability to discover the
optimal solution within the current neighborhood and has the flexibility to escape the
current neighborhood in search of a superior solution. In the classical PSO, the update of
each particle is solely determined by the Pbest of an individual particle and the Gbest
acquired from the entire particle swarm. This single selection method elevates the
probability of particles being trapped in local optima. In this method, the closest K particles
are selected to form a neighborhood by calculating the Euclidean distance of all particles
from Pbest and Gbest, the equations are presented in Eqs. (5) and (6). A single particle is
randomly chosen as the updated reference to guide the entire population within the
respective neighborhood of Pbest and Gbest. Figure 2 shows the neighborhood of PbestiðtÞ
and Gbest, along with the particles within these neighborhoods, where the red particle
represents Gbest and green particle represents PbestiðtÞ. The particles depicted in white
signify the particles within the solution space. The blue particle and the red particle are
randomly selected from the neighborhoods of PbestiðtÞ and Gbest, respectively.

di;PbestiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

ðxi � PbestiðtÞÞ2
vuut (5)

di;Gbest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

ðxi � GbestÞ2
vuut : (6)

In general, a higher degree of similarity between two learning paradigms implies that
their motion directions are more aligned, the positional difference is smaller, and the

Figure 1 Dynamic oscillation and linear inertia weight. Full-size DOI: 10.7717/peerj-cs.2253/fig-1
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number of feasible solutions contained between the paradigms is reduced. This results in
less information that particles can learn from these paradigms, which hinders the
evolutionary process. Conversely, a low degree of similarity indicates relatively
independent motion directions and larger positional differences between the paradigms. In
such cases, the paradigms encompass more feasible solutions, allowing particles to extract
more valuable search information, facilitating the enhancement of solution quality.
Therefore, in this method, the expandable range of Pbest and Gbest is augmented by
elevating the particles’ knowledge acquisition capability through the utilization of the
neighborhood method when the similarity between Pbest and Gbest is high (cosh < 0:5).
The equation for velocity update in cosine similarity dynamic neighborhood strategy is
presented as Eq. (7).

viðt þ 1Þ ¼ xviðtÞ þ c1r1ðPbestliðtÞ � xiðtÞÞ þ c2r2ðGbestlðtÞ � xiðtÞÞ cosh < 0:5
Eq: ð1Þ cosh � 0:5

�
(7)

PbestliðtÞ and GbestlðtÞ are particles randomly selected from the PbestiðtÞ neighborhood
and GbestðtÞ neighborhood, respectively.

According to the introduction above mentioned, the pseudo-code of the update method
can be detailed as in Algorithm 2.

Figure 2 Euclidean distance and cosine similarity in neighborhoods.
Full-size DOI: 10.7717/peerj-cs.2253/fig-2
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Worst-best example learning strategy
In endeavors to enhance the collective performance of a group, the emphasis is often
placed on elevating the capabilities of the least proficient individuals rather than solely
promoting the top performers. This approach aims to catalyze substantial improvements
in the overall group performance. The phenomenon referred to as the “cask effect”, also
known as the “short board effect”, which implies that the water-holding capacity of a
wooden bucket is determined not by its longest board but by its shortest board. Enhancing
the length of the shortest board and removing constraints created by this short board can
augment the water storage capacity of the wooden bucket. Similarly, within PSO, the
overall performance of the entire population can be enhanced by adjusting the movement
direction of the worst p particles. The equation of velocity update as follows:

vwj ðt þ 1Þ ¼ xvwj ðtÞ þ c2r2ðGbestðtÞ � xwj ðtÞÞ (8)

where xwj is the position of the particle j from the worst particle neighborhood in the
current population.

From Eq. (8), the update direction of a worst particle is solely oriented towards the
global optimal experience and remains unaffected by individual optimal experiences. This
facilitates a rapid improvement of the particle. These aspects enable the worst-best
example learning strategy to enhance the quality of the population and mitigate the risk of
falling into local optima.

