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ABSTRACT
The world faces the ongoing challenge of terrorism and extremism, which threaten
the stability of nations, the security of their citizens, and the integrity of political,
economic, and social systems. Given the complexity and multifaceted nature of this
phenomenon, combating it requires a collective effort, with tailored methods to
address its various aspects. Identifying the terrorist organization responsible for an
attack is a critical step in combating terrorism. Historical data plays a pivotal role in
this process, providing insights that can inform prevention and response strategies.
With advancements in technology and artificial intelligence (AI), particularly in
military applications, there is growing interest in utilizing these developments to
enhance national and regional security against terrorism. Central to this effort are
terrorism databases, which serve as rich resources for data on armed organizations,
extremist entities, and terrorist incidents. The Global Terrorism Database (GTD)
stands out as one of the most widely used and accessible resources for researchers.
Recent progress in machine learning (ML), deep learning (DL), and natural language
processing (NLP) offers promising avenues for improving the identification and
classification of terrorist organizations. This study introduces a framework designed
to classify and predict terrorist groups using bidirectional recurrent units and self-
attention mechanisms, referred to as BiGRU-SA. This approach utilizes the
comprehensive data in the GTD by integrating textual features extracted by
DistilBERT with features that show a high correlation with terrorist organizations.
Additionally, the Synthetic Minority Over-sampling Technique with Tomek links
(SMOTE-T) was employed to address data imbalance and enhance the robustness of
our predictions. The BiGRU-SA model captures temporal dependencies and
contextual information within the data. By processing data sequences in both
forward and reverse directions, BiGRU-SA offers a comprehensive view of the
temporal dynamics, significantly enhancing classification accuracy. To evaluate the
effectiveness of our framework, we compared ten models, including six traditional
ML models and four DL algorithms. The proposed BiGRU-SA framework
demonstrated outstanding performance in classifying 36 terrorist organizations
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responsible for terrorist attacks, achieving an accuracy of 98.68%, precision of
96.06%, sensitivity of 96.83%, specificity of 99.50%, and a Matthews correlation
coefficient of 97.50%. Compared to state-of-the-art methods, the proposed model
outperformed others, confirming its effectiveness and accuracy in the classification
and prediction of terrorist organizations.

Subjects Artificial Intelligence, DataMining andMachine Learning, Natural Language and Speech,
Text Mining
Keywords Counter terrorism, Artificial intelligence, Machine learning, Deep learning, Feature
combination, DistilBERT, GTD dataset, NLP, Classification, Prediction, Terrorist groups

INTRODUCTION
Terrorism poses a significant threat to international peace and security, manifesting in
violent acts committed for political purposes, including hijackings, attacks on civilians, and
the potential use of chemical or nuclear weapons (Quashie, 2023). Over the past two
decades, terrorism has expanded, with fighters, funds, and weapons flowing increasingly
between regions and continents. This expansion has facilitated new alliances between
terrorist groups and organized crime, including pirates. Terrorism fundamentally denies
and undermines human rights, perpetuating a cycle of denial and destruction.

Global terrorist incidents, such as the September 11 attacks in the United States, the
Paris attacks, and the London bombings, have had lasting impacts on societies worldwide.
These events have reshaped geopolitics and international security dynamics, prompting
global reflection on terrorism and security. While these tragedies remain ingrained in
collective memory, they have also fostered resilience, unity, and efforts toward peace and
security. The aftermath of such incidents has catalyzed international endeavors to combat
terrorism, promote intelligence-sharing, and address the root causes of extremism. Acts of
terrorism, including hijackings, kidnappings, and assaults on civilians, have garnered
significant attention and concern. The international community acknowledges the urgency
of confronting this threat and is committed to preventing and combating terrorism.

Mechanisms and methodologies have been developed to address negative phenomena
in human behavior, including political extremism, violence, and terrorism (Abdalsalam
et al., 2024). Traditional analytical methods often struggle with the complexity and volume
of terrorism-related data (Hariri, Fredericks & Bowers, 2019). Artificial intelligence (AI),
particularly machine learning (ML) and deep learning (DL), presents a promising solution
to these challenges (Jeong, 2020). This study explores the application of ML and DL
techniques to predict and identify organizations behind terrorist attacks, aiming to deepen
our understanding of terrorist activities and enhance counterterrorism efforts. ML and DL
offer the capability to analyze vast amounts of heterogeneous data, including textual,
temporal, and spatial information, extracting meaningful patterns and insights. The study
investigates various ML and DL approaches, such as bidirectional recurrent neural
networks, attention mechanisms, and ensemble learning, to address the multifaceted
nature of terrorist data (Hassani et al., 2021).
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The Global Terrorism Database (GTD) serves as a comprehensive repository of terrorist
incidents worldwide, documenting intricate event details, including the responsible group
names (Gname) (Jović et al., 2023). The frequency of these groups varies widely,
contributing to data imbalance and complicating accurate attribution. This imbalance
favors the majority class in classifier accuracy, hindering the understanding of minority
class characteristics. Moreover, techniques for binary classification may not directly apply
to multi-classification scenarios.

The mathematical problem can be formulated as follows: Let D represent the GTD
dataset, consisting of records of terrorist incidents worldwide. Each incident is
characterized by features, including event details and the responsible groups for acts of
terror. The dataset D is highly imbalanced due to many incidents attributed to “unknown”
groups. It can be represented as:

D ¼ xi; yið Þf gNi¼1 (1)

where xi represents the features of the i-th incident, and yi denotes the corresponding
responsible group (‘Gname’). The set of possible group labels is denoted by Y.

The challenge is to develop a predictive model f : X ! Y accurately identifying the
responsible group yi for a given incident xi. To address the issue of data imbalance in the
group names within the GTD, we employed the Synthetic Minority Over-sampling
Technique (SMOTE) combined with Tomek links (SMOTE-T) for comprehensive
sampling (Hasan et al., 2024). This approach combines oversampling and undersampling
strategies to boost the efficiency of the classifier model. The SMOTEmethod generates new
samples for the minority class to oversample it, while the Tomek links technique identifies
and eliminates samples from the majority class. This process achieves a more equitable
distribution of demographic characteristics, thereby optimizing the predictive model f to
minimize classification errors.

min
f

1
N

XN
i¼1

L yi; f xið Þð Þ (2)

where L measures the disparity between predicted and true groups. The model’s
effectiveness depends on navigating dataset complexities, including sparse entries and
evolving terrorist tactics.

The motivation driving this research stems from the imperative need for precise and
efficient identification of terrorist groups responsible for attacks. Leveraging ML and DL
algorithms on the GTD dataset, we aim to construct a predictive framework capable of
accurately classifying and identifying the names of terrorist groups involved in various
attacks. Such a framework holds the potential to bolster counter-terrorism endeavors and
elevate security measures significantly.

The proposed framework addresses the classification and prediction of terrorist groups
responsible for attacks (Gname) by harnessing features from GTD, focusing on textual
features (Summary) that encapsulate the essence of each terrorism event. The framework
encompasses several pivotal steps to enhance the accuracy of terrorism group detection.
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Initially, exploratory data analysis (EDA) is conducted to gain insights into the dataset
(Indrakumari, Poongodi & Jena, 2020), followed by preprocessing to handle missing values
prevalent in the GTD. Based on the Pearson correlation coefficient (PCC) and Normalized
Mutual Information (NMI) (Choi & Kim, 2024), correlation analysis is applied to
categorical and numerical features to identify relationships. The Summary attribute,
containing textual information about each terrorism event, undergoes preprocessing to
ensure optimal feature extraction. DistilBERT, a state-of-the-art language model, is
employed for feature extraction, capturing nuanced information embedded within the
summary texts. Given the unbalanced nature of the Gname attribute in the GTD, with over
3,000 unique groups, the framework employs a selection criterion based on attack
frequency. Groups with attack frequencies of at least 500 are chosen to ensure a sufficient
sample size for analysis, mitigating the imbalanced nature of the target variable.
Subsequently, the SMOTE-T are applied to balance the dataset. SMOTE-T effectively
combines undersampling and oversampling strategies to address class imbalances,
generating synthetic samples for underrepresented groups and removing noisy samples
using Tomek links. The framework then leverages the bidirectional gated recurrent unit
with self-attention (BiGRU-SA) model for classification and prediction tasks. The BiGRU-
SA model capitalizes on the bidirectional architecture of the gated recurrent unit (GRU),
capturing temporal dependencies within sequential data. Additionally, self-attention
mechanisms enhance the model’s ability to focus on relevant information within the input
sequence, further improving classification performance. Combining data preprocessing
techniques, sampling methods, and advanced neural network models enhances the
framework’s ability to handle complex and imbalanced datasets effectively, leading to more
robust and reliable results in terrorism group classification tasks. The main contributions
of this study can be summarized as follows:

. In this study, novel methods for preprocessing the GTD are introduced to address
challenges posed by missing values and noisy data. Failure to preprocess the GTD can
significantly impact the accuracy and generalization ability of predictive models. To
mitigate this issue, we conduct an in-depth analysis of feature distribution and missing
data patterns, removing features with substantial gaps. Leveraging interconnections
between features, we employ diverse approaches, including web crawling, to impute
missing values and generate refined features. Furthermore, we utilize the covariance
matrix to identify features exhibiting strong correlations and eliminate those with high
information entropy.

. To address the potential challenges posed by the high complexity and dimensionality of
data, the framework utilizes DistilBERT. DistilBERT is a lighter version of BERT
(Bidirectional Encoder Representations from Transformers), designed to retain much of
BERT’s performance while being more efficient. This choice reflects a careful balance
between maintaining analytical depth and managing computational resources
effectively.

. The framework incorporates the BiGRU-SA model. This choice underscores the
framework’s emphasis on capturing temporal dependencies and the importance of

Abdalsalam et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2252 4/57

http://dx.doi.org/10.7717/peerj-cs.2252
https://peerj.com/computer-science/


context within the data. Bidirectional gated recurrent unit (BiGRU), with its
bidirectional processing, can understand data sequences in both forward and reverse
directions, offering a comprehensive view of the data’s temporal dynamics.

The remaining set of this article is organized as follows: “Background and Related
Works” explores existing literature and studies relevant to our investigation. “Proposed
Framework” elaborates on our innovative methodology and approach to identifying
terrorist organizations. “Data Preprocessing” describes the setup and design of the
experiments implemented in this research. “Feature Engineering” details the sequence of
experiments to evaluate our proposed framework. “Experiments” presents the results of
our experiments and delves into a comprehensive discussion of the findings. Finally,
“Results, Analysis, and Discussion” summarizes the study, addresses its limitations, and
proposes avenues for future research.