Complexity analysis
Time complexity is a key indicator of an algorithm’s efficiency. The time complexity of the
canonical PSO algorithm is OðN � DÞ, where D is the dimension. The time complexity
calculation of DCWPSO mainly includes two parts: dynamic neighborhood strategy and
velocity and position update. For the dynamic neighborhood strategy, For the dynamic
neighborhood strategy, firstly, the distances from each particle’s position to Pbest and

Algorithm 2 Cosine similarity and dynamic neighborhood strategy.

1: for i ¼ 1 to N do

2: Calculate the Euclidean distance from particle to PbestiðtÞ and Gbest;

3: Select the K particles closest to PbestiðtÞ to form a neighborhood;

4: end for

5: Select the K particles closest to Gbest to form a neighborhood;

6: Randomly select PbestliðtÞ and GbestlðtÞ from each of neighborhood respectively;

7: Calculate the cosh of PbestliðtÞ and GbestlðtÞ by Eq. (4);

8: if cosh < 0:5 then

9: Update the ith particle’s velocity by Eq. (7);

10: end if
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Gbest are calculated. Subsequently, the particles are sorted based on these distances, and
the k closest particles are selected. So the time complexity isOðN2Þ. The time complexity of
the update operation is consistent with that of canonical PSOs. In summary, the time
complexity of DCWPSO is OðN2 þ N � DÞ, which is slightly higher than that of OðN � DÞ
of canonical PSO.

EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the proposed algorithm was rigorously compared with various PSO
variants and other well-known algorithms on the CEC2014 and CEC2022 test suites,
respectively. Comprehensive statistical analyses were performed to meticulously evaluate
and elucidate the comparative performance of these algorithms.

Setup of experiments
To validate DCWPSO, numerous experiments were conducted on complex functions
extracted from the CEC2014 (Liang, Qu & Suganthan, 2013) and CEC2022 (Yazdani et al.,
2021) test suites. This choice was made due to the high complexity of functions within the
CEC2014 test suites compared to classical functions, rendering them notably challenging
to solve. In CEC2014, 30 functions can be divided into four types relying on their
properties, that is, unimodal functions ðf1 � f3Þ, simple multimodal functions ðf4 � f16Þ,
hybrid functions ðf17 � f22Þ and composition functions ðf23 � f30Þ. Additionally, 12
functions from the latest CEC2022 suites were selected to further assess the algorithm’s
capability in addressing contemporary complex optimization problems. Specifically, f1 is a
unimodal function, f2 � f5 are basic functions, f6 � f8 are hybrid functions, and f9 � f12
are composition functions.

In this experiment, the proposed algorithm is compared against several classical and
advanced PSO variants, as well as other well-known algorithms. The PSO variants include
APSO (Zhan et al., 2009) PSO-DLS (Ye, Feng & Fan, 2017), XPSO (Xia et al., 2020), PSO-
CL (Liang, Zhao & Li, 2021), and ADFPSO (Yu, Tong & Xia, 2022). The well-known
algorithms include PSO (Kennedy & Eberhart, 1995), ICSPM2 (Abed-alguni & Paul, 2022),
DGWO (Abed-alguni & Barhoush, 2018), AGWO (Ma et al., 2024), and PO (Lian et al.,
2024). Notably, the AGWO and PO algorithms have recently demonstrated strong
performance on the CEC2022 test suites. The details of these algorithms are presented in
Tables 1 and 2.

Each function is independently run 30 times, To accurately reproduce the performance
of the comparison algorithms, the termination criteria are defined as follows: for CEC2014,
the maximum number of evaluations is set to D	 104, where D is the dimension. For
CEC2022, the termination criterion is set to the maximum number of iterations, which is
set to 104. Search range is ½�100; 100�D.

Comparisons of the solution accuracy and stability
The proposed algorithm and comparison algorithms are tested on 30� D CEC2014 test
suites and 20� D CEC2022 test suites. Tables 3 and 4 list the mean and standard deviation
value for each function and the best results are denoted in bold.
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Table 1 The parameter settings of PSO variants.