BACKGROUND AND RELATED WORKS
The literature review underscores the growing role of ML and DL in bolstering counter-
terrorism endeavours through their capacity to analyze vast datasets effectively. Recent
studies have explored the application of ML techniques to forecast and understand
terrorist activities. Accordingly, an integrated DL framework was introduced to
incorporate the contextual background of previous attack locations, social network
dynamics, and historical behaviors of individual terrorist groups (Jiang et al., 2023). This
study aimed to uncover behavioral patterns among terrorist groups, surpassing
conventional base models across various spatiotemporal resolutions. Additionally, the
model demonstrated the capability to forecast future targets of active terrorist groups,
identifying high-risk areas and providing sequence-based attack-related insights for
specific groups. This study highlights the potential of combining DL methodologies with
multi-scalar data to offer groundbreaking insights into terrorism and other organized
violent crimes.

A Bayesian neural network (BNN) was used to predict characteristics of terrorist attacks
in Nigeria (Ogundunmade & Adepoju, 2024). The study assessed various activation
functions and training datasets, finding that the hyperbolic tangent activation function
outperformed others in predicting key variables linked to terrorist attacks in Nigeria.

Another study investigated the spatial prediction of terrorism across Europe by
leveraging satellite images and socio-environmental data (Buffa et al., 2022). Employing
five distinct ML models, they classified the presence or absence of prior attacks within
hexagonal-grid cells, highlighting the utility of spatial, ML, and remote sensing
methodologies in understanding terrorist behaviors.

AI techniques were employed to visualize and predict potential terrorist attacks
Huamaní, Alicia & Roman-Gonzalez (2020). Using decision trees and random forests on
GTD data from 1970 to 2018, the study achieved accuracy rates ranging from 75.46% to
90.41% in forecasting terrorism incidents.

A study concentrated on predicting terrorism-prone continents by amalgamating the
support vector machine (SVM) and K-nearest neighbor (KNN) into an ensemble ML
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model (Olabanjo et al., 2021). Utilizing pre-processed GTD data and feature selection
techniques, their results underscored the efficacy of hybrid-based feature selection in
predicting terrorism locations.

The Tweet-to-Act (T2A) framework was developed for prompt extraction and
dissemination of information related to terrorism from Twitter streams (Iqbal et al., 2021).
T2A used word embedding to translate tweets into a numerically comparable vector space
model and employed Word Mover’s Distance (WMD) to cluster tweets about the same
event based on semantic similarities. The system also incorporated sequence labeling with
bidirectional long short-term memory recurrent neural networks (bLSTM-RNN) to
efficiently extract pertinent details from tweets. Demonstrating superior performance, T2A
outperformed existing methods with an accuracy of 96% and an F1-score of 86.2%,
showcasing its effectiveness for real-time monitoring and information extraction in
terrorism event detection.

A system for analyzing earthquakes and terrorist acts using Wikipedia and Wikidata
was devised (Zajec & Mladenić, 2022). Employing an event argument extraction system
coupled with semi-supervised learning, they extracted insights from 315 terrorist acts and
913 earthquakes across multiple languages.

A framework for predicting terrorist attacks based on textual features was developed
(Abdalsalam et al., 2021). Employing three feature extraction techniques and nine ML
models, they significantly enhanced prediction accuracy by extracting textual information.

A study focused on terrorism crimes in India, proposing a model to uncover hidden
patterns using ML and statistical analysis on GTD data (Alam et al., 2020). The model
discerned terrorists’ preferred targets and weapons, aiding in predicting the success of
terrorist attacks.

A framework for classifying and predicting terrorist organizations based on ensemble
learning was proposed (Pan, 2021). Utilizing GTD data, their quantitative statistical
analysis underscored the efficacy of XGBoost and random forest models among the five
employed ML models.

The application of social network theory to analyze recurring patterns of terrorist
attacks was initiated (Li et al., 2019). A terrorist organization network was constructed
based on concurrent participation in attacks, facilitating subsequent statistical analyses and
community division methods to classify terrorist organizations into 13 categories. The
experimental results corroborated the effectiveness and efficiency of the proposed
analytical approach.

The synthesis of recent literature highlights a significant body of research focused on
using ML and DL techniques in counterterrorism, such as classifying and predicting
terrorist attacks. These studies validate the effectiveness of ML in forecasting and
understanding terrorist activities, providing invaluable insights for counterterrorism
strategies. Despite significant progress through the application of ML and DL models
across various aspects, such as attack prediction, radicalization identification, and pattern
analysis, the field continues to encounter challenges, especially in classifying and
predicting terrorist organizations.
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Table 1 Summary of related works.

Reference Work goal Dataset used Method Limitation

Jiang et al.
(2023)

Discover behavior
patterns of terrorist
groups

GTD, BAAD, EDTG,
Pattern-Net

Utilizes DL to analyze terrorist
group behaviors by considering
past attacked locations, social
networks, and past actions.

Relies on incomplete data on unidentified
terrorist organizations and potential biases
in media-sourced attribution. Model
effectiveness may be impacted by data
quality and completeness.

Ogundunmade
& Adepoju
(2024)

Develop a model for
predicting the
nature of terrorist
attacks in Nigeria

Nigerian Terrorism
Incident Dataset
(Nigeria Terror Attack
Dataset)

Utilizes a Bayesian neural network
to predict terrorist attack types.

Complex methodology and reliance on
Bayesian inference may present challenges
in model interpretation and
implementation. Model effectiveness
influenced by data quality and
representativeness.

Buffa et al.
(2022)

Predict terrorism in
Europe at the sub-
national level

GTD combined with
remotely sensed data,
geospatial features,
and population data

Employs various ML models to
predict terrorism presence in
hexagonal-grid cells.

Grid-cell approach oversimplifies intricate
spatial patterns and may fail to account for
neighboring pixel values. Dataset reliance
on a static temporal snapshot may not
capture changes in land use and socio-
environmental factors over time.

Huamaní,
Alicia &
Roman-
Gonzalez
(2020)

Visualize and predict
terrorist attacks
globally

GTD Uses classification models like
decision trees and random forest
to visualize and predict terrorist
attacks globally.

Method overlooks pertinent features for
terrorism attack types and inadequately
addresses missing values and repeated
information in the dataset.

Olabanjo et al.
(2021)

Predict continents
susceptible to
terrorism

GTD Proposes an ensemble ML model to
predict continents susceptible to
terrorism.

Predicts continents rather than individual
countries, potentially limiting insights.

Iqbal et al.
(2021)

Extract terrorist
attack-related
information using
Twitter

Twitter event dataset Utilizes word embedding and
WMD for clustering tweets, and
bLSTM-RNN for sequence
labeling.

Relies on Twitter as a primary data source,
introducing biases and limitations.
Effectiveness may vary depending on the
volume and nature of Twitter activity.

Zajec &
Mladenić
(2022)

Develop robust event
argument
extraction systems

Wikipedia articles and
Wikidata information

Introduces a semi-supervised
methodology for training an event
argument extraction system.

Relies on pseudo-labeling and semi-
supervised learning, potentially resulting
in noisy labels. Overlooks valuable
information present in articles written in
languages with challenging matching.

Abdalsalam
et al. (2021)

Classify terrorism
attack types

GTD Applies ML approach with textual
features extraction for terrorism
attack classification.

Method primarily focuses on classical
feature extraction techniques, potentially
limiting the model’s ability to capture
nuanced patterns. Does not address
imbalance in terrorism attack type labels.

Alam et al.
(2020)

Predict terrorist
groups most likely
to target a nation

GTD Utilizes data mining and ML
techniques to analyze patterns
within the GTD.

Focused on classical ML approaches, may
restrict model’s adaptability to evolving
trends in terrorism. Does not explicitly
address imbalanced data in the GTD.
Relies on historical data, limiting
predictive capabilities for future activities.

Pan (2021) Develop a framework
for classifying and
predicting terrorist
organizations

GTD Utilizes ensemble learning with five
different ML models.

Effectiveness of the framework may be
specific to chosen ML models.

Li et al. (2019) Analyze the alliance
network of terrorist
organizations

GTD Constructs terrorist network graphs
and utilizes ML algorithms for
network analysis.

Relies on publicly available data and may
face challenges in accurately predicting
terrorist activities based solely on historical
data.
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Table 1 presents the comprehensive advancements and persistent challenges in this
domain. Accordingly, the classification and prediction of terrorist organizations remain
relatively unexplored. This gap in research may stem from the complex and dynamic
nature of terrorist groups, which frequently evolve, change names, merge, or disband,
thereby complicating the creation of accurate and current classification and prediction
models. These studies utilize diverse algorithms and methodologies, including support
vector machines, decision trees, deep neural networks, and statistical approaches. The
GTD often serves as the primary data source for these studies, aiming to improve the
understanding of terrorism patterns and provide insights for counterterrorism efforts
(Feyyaz, 2020).

One of the critical challenges researchers encounter is the issue of missing values within
the GTD dataset (Grossman & Pedahzur, 2020). This issue can significantly compromise
the integrity of the data and the accuracy of analytical results. Traditional methods for
handling missing data, such as deletion or imputation, might inadvertently alter the
dataset, impacting subsequent analyses and model performance. This study emphasizes
the importance of advanced data pre-processing methods, especially for managing missing
data, to maintain data integrity and ensure a robust foundation for model development.
Furthermore, the choice of feature extraction methods critically affects model predictions.
Sole reliance on a single feature type only partially captures semantically relevant
information, necessitating an integrated approach combining multiple types of
information. Imbalances in data categories further hinder model generalization, often
biasing predictions towards the majority class. Traditional classifiers prove inadequate for
accurately identifying terrorism groups, underlining the necessity for novel methods that
can more effectively extract semantic and contextual information.

To address these challenges, we propose a new framework for identifying the Gname.
This framework strives to achieve a more balanced and comprehensive understanding of
the factors defining terrorist groups, thereby overcoming the mentioned challenges and
propelling counterterrorism research forward. The proposed framework represents a
sophisticated and thoughtful approach to analyzing text data related to terrorist
organizations. Combining advanced natural language processing (NLP) techniques with
strategies specifically tailored to ensure data integrity and reduce computational overhead,
the framework is well-positioned to extract meaningful insights from complex datasets.
This approach utilizes a bidirectional gated recurrent unit (BiGRU) combined with a self-
attention mechanism (SA) to improve the model’s ability to detect subtle nuances within
the data. This approach enhances the accuracy and depth of the analysis and demonstrates
a keen understanding of the challenges inherent in processing and interpreting sensitive
and nuanced information.

PROPOSED FRAMEWORK
This work focuses on designing and implementing a comprehensive framework for
classifying and predicting the names of terrorist groups responsible for attacks. The goal is
to establish a robust system capable of accurately identifying and predicting these groups
with high efficacy. Utilizing the GTD as both the training and testing ground, the
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framework applies supervised classification techniques to predict the criminal suspects
involved in terrorist activities. An initial phase of EDA provides essential insights into the
dataset, setting the stage for subsequent preprocessing tasks. These tasks address missing
values and implement feature engineering to refine the dataset for analysis (Zhang, Cao &
Romagnoli, 2018). We then employ feature selection techniques, including the PCC and
NMI, to pinpoint features directly linked to Gname, the nomenclature responsible for
attacks (Maria, Akhand & Shimamura, 2022; Karell-Albo et al., 2020; Wang et al., 2021).
The proposed approach uses three key strategies to enhance feature assessment and
combination for predicting Gname. The first strategy leverages textual features extracted
from DistilBERT to ascertain their utility in learning Gname. The subsequent strategies
focus on feature combination: first, converting all features to text for DistilBERT-based
feature extraction, and then using these extracted features as input to the model. The
second strategy involves processing categorical feature sets with label encoding,
transforming categorical variables into numerical equivalents. To maintain data integrity
and ensure analytical accuracy, numerical features are normalized to prevent
disproportionately large values from skewing the results. DistilBERT prowess in extracting
textual features from summary attributes is harnessed, merging them with related features
to create a cohesive feature set. A sophisticated sampling technique, combining the
Synthetic Minority Oversampling Technique with Tomek links (SMOTE-T), is deployed
to achieve a balanced training set. We design a model using the advantages of the BiGRU.
Transformer-based models and their subsequent generation currently lead in many NLP
tasks as the state-of-the-art. However, we selected GRUs over multi-head attention
mechanisms due to their strengths in tasks requiring sequential data handling, efficient
parameter usage, and robustness to noise (Wen, Zhou & Su, 2022).

GRUs are simpler, more stable, and less prone to overfitting. BiGRU, specifically, excel
at preserving the order of data and capturing dependencies from both past and future
contexts, which is crucial for tasks like time series analysis and NLP, where the sequential
nature of data is integral to understanding context and meaning (Li et al., 2022).

Furthermore, GRUs typically have fewer parameters compared to multi-head attention
mechanisms, which results in lower memory usage and reduced demand on computational
resources. This efficiency proves especially beneficial in environments with limited
computational capacity, such as mobile devices or embedded systems, and is ideal for
processing smaller datasets where extensive resource allocation is not feasible (El Koshiry
et al., 2024). The overarching research framework and its components are illustrated
in Fig. 1.

Dataset
Terrorism databases play a crucial role in understanding and countering terrorist activities,
essential for developing effective security measures. Currently, the research community
relies on several internationally recognized terrorism databases, listed in Table 2. These
include the Global Terrorism Database (GTD), International Terrorism Attributes of
Terrorist Events (ITERATE), the RAND Database of Worldwide Terrorism Incidents
(RDWTI), and the Database of Terrorism in Western Europe Events Data (TWEED)
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(LaFree, 2019). These repositories offer invaluable insights into various terrorist incidents,
encompassing locations, dates, targets, and specific characteristics. These datasets provide
accurate and up-to-date information for formulating effective security plans and strategies.
The absence of comprehensive and reliable datasets poses a formidable obstacle to
conducting meaningful analyses of global terrorist attacks.

The GTD stands out as a premier database, featuring comprehensive data on
international terrorism from the 1970s to 2020. ITERATE, curated by Edward Mickolus,
covers the period from 1968 to 1977 and provides detailed insights into terrorist activities
and related facets. RDWTI, maintained by the RAND Corporation, records terrorism
incidents from 1968 to 2009, offering a comprehensive yet limited perspective due to its
lack of updated data. TWEED focuses specifically on terrorism in Western Europe,
providing detailed insights into terrorist incidents and unique variables such as state-
sponsored activities, enhancing our understanding of terrorism trends in the region. As
terrorism research progresses, these databases remain invaluable resources for
policymakers, analysts, and researchers seeking deeper insights into global terrorism
dynamics.

According to Table 1 and based on the datasets used in state-of-the-art research, the
GTD stands out as the optimal choice for ML and DL research. This is due to its
comprehensive coverage, regular updates, and recognition as a premier database in
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Figure 1 Proposed framework for classifying and predicting terrorist groups responsible for attacks. Figure source:© draw.io.
Full-size DOI: 10.7717/peerj-cs.2252/fig-1

Table 2 Summary of prominent terrorism databases.

GTD ITERATE RDWTI TWEED

Scope International + domestic (U.S.A) International International + domestic (U.S.A) Western Europe

Time span 1970–2018 1968–2014 1968–2009 1950–2004

Events 190,000 approx. 13,000+ 40,000+ 11,245 approx.

Variables 135 variables 42 07 + narrative description 52
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terrorism research (Kejriwal, 2021). Table 3 provides a sample of the dataset, illustrating
these attributes for a selection of events. Key features of the GTD dataset include:

1) Detailed records of over 190,000 terrorist attacks, including more than 91,000
bombings, 20,000 assassinations, and 13,000 hostage-taking incidents since 1970 (Saidi
& Trabelsi, 2022).

2) The most comprehensive unclassified database of terrorist attacks worldwide, with each
case containing information on at least 45 attributes, and recent events having more
than 130 attributes (Homolar & Rodríguez-Merino, 2019).

3) Data accuracy ensured by START through the review of over 4 million news articles and
more than 25,000 news sources (Barnett et al., 2013).

The GTD is the premier resource for terrorism research, renowned for its
comprehensive and authoritative compilation of global terrorism-related information.
Developed as an open-source project by the University of Maryland, the GTD covers
international terrorism from the 1970s through 2020. Its extensive data includes detailed
information such as the date and location of each incident, the weapons used, the targets,
the number of victims, and the responsible groups. The GTD currently contains more than
190,000 cases, making it one of the most significant databases in the field. The GTD is
distinguished by its commitment to regular updates, ensuring that researchers have access
to the most current information on both domestic and international terrorist acts. This
dedication to data currency enhances its utility for predictive analysis and strategic
planning in counter-terrorism efforts. Unlike many other event databases, the GTD offers
in-depth, trustworthy, and open-source data, providing researchers with valuable insights
to identify and predict terrorist acts. Each entry in the dataset includes comprehensive
details about the incident, the nature of the target, the number of casualties, and specific
information about the group or individual responsible for the attack.

The National Consortium for the Study of Terrorism and Response to Terrorism
(START) has played a crucial role in disseminating GTD datasets to the public, thereby

Table 3 The GTD dataset raw sample.

eventid iyear imonth iday extended country_txt resolution region

198807220004 1988 7 22 0 Pakistan nan 6

201602050022 2016 2 5 0 Nigeria nan 11

200201080001 2002 1 8 0 Indonesia nan 5

201510290019 2015 10 29 0 Thailand nan 5

201501070024 2015 1 7 0 Somalia nan 11

201705260029 2017 5 26 0 Philippines nan 5

200803230007 2008 3 23 0 Iraq nan 10

199702250006 1997 2 25 0 China nan 4

200905240016 2009 5 24 0 India nan 6

200902180018 2009 2 18 1 Afghanistan 2/19/2009 6
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fostering a greater understanding of terrorist violence and encouraging participation in
terrorism research and resistance efforts. This open-access approach not only facilitates
academic research but also empowers policymakers, law enforcement agencies, and other
stakeholders in their efforts to combat terrorism effectively.

However, when using the GTD dataset for ML and DL purposes, there are some
limitations to consider. These limitations include potential biases or inconsistencies in the
data due to variations in reporting and data collection methodologies. Additionally, the
dataset has imbalanced categories, where certain types of attacks or regions are
overrepresented or underrepresented.

Data sampling and exploratory data analysis
Data sampling is a common statistical method involving the selection, processing, and
analysis of representative data subsets from larger datasets. Exploratory data analysis
(EDA) is fundamental for understanding and visualizing datasets, aiming to unveil
patterns, trends, and anomalies (Tariq & Aithal, 2023; Mukhiya & Ahmed, 2020).
Integrating data sampling with EDA provides analysts with a powerful method for
navigating and extracting insights from complex datasets. This approach allows for
efficient selection of representative subsets, which facilitates focused exploration to
uncover patterns and trends. In the context of the GTD, characterized by extensive records
of terrorist incidents worldwide, this approach becomes indispensable.

In this study, we applied data sampling within the proposed framework to the GTD
dataset to overcome challenges posed by its vast size and complexity. Our EDA covers
three primary aspects: feature types, spatiotemporal distribution of terrorist attacks, and
missing data rates. Firstly, we categorize features into categorical and numerical types,
crucial for determining preprocessing and modelling strategies. Secondly, visualization
techniques explore the spatiotemporal distribution of terrorist attacks, revealing patterns
such as geographical concentration during specific time periods. Lastly, we assess missing
data rates to evaluate dataset quality and completeness. Our analysis highlights attributes,
particularly detailed perpetrator information, with higher rates of missing data, requiring
careful handling during preprocessing to maintain integrity.

Feature types and statistical analysis
Understanding the diverse feature types present in the GTD is paramount for effective
preprocessing and subsequent analysis. The GTD dataset encompasses numerical,
categorical, and textual features, each requiring tailored preprocessing methods as shown
in Table 4.

Numerical and categorical features
The GTD dataset comprises both numerical and categorical features that provide
comprehensive information about various aspects of terrorist incidents. Numerical
features include quantitative attributes like the number of fatalities, indicating the count of
individuals who lost their lives, and the number of injuries, representing individuals who
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sustained injuries during an attack. Additionally, numerical features encompass property
damage, quantifying the extent of damage caused, and the year in which the incident
occurred. On the other hand, categorical features classify incidents based on specific
attributes or characteristics. Examples include country, denoting the location of the
incident; region, classifying incidents by geographical regions; attack type, categorizing
incidents into different types such as bombing/explosion, armed assault, or assassination;
and target type, specifying the type of target attacked, such as private citizens, military,
police, or government entities.

Textual features
Textual features capture qualitative information about terrorist incidents, providing
detailed descriptions and contextual information. The most significant textual feature in
the GTD dataset is the Summary attribute. The Summary feature encapsulates a brief
narrative of each terrorist event, highlighting key details such as:

. Nature of the incident: Describes the type of attack and the methods used by
perpetrators.

. Location: Provides information about where the incident occurred, including specific
cities or regions.

. Targets: Identifies the targets of the attack, whether they are individuals, government
entities, religious institutions, etc.

. Perpetrators: Describes the group or individual responsible for carrying out the attack.

. Outcome: Discusses the consequences of the incident in terms of casualties, injuries, and
property damage.

Table 4 GTD features description.