Algorithm Years Parameter setting

APSO (Zhan et al., 2009) 2009 N ¼ 30;x ¼ 0:9; c1 ¼ c2 ¼ 2; d ¼ ½0:05; 0:1�
PSO-DLS (Ye, Feng & Fan, 2017) 2017 N ¼ 30;x ¼ ½0:4; 0:9�; c1 ¼ c2 ¼ 1:49445

XPSO (Xia et al., 2020) 2020 N ¼ 30;x ¼ ½0:4; 0:9�; g ¼ 0:2; Stagmax ¼ 5; p ¼ 0:2

PSO-CL (Liang, Zhao & Li, 2021) 2021 N ¼ 30;x ¼ ½0:4; 0:9�; c1 ¼ c2 ¼ 2

ADFPSO (Yu, Tong & Xia, 2022) 2022 N ¼ 30;x ¼ ½0:4; 0:9�; c1 and c2 are adjustable, K ¼ 2

DCWPSO – N ¼ 30;x ¼ ½0:4; 0:9�; c1 and c2 ¼ 2;K ¼ 2; p ¼ 2

Table 2 The parameter settings of well-known algorithms.

Algorithm Years Parameter setting

PSO (Kennedy & Eberhart, 2004) 2004 N ¼ 30;x ¼ 0:9; c1 ¼ c2 ¼ 2

ICSPM2 (Abed-alguni & Paul, 2022) 2022 N ¼ 30; s ¼ 12;Mf ¼ 100;Mr ¼ 0:2

DGWO (Abed-alguni & Barhoush, 2018) 2018 N ¼ 30; s ¼ 10;Mf ¼ 50;Mr ¼ 0:2

AGWO (Ma et al., 2024) 2024 N ¼ 30

PO (Lian et al., 2024) 2024 N ¼ 30

DCWPSO – N ¼ 30;x ¼ ½0:4; 0:9�; c1 and c2 ¼ 2;K ¼ 2; p ¼ 2

Table 3 Comparison results of DCWPSO with other PSO variants on CEC2014 test set (D = 30). The best values are highlighted in bold.