Attribute Description

gname Name of the perpetrator group

iyear Year when the event occurred

imonth/iday Month and day of the event (1–12)/(1–31)

Region/country/state/city Location (region, country, state, city) where the event occurred

Latitude/Longitude Exact latitude and longitude coordinates of the event location

attacktype Methodology of the attack

weapontype Weaponry utilized in the attack

target Object or person targeted in the attack

nkill/nwound Number of fatalities/injuries resulting from the attack

natlty Nationality of the target

suicide Indicates if the attack was a suicide mission

multiple Indicates if the attack was part of a series of multiple attacks

INT_IDEO Ideological basis of the attack as international or domestic

Summary Attribute provides a brief description of the incident
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Exploratory data analysis for summary
The summary attribute in GTD is vital for understanding and extracting insights from
terrorism incidents. It encompasses essential details such as the time, location, individuals
involved, attack process, cause, and other relevant information related to each attack
incident.

Figure 2 illustrates event summary information for specific attacks, demonstrating the
richness and diversity of the dataset.

The incident summary comprises two main components: the timing of the attack and a
detailed description of the attack process. The timing is recorded in the “month/day/year”
format, while the attack description includes information such as the attack location, target
type, casualty count, and additional details. Figure 2 illustrates the significance of the
summary attribute within GTD, highlighting its provision of rich information. The
summary encompasses details such as the location, timing, casualties, and the weaponry
employed in the attacks. Figure 3 quantitatively presents the frequency of each word,
illustrating its prominence in the dataset. Higher frequencies indicate common terms in
terrorism incident summaries.

Certain frequently occurring terms in the summary attribute provide valuable insights
into the nature of terrorism incidents, such as common attack types, targets. This attribute
is crucial for understanding terrorism trends through text mining and NLP techniques. In
this study, we applied text preprocessing methods, including tokenization and stop-word

Figure 2 Summary attributes discovered in collected data. Full-size DOI: 10.7717/peerj-cs.2252/fig-2
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removal, to extract significant features and semantic understanding—steps that are
essential for building effective predictive models and classification algorithms.

Upon analysis, the GTD dataset comprises 135 features per terrorist attack instance,
encompassing 54 numerical, 23 categorical, and 58 textual features. These features provide
comprehensive insights into various aspects of terrorist incidents, enhancing the dataset’s
depth and analytical potential. To assess each feature’s missing data extent quantitatively,
we utilize the missing data rate (Fiero et al., 2016), denoted as g. We calculate this rate
using the formula:

g ¼ m
n
� 100 (3)

In Eq. (3), m represents the number of missing values within the feature, while n
represents the total number of samples in the dataset. The resulting missing data rate
indicates the proportion of missing values for a given feature. This rate reflects the
proportion of missing values for each feature, aiding in the analysis of data completeness.
Understanding feature types and analyzing missing data distribution are critical steps in
ensuring the GTD dataset’s readiness for subsequent mathematical modelling tasks. These
insights guide effective preprocessing strategies and enhance the dataset’s analytical
robustness. Visual analysis techniques, including pie charts, further facilitate the
examination of missing data distribution. Figure 4 depicts the missing data rate
distribution across the GTD dataset, revealing that approximately 56% of features contain
missing values.

Temporal distribution of attacks
Analyzing the temporal distribution of terrorism attacks in the GTD offers profound
insights into the evolving patterns and trends of these incidents over time. Examining the
dataset allows us to discern significant temporal patterns and better understand the
trajectory of terrorism. One effective method to analyze temporal distribution is through
visualization, which enables observation of fluctuations in attack frequency over different

Figure 3 Most frequently occurring words in summary.
Full-size DOI: 10.7717/peerj-cs.2252/fig-3
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time periods. Figure 5 illustrates the statistics of the number of terrorist attacks per year,
offering a comprehensive overview of attack trends over time.

This visualization enables us to identify spikes or dips in attack frequency, indicating
potential patterns or shifts in terrorist activities. For instance, the surge in attacks during
the 1980s and 1990s, followed by a decline in the 2000s, suggests dynamic changes in
terrorist strategies or counter-terrorism efforts. Furthermore, exploring the temporal
distribution of attacks unveils long-term trends or shifts in terrorism dynamics. Notably,
the exponential increase in global terrorist attacks from 2011 to 2014, as depicted in Fig. 5,
underscores the evolving nature of terrorism and the challenges it poses to global security.
The data from GTD, as illustrated in Fig. 5, reveals a staggering 200,000 recorded instances
of terrorist attacks between 1970 and 2020, emphasizing the magnitude of the issue.
Moreover, the rate of success in recent years, depicted in Fig. 6, underscores the expanding
operations of terrorist organizations and their ability to achieve their objectives.
Additionally, the rising rates of casualties and fatalities, as evidenced by Fig. 6, highlight the
profound impact of terrorist crimes. This visual analysis underscores the urgency for
policymakers and security agencies to adapt strategies and allocate resources effectively. By
identifying trends and patterns in terrorist activities, stakeholders can enhance their
understanding of evolving threats and formulate more effective counter-terrorism
measures. Visual representations serve as powerful tools for policymakers, researchers, and
security agencies to navigate the complexities of global terrorism.

Spatial distribution of attacks
Understanding the spatial distribution of terrorist attacks is paramount for devising
effective counter-terrorism strategies. By scrutinizing the proximity of attacks to national
borders and discerning patterns across neighbouring countries, we can glean insights into
the international dimensions of terrorism and potential interconnections between various
terrorist groups. It is noteworthy that the spatial distribution of attacks may fluctuate over
time due to shifting geopolitical dynamics, conflicts, or counter-terrorism initiatives. The
GTD categorizes the world into 12 regions, facilitating an analysis of attack frequencies
across different areas. This segmentation enables the identification of hotspots and aids in
comprehending the evolving patterns of terrorist threats. Heat maps serve as a suitable

Figure 4 An overview of missing values in GTD. Full-size DOI: 10.7717/peerj-cs.2252/fig-4
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method for visualizing this analysis, offering a graphical representation of attack density or
intensity across geographic regions.

Figure 7 portrays the results of the spatiotemporal distribution analysis based on the
GTD dataset.

As depicted in Fig. 7, terrorist attacks are predominantly concentrated in four regions:
the Middle East and North Africa, South Asia, Sub-Saharan Africa, and Southeast Asia.
These regions collectively witness approximately 80% of the total global attacks. Notably,
post-2014, there has been a significant decline in the number of attacks across all regions,
with the Middle East and North Africa experiencing the most substantial decrease.
However, Sub-Saharan Africa, a recognized hub of international terrorist activities, has not
witnessed a significant decrease in attack frequency in recent years. Analyzing the spatial
distribution of attacks alongside the temporal distribution provides a holistic
understanding of terrorism dynamics. It enables the identification of regions with high
attack concentrations, exploration of potential cross-border linkages, and detection of
changes in attack patterns over time.

Figure 5 Statistics of the number of terrorist attacks per year. Full-size DOI: 10.7717/peerj-cs.2252/fig-5
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DATA PREPROCESSING
Data preprocessing is a crucial phase in ML and DL models where raw data undergoes
cleaning, transformation, and formatting to optimize its usability for model training and
analysis. Given that raw data often contains inconsistencies, missing values, or irrelevant
information, preprocessing ensures that the data is appropriately structured and free from

Figure 6 Frequency yearly killed/casualty and attacks from GTD.
Full-size DOI: 10.7717/peerj-cs.2252/fig-6

Figure 7 Time and space distribution map of attacks. Full-size DOI: 10.7717/peerj-cs.2252/fig-7
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anomalies that could adversely affect model performance. Given the prevalence of missing
values and noise in the GTD, preprocessing steps are necessary to ensure data reliability
and modelling effectiveness. The study initially employs pivot tables and descriptive
statistics to evaluate missing values, eliminating features with a missing rate exceeding
90%. To address missing values, the study adopts imputation strategies such as mean,
median, or mode imputation for numerical features and categorical imputation for
categorical features. These strategies aim to preserve the integrity of the dataset while
minimizing the introduction of bias.

. Fill missing values with fixed values

The fill missing values is a technique used to replace missing values (nulls) in a dataset
with estimated values, minimizing the impact of missing data on subsequent analysis or
modelling tasks. Table 5 showcases examples of missing values and their corresponding
fixed values for different features in the GTD dataset.

. Filling missing values based on web crawler

In our study, to enhance missing values in the “City” and “Country” fields based on
latitude and longitude, we used web crawling technology. Web scraping, also known as
web crawling, is the process of automatically extracting data from websites using software.
It is particularly useful when data is not provided in machine-readable formats like JSON
or XML. For this study, a web crawler was employed to address the 4.19% of missing values
in the “City Name” column. The crawler leveraged forward and backward geocoding
processes to retrieve geolocation information from Google Maps. By simulating
interactions with the service, the crawler obtained city and country names from latitude
and longitude coordinates, achieving an 84.84% completion rate. If both the city name and
coordinates were missing, the crawler attempted to determine the names using available
information, with empty returns designated as “unknown.”

Table 5 Fill missing values with fixed values.

Feature name Missing rate Data type/Filling content

Nationality of victim 3.04% Categorical-String “unknown”

Event classification 83.43% Integer value 0

Suspected criminal group 0.31% Integer value 0

Number of murderers 10.62% Integer value-1

Number of murderers caught 2.72% Integer value-1

Claimed pattern 82.90% Integer value 10

Kidnapped victim 0.002% Integer value-9

Is kidnapped victim 8.35% String “Unknown”

Target victim name 0.14% String “Unknown”

Target type 2.50% Categorical-String “unknown”

Weapon type 1.80% Categorical-String “unknown”
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FEATURE ENGINEERING
Feature engineering is crucial in developing ML models, involving techniques to enhance
model performance and predictive capability (Nweke et al., 2018). In the context of the
GTD dataset, feature generation and correlation analysis are pivotal for improving model
accuracy and eliminating redundant features. Techniques used in this study include
selecting pertinent features, transforming variables, extracting new features, amalgamating
existing ones, and manipulating data to create variables conducive to analysis and
predictive modeling.

Correlation analysis between features
Correlation quantifies the strength and direction of a linear relationship between features
(Al-Nafjan, 2022). We employed the PCC for continuous variables and NMI for
categorical variables (Chen et al., 2023; Tao et al., 2023). PCCmeasures linear relationships
among continuous variables, defined as:

r ¼ covðX;YÞ
rXrY

¼ EðXYÞ � EðXÞEðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E X2ð Þ � E2ðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E Y2ð Þ � E2ðYÞp (4)

where covðX;YÞ denotes the covariance between X and Y, and rX signifies the standard
deviation of X. Correlation strength ranges: 0–0.3 (low), 0.3–0.8 (moderate), and 0.8–1
(high).

NMI measures similarity between categorical variables, normalized between 0 and 1,
calculated as:

NMIðX;YÞ ¼ 2IðX;YÞ
HðXÞ þHðYÞ (5)

For categorical features, NMI values build a correlation matrix. Steps include:

. Compute NMI for each pair: Calculate NMI for every pair of categorical features.

. Construct a correlation matrix: Use NMI values to build a matrix showing associations
between categorical features.

Table 6 presents the NMI matrix, illustrating relationships among categorical features.
Each cell shows NMI values, with higher values indicating stronger associations. Diagonal
entries are NaN, as NMI for a feature with itself holds no meaning. The heatmap in Fig. 8
illustrates PCC between numerical features. Darker colors denote stronger correlations,
while lighter shades indicate weaker ones. Notable patterns include:

. Correlations between Attack Statistics and Attack Type: Higher casualties are
associated with attacks targeting civilians.

. Correlations between Attack Type and Target Nationality: Specific attack types align
with certain target nationalities, indicating targeted patterns.

. Correlations between Target Characteristics and Attack Type: The target type
influences the choice of attack method, revealing strategic aspects.
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Table 6 NMI matrix for a subset of categorical features.

country_txt region_txt prov-state city location

country_txt NaN 0.6907 0.7453 0.5710 0.2748

region_txt 0.6907 NaN 0.4814 0.3520 0.1895

prov-state 0.7453 0.4814 NaN 0.7715 0.3613

city 0.5710 0.3520 0.7715 NaN 0.4277

location 0.2748 0.1895 0.3613 0.4277 NaN

Figure 8 Correlation between continuous variables. Full-size DOI: 10.7717/peerj-cs.2252/fig-8
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These observations underscore intricate relationships within terrorist attack dynamics,
crucial for analysis and strategic intervention. NMI visualizes categorical feature
correlations in Fig. 9, where darker hues indicate stronger associations. Key patterns
include:

. Associations between Attack Type and Target Type: Certain attack types target specific
entities, reflecting strategic decisions.

. Associations between Target Nationality and Weapon Type: Weapon choices
correlate with target nationalities, influenced by geopolitical factors.

. Associations between Perpetrator Nationality and Region: Perpetrator origins align
with attack regions, indicating regional preferences.

Imputation of missing values based on feature correlations
Upon detailed analysis of the GTD dataset, we identified significant redundancy across
various features. This redundancy can be leveraged to effectively address missing values. In
the preprocessing stage, we capitalized on this redundancy to impute missing values,
details of which are outlined below:

. Filling in missing values for the exact date of the event:

In the GTD dataset, when the exact date of an event is unknown, the corresponding
variable is recorded as 0. To tackle this issue, we conducted an in-depth analysis and found
that approximately 27.76% of the missing values can be filled using two columns: the event
number and the approximate date. The event number comprises a 12-digit value, with the
first eight digits representing the date in the format “yyyymmdd,” and the last four digits
indicating the serial number of the day (e.g., 0001, 0002, etc.,). By parsing the “dd” field in
the event number, we can fill in missing values for some dates. In cases where the “dd” field
is zero, we rely on the “Approximate Date” column in the dataset to populate the “Exact
Date” column. If a sample does not record an approximate attack date, we fill it with
special values that differ from the normal situation. For this study, we assign a value of 0 to
these missing dates.

. Filling in the missing values of weapon subtypes:

In the GTD dataset, the weapon type and weapon subtype used in each terrorist attack
are encoded using specific terms. The missing rates for these two features were calculated
individually. The “Weapon Type” column does not have any missing values, while the
“Weapon Subtype” column has a missing rate of 11.56%. A detailed analysis was
conducted on these two columns, revealing that all missing values for weapon subtypes can
be filled using the corresponding weapon type. The weapon types provide a general
classification of the weapons used in each event, while the weapon subtypes offer more
specific descriptions for most weapon types. Through analysis, it was found that certain
weapon types, such as radioactive weapons, do not have corresponding weapon subtypes.
For these samples, their weapon type encoding value is added to 50 and filled in the
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“Weapon Subtype” column. The reason for adding a constant value to the encoding value
of the weapon type is to avoid any inconsistencies with the original encoding of the weapon
subtype. This addition ensures that there is no conflict with the original encrypted value of
the weapon subtype.

. Filling in the missing values of the number of deaths:

The death toll is a crucial measure of the severity of terrorist attacks. In the GTD dataset,
the “death toll” column has a missing rate of 4.03%. Through analysis, it was found that

Figure 9 Correlation between categorical features. Full-size DOI: 10.7717/peerj-cs.2252/fig-9
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60.05% of the missing data can be addressed by utilizing the effective redundancy of
information between the “Number of Deaths in the United States” column, the “Number
of Murderer Deaths” column, and the “Number of Deaths” column in the dataset. To fill in
the missing values, the data for each sample is examined. If both the “Number of Deaths in
the United States” and “Number of Murderer Deaths” columns have values and the
“Number of Deaths” column is missing, the available values from the former two columns
are combined to assign a value to the number of deaths. If one of the above two columns is
missing, the value from the non-missing column is filled into the “Number of Deaths”
column. For samples where all three columns are missing, a value of −1 is assigned to the
death toll. This facilitates the accurate identification of these samples by the model. To
ensure non-negative values in the death count, we incremented the death toll by 1 in all
instances. The same approach is applied to filling in missing values in the “Injured”
column as in the “Deaths” column.

. Imputation of missing values for the victim’s nationality: The nationality of the victim is
a crucial aspect recorded and coded in the GTD dataset under the “Nationality of Target/
Victim” feature. However, missing values may exist for this feature.

Several approaches were considered:

. Utilize the location of the attack: If the attack location is known, infer the victim’s
nationality, assuming they are primarily from the country of the attack.

. Use the nationality of the target: Assume the victims share the nationality of the target.

. Use the perpetrator’s nationality: Assume the victims share the nationality of the
perpetrator.

. Utilize imputation methods: Use statistical methods to predict missing values by
analyzing available data for patterns and relationships.

Through exploratory data analysis, we discovered a strong correlation between the
nationality of the victims in certain samples and the country where the attack occurred. To
quantify this correlation, we calculate the conditional probability-based correlation,
denoted as r. The conditional probability-based correlation r is calculated using the
formula:

r ¼ PðBjAÞ ¼ PðABÞ
PðAÞ (6)

where: PðABÞ is the joint probability of events A and B occurring together. PðAÞ is the
probability of event A occurring. This formula helps quantify the correlation between the
nationality of the victims and the country where the attack occurred, aiding in the effective
imputation of missing values.

Deletion of redundant features
Deleting redundant features is a critical step in ML model training. Dealing with a large
number of features in a dataset can lead to the curse of dimensionality, resulting in
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increased model complexity and decreased generalization capability. Therefore, enhancing
data processing efficiency and improving model prediction accuracy requires the
elimination of invalid redundant features from the GTD dataset. The correlation between
features was utilized to fill in missing values. If a feature column was used for filling, and its
information was already included in the filled feature columns, then that particular column
was eliminated. For instance, once the “Exact Date” column was populated with data from
the “Approximate Date” column, the “Approximate Date” column could be safely
removed. Similarly, if there were feature columns in the dataset containing identical
information, such as the “Country code where the attack occurred” column and the
“Country name where the attack occurred” column, one of them, like the “Country name
where the attack occurred” column, was removed. This reduction in dimensionality
resulted in improved data processing efficiency and enhanced the overall performance of
the ML model.

Generation of derived features
To enhance the distinction between samples and optimize the performance of the ML
model, we leverage prior knowledge to generate a range of derived features. These methods
can be categorized into three categories: addition of basic features, division of basic
features, and addition of binary-encoded basic features.

. Addition of basic features:

By combining the “number of dead” column and the “number of injured” column, we
can generate the total number of casualties caused by terrorist attacks. Similarly, we can
calculate various statistics related to the perpetrators of terrorist attacks, such as the
number of casualties caused by them.

. Division of basic features:

To gain further insights, we calculate proportions by dividing specific columns. For
instance, dividing the “number of murderer’s deaths” column by the “number of deaths”
column allows us to determine the proportion of deaths caused by the murderers. It is
important to note that we add one to the value in the “Number of Deaths” column to avoid
division by zero errors. Similarly, we can calculate proportions related to the number of
injuries caused by the perpetrators.

. Addition of binary-encoded basic features:

In the GTD dataset, information sources for each terrorist attack event are recorded as
the first cited source, second cited source, and third cited source. To process this
information, we first binary encode each citation source. A value of 1 is assigned if the
citation source is present, and 0 is assigned if it is missing. By summing up the binary-
encoded features from the three columns, we obtain the count of main information sources
used in compiling each terrorist attack event.
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Following this selective preprocessing process, the refined dataset now encompasses a
total of 180,706 incidents, each characterized by a more streamlined and informative set of
59 features. Data and features determine the upper limit of the ML model. We performed
data cleaning, missing value filling, correlation analysis, and other operations on the GTD
dataset and finally obtained 59 features. Among them, there are 30 numerical features, 28
categorical features, and only one feature content short text (summary of the attack event).
By preprocessing data samples, the noise in the original data can be effectively reduced, the
data processing efficiency can be improved, and a solid foundation can be laid for the next
step of modelling work.

Addressing potential biases
The GTD dataset exhibits significant data imbalance, particularly in the distribution of
Gname responsible for attacks. This imbalance is evident when examining Table 7, which
illustrates the distribution of Gname. Table 7 underscores the varying frequencies of
attacks associated with each group. To address potential biases, we implemented two
strategies to ensure the data’s integrity and representativeness in the GTD. The first
strategy was applied to the entire dataset, and the second focused on the Gname attribute.

The first strategy applied during the preprocessing phase includes several steps as
follows:

(i) Balanced imputation approach:
In dealing with missing values, we employed a balanced imputation approach. For

numerical data, we used mean imputation for normally distributed data and median
imputation for skewed data to avoid outliers. For categorical data, mode imputation or
assigning a distinct ‘unknown’ category was employed. This approach helps to preserve the
original distribution of the data and prevent the introduction of bias that might occur if a
disproportionate number of records were filled with a non-representative value.

(ii) Critical evaluation of filled values:
We evaluated the impact of filled values by analyzing data distribution before and after

imputation to ensure consistent variance and skewness. This step is crucial for maintaining
the dataset’s statistical properties and ensuring that the models trained on this data do not
inherit any systemic bias from the preprocessing phase.

(iii) Handling redundant features:
We employed a systematic approach to identify and remove duplicate features. This

helped avoid multicollinearity, which can lead to biased or over-fitted models and
improved model interpretability and generalizability.

(iv) Diverse feature selection:
To further mitigate bias, we ensured a diverse selection of features that comprehensively

represented different aspects of the data. This holistic view prevents the model from overly
relying on a subset of features that might be biased towards certain patterns or trends.