Function Metrics APSO PSO-DLS XPSO PSO-CL ADFPSO DCWPSO

f1 Mean 2.10743E+06 4.19287E+06 4.09250E+06 5.99798E+07 3.01042E+06 5.25727E+05

Std 2.26275E+06 4.01228E+06 4.92657E+06 2.23995E+07 1.46053E+06 3.80136E+05

f2 Mean 1.40231E+04 6.24251E+03 3.74607E+03 8.58606E+07 9.68756E+03 2.00156E+02

Std 1.37856E+04 8.12712E+03 2.83005E+03 2.03640E+08 7.21276E+03 3.12379E−01

f3 Mean 1.24303E+04 1.57451E+03 6.69169E+02 3.10723E+04 8.50665E+02 3.01152E+02

Std 1.19470E+04 1.29977E+03 3.73894E+02 7.93087E+03 3.25013E+02 1.78408E+00

f4 Mean 4.77208E+02 6.00856E+02 5.26197E+02 6.72202E+02 5.17765E+02 4.64193E+02

Std 4.86314E+01 4.47689E+01 4.00371E+01 4.46627E+01 1.04599E+01 4.38210E+01

f5 Mean 5.20032E+02 5.20539E+02 5.20953E+02 5.20944E+02 5.20938E+02 5.20379E+02

Std 2.55358E−02 1.56973E−01 8.62988E−02 5.50932E−02 4.92628E−02 3.22722E−01

f6 Mean 6.17837E+02 6.16320E+02 6.07751E+02 6.21067E+02 6.00156E+02 6.14984E+02

Std 3.17488E+00 2.69610E+00 3.43317E+00 2.30242E+00 4.43376E-01 4.10208E+00

f7 Mean 7.00051E+02 7.01681E+02 7.00016E+02 7.07414E+02 7.00001E+02 7.00000E+02

Std 4.66498E−02 3.52745E−01 1.98110E−02 1.74946E+00 2.79975E−03 1.80002E−03

f8 Mean 8.00000E+02 8.87573E+02 8.35686E+02 9.99897E+02 8.16070E+02 9.08516E+02

Std 5.22329E−06 2.06257E+01 1.08796E+01 1.33073E+01 4.54755E+00 1.90488E+01

f9 Mean 9.94373E+02 1.00560E+03 9.52069E+02 1.11240E+03 9.18517E+02 1.03604E+03

Std 2.33145E+01 2.22062E+01 1.44427E+01 1.43172E+01 6.92760E+00 3.15291E+01

f10 Mean 1.00000E+03 5.11840E+03 1.82808E+03 7.33732E+03 1.86736E+03 2.74601E+03

Std 1.29506E−02 8.23218E+02 3.66027E+02 3.97352E+02 4.01896E+02 4.79595E+02

(Continued)
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Table 3 (continued)