(v) Continuous monitoring and validation:
After preprocessing, we monitored and validated our models for bias by evaluating

performance across different data subgroups.
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(vi) Comprehensive sampling
The second strategy, implemented specifically on the Gname attribute, aimed to rectify

the skewed distribution of incidents among the selected organizations. To achieve this, the

Table 7 Number of incidents associated with various terrorist organizations.

Terrorist organization Number of incidents

Unknown 91,906

Taliban 11,982

Islamic State of Iraq and the Levant (ISIL) 7,254

Shining Path (SL) 4,564

Al-Shabaab 4,419

New People’s Army (NPA) 3,395

Farabundo Marti National Liberation Front (FMLN) 3,351

Boko Haram 3,320

Houthi extremists (Ansar Allah) 3,196

Irish Republican Army (IRA) 2,670

Kurdistan Workers’ Party (PKK) 2,582

Revolutionary Armed Forces of Colombia (FARC) 2,490

Communist Party of India—Maoist (CPI-Maoist) 2,093

Maoists 2,091

Basque Fatherland and Freedom (ETA) 2,024

National Liberation Army of Colombia (ELN) 1,815

Liberation Tigers of Tamil Eelam (LTTE) 1,602

Tehrik-i-Taliban Pakistan (TTP) 1,490

Palestinians 1,123

Al-Qaida in the Arabian Peninsula (AQAP) 1,113

Fulani extremists 1,099

Separatists 927

Muslim extremists 924

Nicaraguan Democratic Force (FDN) 895

Manuel Rodriguez Patriotic Front (FPMR) 830

Sikh Extremists 716

Corsican National Liberation Front (FLNC) 641

Al-Qaida in Iraq 638

Donetsk People’s Republic 636

Khorasan Chapter of the Islamic State 614

African National Congress (South Africa) 607

Abu Sayyaf Group (ASG) 591

Palestinian Extremists 583

Sinai Province of the Islamic State 558

Tupac Amaru Revolutionary Movement (MRTA) 557

M-19 (Movement of April 19) 555

Bangsamoro Islamic Freedom Movement (BIFM) 538
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study utilized SMOTE, a sophisticated resampling method tailored to address class
imbalances (Ahmed, Hameed & Bawany, 2022). Dealing with imbalanced datasets
commonly involves oversampling and undersampling methods to alter the data
distribution. However, undersampling methods may result in the loss of existing
sample information, while oversampling methods can lead to classifier overfitting.
SMOTE-T combines oversampling and undersampling with Tomek links to reduce
sample overlap. SMOTE generates new minority class samples to balance the dataset, and
noisy samples are removed. The SMOTE algorithm enhances the representation of
minority classes by generating synthetic samples. It operates by randomly selecting a
sample from the minority class and performing linear interpolation between this sample
and its m nearest neighbors within the same class. The algorithm’s basic steps are as
follows:

1) Identify the m nearest minority class neighbors for a given minority class sample xi.

2) Randomly select one of these m neighbors, denoted as xj.

3) Generate a new sample through random linear interpolation between xi and xj, adding it
to the minority class.

For handling samples with noise, particularly when two samples xi and xj from different
classes are nearest neighbors to each other, they form a Tomek link pair. The presence of
Tomek links indicates overlapping class boundaries or noise. Removing such links,
specifically the majority class instance in each pair, makes the dataset’s class boundaries
more distinct, enhancing the classification algorithm’s performance (Sasada et al., 2020).
SMOTE generation of synthetic samples aims to achieve a more balanced class
distribution, addressing the issue of under-representation. The addition of Tomek links
helps to refine the dataset further by removing overlapping samples between classes,
thereby improving the robustness and quality of the data for training models. This dual
approach ensures a more balanced representation of classes and enhances the dataset’s
cleanliness, contributing to more accurate and reliable predictive modeling. Setting a
threshold of 500 incidents, we focus on terrorist organizations with significant
involvement in the GTD, ensuring a substantial dataset for in-depth analysis and efficient
model training. This criterion enhances predictive accuracy by concentrating on groups
with enough data to establish reliable patterns and trends, while reducing noise from
sporadic activities. Despite this, further refinement is needed to address the remaining
imbalance in the dataset.

To address the skewed distribution of incidents, we employ SMOTE-T, a
resampling method that generates synthetic samples for underrepresented classes and
uses Tomek links to clean overlapping samples. This dual strategy improves the
balance and quality of the dataset, enhancing model generalization and robustness.
Algorithm 1 outlines the procedure for implementing SMOTE-T, addressing the residual
imbalance and improving predictive modeling capabilities across different terrorist
organizations.
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Feature extraction with transformer-based DistilBERT
In this study, we employed the DistilBERT model for text embedding extraction.
DistilBERT is a more efficient and deployable version of the BERT architecture, designed
for real-world applications (Ghanadian, Nejadgholi & Al Osman, 2024; Karande et al.,
2021). It retains most of BERT’s performance while being smaller and faster, making it
advantageous for processing extensive textual data, such as that found in terrorism
databases (Shahinmoghadam, Kahou & Motamedi, 2024). The model’s reduced
complexity allows for quicker analysis without significant loss of context or accuracy.
DistilBERT is particularly effective in real-time threat detection, as it can detect subtle
nuances in text, crucial for accurately classifying complex terrorist event data.

This investigation capitalizes on DistilBERT for deriving text embeddings through the
fine-tuning of this pre-trained model across various epochs. The model’s architecture,
which maintains the efficiency and speed of BERT while minimizing its size, proves
advantageous for analyzing extensive textual datasets common in terrorism research.

Algorithm 1 Pseudo-code for data balancing for Gname.

1: Input: Dataset D, Threshold h ¼ 500

2: Output: Balanced Dataset Dbalanced

3: Preprocessing Step:

4: Exclude groups with ‘unknown’ names and those with incidents < h.

5: Retain groups with significant impact, based on the incident count.

6: Step 1: Initialization

7: Initialize Dbalanced  [

8: Identify relevant classes in D based on θ

9: Step 2: Balancing using SMOTE-T

10: for each class y in relevant classes do

11: Extract subset Dy for class y

12: if jDyj < h then

13: Apply SMOTE to Dy to generate Dysynth

14: Dbalanced  Dbalanced [ Dysynth

15: else

16: Dbalanced  Dbalanced [ Dy

17: end if

18: end for

19: Step 3: Refinement using Tomek Links

20: Apply Tomek Links to Dbalanced to remove overlaps

21: Update Dbalanced after refinement

22: return Dbalanced as the final solution
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The ability of DistilBERT to expedite analytical processes without compromising on
contextual depth or accuracy is depicted in Fig. 10, highlighting its foundation on the
BERT base model (Bert-base-uncased) and delineating key distinctions from the original
BERT framework:

i) A reduction in parameters by 40%, making DistilBERT leaner than its BERT counterpart.

ii) Enhancement of inference speed by 60%

iii) Adoption of dynamic rather than static masking for inference.

iv) Exclusion of next sentence prediction (NSP) and segment embedding in the training
stage.

v) Incorporation of six transformer layers, as opposed to the twelve found in the BERT
base.

vi) Reduction in training duration to 3.5 GPU days from the 12 required by the original
model.

DistilBERT undergoes training using the same datasets as the BERT base, encompassing
the Toronto Books Corpus and English Wikipedia (Oralbekova et al., 2023).

As illustrated in Fig. 10, modifications include substituting the original classification
layer in DistilBERT with two separate layers designated for feature extraction and Gname
classification. The model processes input sentences X, denoted as a series of tokens
X ¼ x1; . . . ; xs, to yield a unified semantic vector [CLS] per sentence. Prior to token
sequence processing, DistilBERT employs sub-word and word-piece tokenization
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Figure 10 Architecture of the DistilBERT model. Full-size DOI: 10.7717/peerj-cs.2252/fig-10
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techniques (Kowsher et al., 2022) to generate input embedding vectors (S1). This
tokenization assigns each token a trio of embeddings: word, segment, and positional, with
special tokens [SEP] and [CLS] marking the beginning and end of sequences.
Subsequently, the multi-layered RNN, leveraging a self-attention mechanism known as the
lexicon encoder, aggregates these embeddings to form a cohesive contextual vector S2. The
semantic embeddings S3 are derived by amalgamating the contextual vectors S2,
orchestrated by the [CLS] token.

Figure 11 The BiGRU-SA model for classifying and predicting terrorist organizations.
Full-size DOI: 10.7717/peerj-cs.2252/fig-11
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Feature extraction is facilitated through a fully connected layer, processing [CLS] token
embeddings to yield a vector F with dimension d ¼ 128, thereby reducing the
dimensionality from the original 768 to 128. These condensed features, d ¼ 128, are
subsequently integrated with pertinent features for classification purposes, employing the
GELU activation function (Xiong et al., 2023) for enhanced model efficacy, as formulated
in Eq. (7).

GELUðmÞ ¼ m � �ðmÞ (7)

where, m symbolizes the fully connected layer’s output, with �ðmÞ representing the
Gaussian distribution’s cumulative distribution function.

The concluding classification phase involves refining the model and adjusting the pre-
trained weights W for the Gname identification task, framed as a multi-class classification
challenge. This phase features a fully connected layer with r ¼ 2 neurons, indicative of
class count, where the Softmax function assigns probabilities to class c memberships for
input X. Training of the classification layer is executed through the cross-entropy loss
function.

BiGRU-SA model
This model is structured into four layers: the input layer, the BiGRU layer, the
self-attention layer, and the output layer, as shown in Fig. 11. Each layer plays a critical role
in analyzing and inferring the intentions and characteristics of terrorist organizations
based on the attack data recorded in the GTD.

The input layer serves as the initial stage, where relevant data from the GTD is fed into
the model. The BiGRU layer, utilizing bidirectional gated recurrent units, processes the
sequential information in both forward and backward directions, capturing dependencies
from past and future states. Following this, the self-attention layer allows the model to
weigh the importance of different parts of the input data and capture long-range
dependencies within the sequence. Finally, the output layer produces the predicted
classifications of terrorist organizations responsible for the recorded attacks in the GTD
based on the processed information from the previous layers. These layers integrate to
form an advanced architecture designed to effectively capture and interpret the complex
temporal dynamics inherent in terrorist activity data. Details concerning each layer, their
respective functions, and how they are integrated are presented as follows:

1. Input layer
The input layer employs different strategies to preprocess the collected data and

transform it into a feature vector suitable for direct processing by the subsequent BiGRU
layer augmented with an attention mechanism.