Function Metrics APSO PSO-DLS XPSO PSO-CL ADFPSO DCWPSO

f11 Mean 3.90476E+03 6.06016E+03 3.59387E+03 8.01932E+03 2.72688E+03 4.28585E+03

Std 5.29050E+02 8.91069E+02 5.83328E+02 2.87878E+02 5.70080E+02 7.07878E+02

f12 Mean 1.20251E+03 1.20114E+03 1.20174E+03 1.20246E+03 1.20247E+03 1.20019E+03

Std 2.73418E−01 3.51232E−01 9.32763E−01 2.32045E-01 3.42228E−01 8.54987E−02

f13 Mean 1.30016E+03 1.30031E+03 1.30029E+03 1.30065E+03 1.30016E+03 1.30041E+03

Std 3.67055E−02 9.19245E−02 7.98839E−02 1.15361E−01 4.34289E−02 9.83510E−02

f14 Mean 1.40026E+03 1.40027E+03 1.40035E+03 1.40065E+03 1.40025E+03 1.40022E+03

Std 3.35147E−02 9.45794E−02 1.92893E−01 2.18700E−01 1.01548E−01 7.08499E−02

f15 Mean 1.50467E+03 1.51282E+03 1.50569E+03 1.52885E+03 1.50410E+03 1.50525E+03

Std 2.64882E+00 2.55177E+00 2.31131E+00 3.70031E+00 1.07817E+00 1.92227E+00

f16 Mean 1.60979E+03 1.61175E+03 1.61077E+03 1.61282E+03 1.60981E+03 1.61138E+03

Std 1.04163E+00 6.19166E−01 9.09076E−01 2.01469E−01 1.21942E+00 7.54887E−01

f17 Mean 1.18497E+05 6.46229E+05 2.33900E+05 1.81444E+06 1.40970E+05 8.22408E+04

Std 5.30145E+04 5.47877E+05 2.40759E+05 7.10083E+05 9.39262E+04 9.14161E+04

f18 Mean 1.45735E+04 2.37362E+05 4.06654E+03 3.88846E+06 1.06793E+04 4.14324E+03

Std 4.42497E+04 6.26807E+05 2.37243E+03 1.91290E+06 3.76555E+04 3.68983E+03

f19 Mean 1.90562E+03 1.91606E+03 1.90797E+03 1.92116E+03 1.90559E+03 1.91261E+03

Std 9.09610E−01 1.09175E+01 1.66442E+00 2.75543E+00 1.26986E+00 1.45659E+01

f20 Mean 2.37369E+03 2.37553E+03 2.50543E+03 6.48692E+03 2.62925E+03 2.20314E+03

Std 2.20740E+02 1.07684E+02 2.38146E+02 3.26125E+03 6.07135E+02 7.36162E+01

f21 Mean 1.94832E+05 6.60844E+04 7.01337E+04 6.48692E+03 4.83188E+04 2.93569E+04

Std 2.94413E+05 5.98596E+04 1.41651E+05 2.89190E+05 2.97001E+04 1.90201E+04

f22 Mean 2.90899E+03 2.58324E+03 2.50481E+03 2.76956E+03 2.42111E+03 2.66276E+03

Std 2.06202E+02 1.42353E+02 1.24514E+02 1.36904E+02 9.05582E+01 2.32602E+02

f23 Mean 2.61528E+03 2.62159E+03 2.61573E+03 2.63155E+03 2.61524E+03 2.61524E+03

Std 3.37140E−02 5.46025E+00 1.96627E−01 3.18393E+00 8.58264E−04 1.77000E−12

f24 Mean 2.63522E+03 2.64368E+03 2.62443E+03 2.61319E+03 2.60417E+03 2.62128E+03

Std 5.06717E+00 6.03877E+00 1.62088E+00 1.38638E+01 6.67843E+00 4.39020E+00

f25 Mean 2.70990E+03 2.71114E+03 2.70945E+03 2.71046E+03 2.70433E+03 2.71047E+03

Std 4.65896E+00 2.79212E+00 2.03228E+00 7.74408E+00 4.23654E−01 2.87615E+00

f26 Mean 2.76314E+03 2.71035E+03 2.76014E+03 2.70066E+03 2.78010E+03 2.76021E+03

Std 8.57504E+01 3.06707E+01 4.96974E+01 9.32209E−02 4.06561E+01 4.96262E+01

f27 Mean 3.45960E+03 3.39347E+03 3.27641E+03 3.36547E+03 3.05698E+03 3.33054E+03

Std 2.30629E+02 1.86152E+02 1.37403E+02 1.46638E+02 5.35099E+01 2.44008E+02

f28 Mean 4.06853E+03 4.47938E+03 4.23487E+03 4.28153E+03 3.75112E+03 5.24137E+03

Std 4.09894E+02 6.40743E+02 5.52933E+02 3.49932E+02 1.50121E+02 7.86963E+02

f29 Mean 1.99976E+06 6.61187E+06 4.41827E+06 3.13958E+05 6.00518E+03 4.15505E+03

Std 3.67879E+06 1.36228E+07 1.01681E+07 1.80512E+05 3.40260E+03 4.40251E+02

f30 Mean 7.11373E+03 1.34335E+04 6.56060E+03 3.99887E+04 5.35929E+03 5.21838E+03

Std 1.86650E+03 9.16392E+03 1.07930E+03 1.75699E+04 8.60589E+02 7.86773E+02

Count (Mean) 5 0 1 2 10 12

Count (Std) 6 0 3 3 8 10
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In Table 3, The best values are highlighted in bold. Among the 30 test functions,
DCWPSO achieves the highest number of best-performing functions, with 12 in terms of
mean and 10 in terms of standard deviation. Both of these counts are the highest among all
the algorithms. The proposed algorithm achieves the top ranking across all unimodal
functions (f1 � f3), underscoring its effectiveness in solving such functions. For the
evaluation of 13 simple multimodal functions ðf4 � f16Þ, the proposed algorithm secures
the third position, following APSO and ADFPSO. Notably, in addressing hybrid functions
ðf17 � f22Þ, the proposed algorithm attains the first rank in f17, f18, f20 and f21,
outperforming other PSO variants. For composition functions ðf23 � f30Þ, DCWPSO is
ranked second among all algorithms, demonstrating notable proficiency in solving f23, f29
and f30. In terms of solution accuracy across the 30 test functions, DCWPSO ranks first in
12 of them, securing the top overall rank with a significant advantage over other
algorithms.

Table 4 Comparison results of DCWPSO with well-known algorithms on CEC2022 test set (D = 20).
The best values are highlighted in bold.

Function Metrics PSO ICSPM2 DGWO AGWO PO DCWPSO

f1 Mean 6.781E+03 6.408E+04 2.020E+04 1.822E+04 9.523E+02 3.000E+02

Std 1.469E+03 9.943E+03 2.275E+03 3.593E+03 5.052E+02 0.000E+00

f2 Mean 5.870E+02 3.400E+03 9.057E+02 5.706E+02 4.606E+02 4.485E+02

Std 3.417E+01 6.362E+02 7.511E+01 2.643E+01 2.439E+01 1.859E+01

f3 Mean 6.218E+02 6.918E+02 6.761E+02 6.286E+02 6.481E+02 6.143E+02

Std 2.060E+00 8.371E+00 6.014E+00 2.788E+00 9.292E+00 1.463E+01

f4 Mean 9.202E+02 1.042E+03 9.497E+02 9.060E+02 8.845E+02 8.813E+02

Std 6.771E+00 1.451E+01 1.184E+01 1.359E+01 1.803E+01 1.790E+01

f5 Mean 1.868E+03 6.107E+03 3.279E+03 1.409E+03 2.058E+03 1.272E+03

Std 1.516E+02 2.588E+02 2.021E+02 9.784E+01 3.010E+02 6.110E+02

f6 Mean 6.016E+07 2.410E+09 5.062E+07 2.577E+07 5.947E+03 5.104E+03

Std 1.858E+07 5.336E+08 1.462E+07 1.126E+07 5.042E+03 3.527E+03

f7 Mean 2.080E+03 2.270E+03 2.278E+03 2.096E+03 2.127E+03 2.079E+03

Std 8.002E+00 4.920E+01 5.409E+01 2.321E+01 2.649E+01 3.810E+01

f8 Mean 2.245E+03 2.668E+03 2.418E+03 2.249E+03 2.240E+03 2.272E+03

Std 5.291E+00 1.414E+02 8.020E+01 9.554E+00 9.899E+00 7.282E+01

f9 Mean 2.507E+03 3.126E+03 2.877E+03 2.539E+03 2.490E+03 2.481E+03

Std 3.642E+00 1.058E+02 6.471E+01 2.144E+01 1.366E+01 3.045E−04

f10 Mean 4.549E+03 4.380E+03 4.801E+03 2.601E+03 2.541E+03 3.300E+03

Std 1.590E+03 1.227E+03 1.756E+03 1.147E+02 8.099E+01 4.886E+02

f11 Mean 3.934E+03 9.131E+03 6.346E+03 3.926E+03 2.954E+03 2.910E+03

Std 3.698E+02 8.764E+02 3.781E+02 3.020E+02 8.443E+01 7.000E+01

f12 Mean 3.008E+03 2.900E+03 3.836E+03 2.932E+03 2.983E+03 3.023E+03

Std 1.341E+01 1.865E−09 1.453E+02 5.966E+00 2.927E+01 5.921E+01

Count (Mean) 0 1 0 0 2 9

Count (Std) 4 1 0 1 1 5
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DCWPSO also demonstrates commendable stability in the comparisons. Table 3
presents the standard deviation of the outcomes from 30 independent executions for each
of the 30 test functions in CEC2014. Figure 3 illustrates a subset of these test functions
through box plots depicting their results. The proposed algorithm secured the first rank in
10 out of all the tested functions. It not only excels in accuracy but also demonstrates
notably competitive stability, holding a substantial advantage in comprehensive
performance when compared with other PSO variants.

Figure 3 Stability effect of DCWPSO compared with PSO variants in the CEC2014 ð30� DÞ. Full-size DOI: 10.7717/peerj-cs.2253/fig-3
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As shown in Table 4, The best values are highlighted in bold. Among the 12 test
functions, DCWPSO achieves the highest number of best-performing functions, with 9 in
terms of mean and 5 in terms of standard deviation. Both of these counts are the highest
among all the algorithms. The algorithm proposed in this article rank first in the unimodal
function f1 and exhibited the lowest standard deviation also. This finding indicates that the
algorithm has significant advantages in solving unimodal functions. Similarly, for the basic
functions (f2 � f5), the proposed algorithm consistently ranked first. This indicates that the
proposed algorithm possesses a distinct advantage in solving basic functions. For the
hybrid functions (f6 � f8), the proposed algorithm achieves a strong performance for
function f6 and f7, but a mediocre performance for functions f8. For the composition
functions (f9 � f12), The proposed algorithm is ranked first in two out of four functions.
This suggests that the DCWPSO algorithm has significant advantages in addressing certain
challenging composition functions.