. DistilBERT features strategy: This strategy processes the textual features extracted by
DistilBERT from the summary text. These features are encoded using DistilBERT
embeddings to capture nuanced semantic information. Let T be the summary text and
DðTÞ be the DistilBERT embeddings of T:

ET ¼ DðTÞ (8)
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. This strategy integrates both textual and non-textual features. Non-textual features are
first converted into textual format and then concatenated with the summary text. This
combined text is then fed into DistilBERT. Let T be the summary text, N be the non-
textual features converted into textual format, and Dð�Þ represent DistilBERT
embeddings:

ETþN ¼ DðT � NÞ (9)

where � denotes the concatenation of T and N.

. Combined features strategy: In this strategy, individual features are combined after
encoding categorical features through label encoding. This converts categorical data into
numerical format, which is then merged with the textual features extracted by
DistilBERT into a unified vector representation. Let C be the categorical features, LðCÞ be
the label-encoded categorical features, and X be the numerical features. Let T be the
summary text and DðTÞ be the DistilBERT embeddings of T:

LC ¼ LðCÞ (10)

Then, combine the numerical features X, the encoded categorical features LC, and the
DistilBERT embeddings ET :

Fcombined ¼ ET � LC � X (11)

where Fcombined is the unified vector representation combining numerical, textual, and
encoded categorical data. The input layer orchestrates these diverse feature types into a
coherent characteristic vector for effective processing by the subsequent BiGRU layer
augmented with an attention mechanism.

2. Gated recurrent unit network:
The GRU network is an evolution of the long short-term memory (LSTM) model that

simplifies the architecture by merging the input and forget gates into a single update gate
uðtÞ. This gate determines how much of the past state information should be passed to the

Figure 12 Gated recurrent unit structure. Full-size DOI: 10.7717/peerj-cs.2252/fig-12
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current state. Additionally, a reset gate rðtÞ decides howmuch of the past state information
should be discarded. The architecture of the unit is depicted in Fig. 12. Where, IðtÞ denotes
the input at time t, while CðtÞ andHðtÞ are the candidate and actual hidden states at time t,
respectively. The symbols �u;�r;�c are the weight matrices associated with the update
gate, reset gate, and candidate state, and bu; br; bc are their respective biases. The functions
r and tanh are the activation functions used, and the symbol � indicates element-wise
multiplication.

The sequence of operations for computing the forward pass in a GRU is outlined below:

uðtÞ ¼ r �u IðtÞ;Hðt�1Þ
h i

þ bu
� �

rðtÞ ¼ r �r IðtÞ;Hðt�1Þ
h i

þ br
� �

CðtÞ ¼ tanh �c IðtÞ; rðtÞ � Hðt�1Þ
h i

þ bc
� �

HðtÞ ¼ uðtÞ � Hðt�1Þ þ 1� uðtÞ
h i

� CðtÞ

This formulation captures the essence of GRU’s operation, focusing on the update and
reset mechanisms that govern the flow and transformation of information through the
network over time. However, the GRU has a limitation in that it only considers historical
information before the current moment and ignores any influence from future moments.
This unidirectional nature hinders the model’s ability to capture the complete context of
the input sequence.

To address this limitation, we can utilize the bidirectional GRU (BiGRU) structure.
BiGRU is composed of two GRU networks: a forward GRU and a backward GRU. The
forward GRU processes the input sequence in the normal chronological order, while the
backward GRU processes the input sequence in the reverse order. This bidirectional
propagation mechanism allows the output node of BiGRU at each time step to contain
both historical and future information about the current moment in the input sequence.

Considering both past and future information allows BiGRU to better capture the
association between forward and backward characteristics in the time-series data. This
capability enables the model to process contextual information more effectively, leading to
improved network performance.

In the context of predicting terrorist organizations in the GTD dataset, BiGRU can
benefit from its bidirectional nature to capture both past and future events related to
terrorist activities. This enhanced understanding of the temporal context can help the
model uncover hidden patterns and dependencies, ultimately improving its predictive
capabilities for identifying and analyzing terrorist organizations.

As depicted in Fig. 13, the hidden layer state ht at time t for the BiGRU is a combination
of both forward~ht and backward h

 
t states. The forward state~ht is determined by the

current input xt and the previous state ht � 1, whereas the backward state h
 

t is influenced
by xt and the subsequent state ht þ 1. This illustrates the bidirectional nature of the GRU,
encapsulating past and future information for a complete temporal insight. The BiGRU
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computational approach, detailed in Eq. (12), systematically combines inputs from both
past and future, constructing hidden layer states at each timestep to enable a detailed
analysis of temporal sequences. This method underscores the BiGRU’s distinctive ability to
gather and integrate temporal data from two directions, thus improving sequence
modeling.

For the forward pass:

h
!

t ¼ rðw1 Xt þ w2 h
!

t�1Þ
h
 

t ¼ rðw3 Xt þ w4 h
 

tþ1Þ
X0t ¼ fðw5 h

!
t þ w6 h

 
tÞ

(12)

Here,Wi (for i ¼ 1 to 6) represent the weights transitioning between layers, while r and
f denote distinct activation functions. This formulation ensures a nuanced capture of
information from both past and future contexts, pivotal for sequence analysis in BiGRU
frameworks.

3. Self-attention layer
The self-attention mechanism, also known as the scaled dot-product attention, is a

technique that can be integrated with the BiGRU model to enhance its performance in
capturing important information from the input sequence (Zhang et al., 2018; Kenarang,
Farahani & Manthouri, 2022). The self-attention mechanism allows the model to focus on
different parts of the input sequence while making predictions, enabling it to selectively
attend to the most relevant features.

In our case, we implement the self-attention mechanism by introducing an attention
layer between the BiGRU layer and the final output layer. This attention layer takes the
hidden states from the BiGRU layer as input and computes a set of attention weights for

Figure 13 Bidirectional gated recurrent unit structure.
Full-size DOI: 10.7717/peerj-cs.2252/fig-13
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each hidden state. These attention weights represent the importance or relevance of each
hidden state in the context of the entire input sequence.

The attention weights are typically computed using a scoring function. One common
approach is the dot-product scoring function, where the similarity between the hidden
states and a context vector is measured by taking the dot product between them. The
resulting scores are then passed through a softmax function to obtain the attention
weights, ensuring that they sum to 1.

Once we have the attention weights, we compute a weighted sum of the hidden states
using these weights. This weighted sum represents the attended representation of the input
sequence, where the model has focused more on the important parts of the sequence. This
attended representation is then passed through the final output layer to make predictions
for our task of analyzing terrorist organization features.

Integrating the self-attention mechanism with the BiGRU model allows the model to
dynamically and adaptively focus on the most relevant parts of the input sequence. The
self-attention mechanism enables the model to capture long-range interdependencies and
internal correlations within the time-series data. Incorporating the self-attention layer into
the architecture allows the model to assign higher weights to important characteristics
output from the BiGRU network layer. This helps the model learn the relevance and
importance of each characteristic and automatically assign corresponding weights during
the training process.

For instance, in predicting the likelihood of a terrorist organization’s success based on
various features such as region, country, attack type, and weapon type, the self-attention
mechanism can identify the most influential features and assign higher weights to them.
This allows the model to focus more on the relevant features while downplaying the impact
of less relevant ones. Attending to the key characteristics helps the model better
understand the underlying patterns and associations, improving its predictive capabilities.

The integration of the self-attention mechanism with the BiGRUmodel helps the model
effectively filter out unnecessary details and concentrate on crucial information for
predicting terrorist organization features. Enhancing the model’s memory capacity and
capturing critical dependencies, the self-attention mechanism contributes to improved
performance and accuracy in predicting and analyzing characteristics of terrorist
organizations in the GTD dataset.

4. Output layer:
The output layer processes information from previous layers and applies an activation

function to generate final predictions or probabilities for the specified task. Typically, this
layer includes one or more fully connected (dense) layers, followed by an activation
function that formats the output appropriately, such as mapping it to a range or format
that represents the probabilities of different classes. When the task involves classifying
features of terrorist organizations, the output layer aims to produce outputs suitable for
multi-class classification, categorizing organizations into various predefined groups. This
functionality is achieved through the use of the Softmax Regression function, a
generalization of logistic regression for multi-class classification. According to Fig. 14, the
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softmax function assigns probabilities to different classes. This makes it ideal for the final
layer in neural network architectures designed for classification.

The operation of softmax regression consists of two main steps. First, it computes the
likelihood (or evidence) that the input features belong to each class. This is done by
calculating a weighted sum of the input features plus a bias term, referred to as the net
input z, as shown in Fig. 14.

Softmax regression distinguishes itself by using the softmax function fð�Þ instead of the
sigmoid function used in logistic regression. The probability that a particular training
example xðiÞ is assigned to class j, given the net input vector zðiÞ for all classes, is given by:

P y ¼ jjzðiÞ
� �

¼ f zðiÞ
� �

¼ ez
ðiÞ

Pk
j¼1

ez
ðiÞ
j

(13)

where, z is the net input representing the weighted sum of features x1; x2;…; xm plus a bias
term b, expressed as:

z ¼ w1x1 þ w2x2 þ . . .þ wmxm þ b ¼
Xm
l¼1

wlxl þ b ¼ wTx þ b (14)

In this context,w is the weight vector, x is the feature vector of a single training example,
and b is the bias. Each weight wl corresponds to a feature xl, withm being the total number
of features. The softmax function calculates the probability that the training example xðiÞ

belongs to class l, based on the weight vector w and the net input zðiÞ. For each class label

j ¼ 1;…;K , it computes the probability Pðy ¼ jjxðiÞ;wjÞ by normalizing the exponential of

the net input for each class against the sum of exponentials for all class net inputs. This
ensures that the sum of probabilities for all classes equals one.

For output computation, a linear combination of input variables xs, along with a bias
term, is used to determine the inputs to the softmax function, as shown below:

y1
y2
y3

2
4

3
5 ¼ softmax

W1;1x1 þW1;2x2 þW1;3x3 þ b1
W2;1x1 þW2;2x2 þW2;3x3 þ b2
W3;1x1 þW3;2x2 þW3;3x3 þ b3

������

������
(15)

Figure 14 Softmax regression layer. Full-size DOI: 10.7717/peerj-cs.2252/fig-14
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This calculation is further optimized through matrix operations for enhanced
computational efficiency:

y1
y2
y3

2
4

3
5 ¼ softmax

W1;1 W1;2 W1;3

W2;1 W2;2 W2;3

W3;1 W3;2 W3;3

2
4

3
5 �

x1
x2
x3

2
4

3
5þ

b1
b2
b3

2
4

3
5

0
@

1
A (16)

Applying the softmax function transforms the computed evidence into class
probabilities. Given a net input vector z, the softmax function normalizes the exponential
values of the net inputs for all classes, ensuring the probabilities sum to one. This
normalization allows the model to interpret the outputs as class probabilities and make
predictions on the most probable class for each training sample.