Among the 12 test functions of CEC2022, the proposed algorithm achieved the highest
mean value rankings in nine test functions and the lowest standard deviation rankings in
five test functions. This demonstrates that the proposed algorithm excels in both accuracy
and stability.

Comparisons of convergence performance
This experiment is conducted on the CEC2014 test suite to scrutinize the convergence
performance of the DCWPSO algorithm across four types of functions. To accentuate the
performance of the DCWPSO algorithm, only nine convergence curve figures featuring
representative functions are selected. Specific experimental results are shown in the figures
below.

Figure 4 displays the convergence curves of the proposed algorithm alongside those of
the comparison algorithms for the CEC2014 functions. The consistent outperformance of
f1 and f2 function over other PSO variants from the beginning to the end of the iteration
suggests that the proposed algorithm has a clear advantage in solving unimodal functions
of this type. For function f4, the proposed algorithm consistently achieves superior
solutions compared to other PSO variants. Analysis of the iteration curves shows its
capability to avoid local optima in later stages and find global optimum solutions,
highlighting its strength in escaping local optima. For function f7, the proposed algorithm
excels in rapidly achieving superior solutions. While most other PSO variants converge to
nearly identical solution, DCWPSO ans APSO requires fewer iterations. For function f12,
In the initial stages, the proposed algorithm may not discover as optimal a solution as the
APSO algorithm. However, as iterations progress, it demonstrates the ability to escape
local optima and achieve superior solutions more rapidly than several other PSO variants,
underscoring the robust tuning capability of DCWPSO. For function f17 and f20, the
proposed algorithm consistently explores new globally optimal solutions during the initial
and middle stages of iteration, with gradual convergence observed in later stages. This
behavior indicates the algorithm’s proficiency in effectively tackling hybrid functions as
well. Similarly, for function f23 and f30, it can also be seen that the proposed algorithm is
also fast in finding better solutions when solving composition functions.
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Statistical analysis of experimental results
In this section, we employ two widely recognized statistical tests to assess the efficacy of the
proposed DCWPSO algorithm compared to other peer algorithms. Specifically, the
Wilcoxon sign-rank test (Derrac et al., 2011) is utilized to determine whether there exists a
significant difference between the performance of DCWPSO and those of other
competitors on individual test functions. Additionally, a Friedman test is applied to
evaluate the overall performance of all the peer algorithms.

Wilcoxon sign-rank test
To highlight distinctions between DCWPSO and other PSO variants on the CEC2014 test
suites, this study employs the Wilcoxon sign-rank test, a nonparametric statistical analysis

Figure 4 The convergence curves of DCWPSO compared with PSO variants in the CEC2014 ð30� DÞ.
Full-size DOI: 10.7717/peerj-cs.2253/fig-4
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method. The objective of this test is to scrutinize performance variations between these
algorithms.

The results of the Wilcoxon nonparametric test for DCWPSO and these compared
algorithms are shown in Table 5. The symbols “n/+/−/=” represents the n number of test
functions, and that DCWPSO is superior to, inferior to and equals to for comparison,
respectively. The table is indexed by various function types in CEC2014. It is evident that
the proposed algorithm exhibits only a slight worse in performance in the assessment of
simple multimodal functions. Nevertheless, it consistently outperforms other algorithms
overall.

Friedman test
A Friedman test is conducted to provide a comprehensive assessment of the performance
of the six algorithms. The results are presented in Table 6, with the algorithms arranged in
ascending order based on their ranking values (lower values indicating better
performance). Furthermore, separate Friedman tests are performed on the four different
types of functions, and the outcomes are detailed in Table 6.

To enhance the presentation of the Friedman test results, we construct a heat map
illustrating the performance of all algorithms across four distinct types of test functions
and the overall test set in Fig. 5. The visual analysis reveals the outstanding performance of
the proposed algorithms in solving unimodal functions and hybrid functions, even though
the overall results may not surpass ADFPSO.

Table 5 Wilcoxon signed-rank test with different function types on CEC2014 test suite.

Function type Metrics APSO PSO-DLS XPSO PSO-CL ADFPSO

Unimodal functions n/+/−/= 3/2/1/0 3/3/0/0 3/3/0/0 3/3/0/0 3/2/1/0

Simple multimodal functions n/+/−/= 13/11/2/0 13/6/7/0 13/10/3/0 13/13/0/0 13/12/1/0

Hybrid functions n/+/−/= 6/4/2/0 6/4/2/0 6/6/1/0 6/6/0/0 6/3/3/0

Composition functions n/+/−/= 8/5/3/0 8/5/3/0 8/5/3/0 8/8/0/0 8/7/1/0

Overall /+/−/= 30/22/8/0 30/17/13/0 30/23/7/0 30/30/0/0 30/24/6/0

Table 6 Friedman-test results on CEC2014 test suite.

Average rank Overall Unimodal functions Simple multimodal functions Hybrid functions Composition functions

Algorithm Ranking Algorithm Ranking Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 ADFPSO 2.43 DCWPSO 1.00 ADFPSO 2.23 DCWPSO 2.33 ADFPSO 2.00

2 DCWPSO 2.67 XPSO 2.67 APSO 2.62 ADFPSO 2.83 DCWPSO 3.00

3 XPSO 3.20 ADFPSO 3.67 DCWPSO 3.00 XPSO 3.17 XPSO 3.38

4 APSO 3.27 APSO 4.00 XPSO 3.23 APSO 3.50 APSO 3.75

5 PSO-DLS 4.40 PSO-DLS 4.00 PSO-DLS 4.23 PSO-DLS 4.17 PSO-CL 3.88

6 PSO-CL 5.10 PSO-CL 6.00 PSO-CL 5.77 PSO-CL 5.00 PSO-DLS 5.00
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CONCLUSIONS AND FUTURE WORKS
Addressing the drawbacks of conventional PSO, such as premature convergence and
susceptibility to local optima, this article formulates a hybrid learning strategy to enhance
the performance of the particle swarm algorithm. Firstly, this study proposes a novel
dynamic oscillation inertia weight, which produces oscillatory nonlinear inertia weights
during iterations. This methodology achieves a more effective equilibrium between
algorithmic exploration and exploitation through the modification of the search process.
Secondly, this study presents a neighborhood learning strategy and cosine similarity to
modify the update of particle velocity based on the observation of cosine similarity
between Pbest and Gbest neighborhoods. Finally, to enhance the overall performance of
the entire population, this article introduces the worst-best example learning strategy. This
strategy facilitates rapid improvement of the worst p particles, contributing to an overall
enhancement in effectiveness.

To validate the proposed algorithm’s performance, this study conducts experiments
comparing performance in accuracy, stability, convergence and statistical analysis. The
experimental results indicate that the proposed algorithm generally outperforms peer
algorithms in many aspects. However, it is observed that the proposed algorithm shows
some limitations in solving multimodal functions. In future work, the integration of
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Figure 5 Heatmap of friedman test results from Table 6.
Full-size DOI: 10.7717/peerj-cs.2253/fig-5
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reinforcement learning and deep learning with these learning strategies could better guide
the evolutionary direction of particles during the iteration process, thereby enhancing the
algorithm’s problem-solving capabilities. Furthermore, these algorithms can be applied to
address real-world optimization problem.
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