EXPERIMENTS
Evaluation metrics
To assess the performance of the proposed method for predicting terrorist organizations,
several evaluation metrics were employed to provide a comprehensive understanding of
the model's generalization ability. The chosen metrics include accuracy (ACC), precision
(Precision), sensitivity (Sn), specificity (Sp), and Matthew’s correlation coefficient (MCC).
These metrics provide a detailed view of the model’s predictive capabilities (Zhuo et al.,
2020).

In the context of classifying and predicting the group responsible for terrorism attacks
in the GTD dataset, Sn is crucial as it measures the model’s ability to correctly identify
instances where the predicted group is indeed responsible for the attack. This is
particularly important for effective counterterrorism measures. Sp assesses the model’s
capacity to avoid falsely attributing attacks to certain groups, which is essential for
maintaining the credibility and effectiveness of the classification system (Ul Qamar et al.,
2024). While ACC is widely used to measure the overall correctness of the model’s
predictions, it might be misleading in cases of class imbalance, common in terrorism
datasets. In such scenarios, MCC provides a balanced assessment by considering both
sensitivity and specificity, offering a nuanced evaluation of the model’s performance
(Wang et al., 2020).

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

(17)

Precision ¼ TP
TP þ FP

(18)

Sn ¼ TP
TP þ FN

(19)

Sp ¼ TN
TN þ FP

(20)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (21)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives. By considering these diverse metrics, we gain a
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comprehensive understanding of how well our model performs across various aspects of
prediction, providing valuable insights into its overall effectiveness.

Experimental parameter settings
Hyperparameters significantly affect the predictive performance of neural network models.
Three-fold cross-validation with random search was used to determine the optimal
hyperparameters (Cheng, Wang & He, 2021; Aliper et al., 2016; Rimal & Sharma, 2023).
During training, the batch size was selected from [16, 32, 64, 128, 256], the number of
iterations from [10, 20, 30, 50, 100], the dropout probability from [0.1, 0.3, 0.5, 0.7], and
the learning rate from [0.0001, 0.001, 0.01]. The optimized parameters for the BiGRU-SA
model include a batch size of 64, 100 iterations, a dropout rate of 0.5, and a learning rate of
0.01. We conducted a comprehensive comparative analysis to assess the effectiveness of the
proposed BiGRU-SA model relative to a range of both traditional and advanced machine
learning classifiers. The machine learning models selected for this study included bagging,
extreme gradient boosting (XGBoost), random forest (RandomForest), extra trees
(ExtraTrees), decision tree (DecisionTree), and light gradient boosting machine
(LightGBM) (González et al., 2020; Ashraf et al., 2022). Default parameters recommended
by scikit-learn (sklearn) for multi-classification problems were applied (Terol et al., 2020;
Komer, Bergstra & Eliasmith, 2019). Using default parameters ensures robust initial
performance and stability across various datasets, serving as a reliable benchmark for
comparative analysis (Wu et al., 2023). The deep learning models included in this study
were deep neural networks (DNN), GRU, BiGRU, BiGRU-SA. The DNN architecture
comprises four fully connected layers with neuron counts decreasing from 256 to 32,
employing the Rectified Linear Unit (ReLU) activation function in each hidden layer
(Singh & Sabrol, 2021). This comprehensive selection of classifiers, spanning both
traditional ML techniques and advanced DL architectures, provides a solid benchmark for
evaluating the capabilities of the BiGRU-SA model in classifying and predicting terrorist
organization activities.

RESULTS, ANALYSIS, AND DISCUSSION
Experimental series 1: textual features extracted by DistilBERT
The primary objective of Experimental Series 1, as shown in Table 8, is to assess the
performance of various classifiers in identifying types of Gname, focusing on features
extracted through DistilBERT. Classifiers were trained and tested using textual features
obtained through DistilBERT embeddings. The evaluation includes computing
performance metrics such as accuracy, precision, recall, specificity, and MCC to gauge the
models’ classification accuracy and predictive capability.

Experimental series 2: all features to text
Experimental Series 2, as shown in Table 9, investigates the impact of concatenating
categorical and numerical features with textual features extracted from the GTD dataset.
The main goal is to explore how combining different types of features influences the
classification and prediction of Gname. Classifiers were trained and tested using the
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combined features obtained through concatenation. Similar to Series 1, the evaluation
process involves computing performance metrics to assess the effectiveness of the
concatenated features in improving the classification and prediction of Gname.

Experimental series 3: individual features combination
The third experimental series, as shown in Table 10, explores the combination of features
extracted from each individual feature set after conversion. In this series, each feature set is
converted individually into a suitable format for processing. Once converted, the features
are combined to form a comprehensive feature set for analysis and classification. This
series aims to assess the effectiveness of combining features derived from different aspects
of the data. By converting and combining each feature set separately, we aim to capture the
unique information each feature type provides and evaluate how their combination
influences the classification performance.

Table 8 Textual features only extracted by DistilBERT.

Classifier ACC ð%Þ Precision ð%Þ Sn ð%Þ Sp ð%Þ MCC

Bagging 85.60 85.99 84.26 88.93 0.7830

XGBoost 87.42 86.03 82.33 91.52 0.8231

RandomForest 75.15 73.47 78.37 71.93 0.5243

ExtraTrees 88.59 88.67 82.98 93.20 0.8375

DecisionTree 89.47 88.89 83.99 96.95 0.8548

LightGBM 89.75 89.87 84.44 95.05 0.8399

DNN 90.56 88.48 86.49 90.62 0.8643

GRU 91.87 89.41 87.62 96.13 0.8708

BiGRU 92.71 89.81 89.00 97.42 0.8968

BiGRU-SA 93.68 90.06 90.83 98.68 0.9150

Table 9 All features to text.

Classifier ACC (%) Precision (%) Sn (%) Sp (%) MCC

Bagging 88.60 88.99 86.26 90.93 0.803

XGBoost 90.42 89.03 85.33 93.52 0.853

RandomForest 77.15 75.47 80.37 73.93 0.564

ExtraTrees 91.59 91.67 85.98 95.20 0.857

DecisionTree 92.47 91.89 86.99 97.95 0.874

LightGBM 92.75 92.87 87.44 96.05 0.859

DNN 93.56 91.48 89.49 93.62 0.884

GRU 94.87 92.41 90.62 98.13 0.900

BiGRU 95.71 92.81 92.00 98.42 0.916

BiGRU-SA 95.80 93.06 93.83 99.68 0.935
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RESULT ANALYSIS
The analysis and discussion of the experimental series shed light on the performance of
different models and feature combinations for identifying Gname. Through the
exploration of three distinct series, each employing varied feature sets and classification
methodologies, we glean insights into the effectiveness of different approaches in handling
the complex task of Gname classification. According to the figures, connected graphs
(curves) depict the performance metrics of each algorithm across the three experimental
series. Each curve within a figure illustrates the performance trajectory of a specific
algorithm using five metrics: ACC, precision, recall (sensitivity or Sn), Sp, and MCC for all
series. In-depth analysis, supported by observations from the figures and tables, highlights
the robust capabilities of our algorithms in classifying Gname across various experimental
series. The graphical representation of these performances offers a detailed narrative on
how each model capitalizes on the features provided. Looking at Fig. 15A, the bagging
algorithm shows consistent improvement when transitioning from text-only features in
Table 8 to a more diverse set in Table 9. The upward trajectory of its performance curves
clearly indicates an enhanced capability to assimilate additional information for more
accurate predictions. In Fig. 15B, XGBoost demonstrates a commendable increment in
performance metrics as we move through the series. It is particularly responsive to the
inclusion of categorical and numerical features, as its precision curve sharply rises, a fact
that is well-supported by the higher scores in Table 9. Moving to the RandomForest model,
as depicted in Fig. 15C, while showing a moderate climb in performance, hints at
limitations within the model’s framework to fully exploit the DistilBERT-extracted
features. However, the curve does progress positively with integrating additional features,
as seen in the corresponding tables. ExtraTrees, illustrated in Fig. 15D, paints an
impressive picture of robustness. Its curves, particularly for MCC, show an upward trend,
reflecting its strength in balancing true positives and negatives, which is corroborated by
the high scores in Table 10.

Table 10 Combination features based on individual.

Classifier ACC ð%Þ Precision ð%Þ Sn ð%Þ Sp ð%Þ MCC

Decision trees 95.71 92.82 92.50 98.00 0.917

Bagging 93.20 93.22 90.50 97.50 0.895

RandomForest 95.86 94.22 92.96 98.20 0.930

ExtraTrees 95.95 94.22 92.62 98.50 0.927

XGBoost 95.16 93.72 93.49 96.70 0.920

LightGBM 93.75 93.87 93.90 97.00 0.905

DNN 94.56 92.48 94.00 95.00 0.900

GRU 94.87 94.91 95.20 97.80 0.920

BiGRU 96.82 95.77 93.41 99.00 0.947

BiGRU-SA 98.68 96.06 96.83 99.50 0.975

Abdalsalam et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2252 41/57

http://dx.doi.org/10.7717/peerj-cs.2252
https://peerj.com/computer-science/


Figure 15E shows the DecisionTree algorithm with a notable performance leap,
especially in specificity andMCC, when enriched features are introduced. This visual climb
aligns with the jump in scores from Tables 8 to 9. LightGBM, shown in Fig. 15F, exhibits a
remarkable ascendancy in curves across all metrics. Its ability to exploit the combined
feature set is evident from the consistent elevation across the series, revealing the model’s

Figure 15 Comparative analysis of algorithm performance across all series.
Full-size DOI: 10.7717/peerj-cs.2252/fig-15
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adaptability and precision. The curves for DL models in Fig. 16 the DNN, in Fig. 16A,
demonstrate a steady and substantial rise in performance, particularly when it comes to
capturing the nuanced interplay between textual and non-textual features, as evidenced by
its impressive scores across the tables. GRU’s performance curve in Fig. 16B underscores
its capability to model sequential data effectively. The upward trends across the series
mirror the substantial gains reflected in the corresponding tables, with significant jumps in
recall and specificity. BiGRU, as shown in Fig. 16C, is harnessed from a bidirectional
understanding of the context. This is especially pronounced in Fig. 16C, where individual
feature sets are combined, highlighting the algorithm’s strength in temporal dependency
capture. Lastly, BiGRU-SA’s curves in Fig. 16D stand out with the highest elevation across
all metrics, affirming the model’s exceptional performance noted in the tables. The self-
attention mechanism allows for an enhanced focus on pertinent features, contributing to
significant strides in accuracy and MCC. In synthesizing these observations, the connected
curves reveal a narrative of progressive model improvement and underscore the imperative
of feature selection.

Figure 16 Comparative performance analysis of DL algorithms across all series.
Full-size DOI: 10.7717/peerj-cs.2252/fig-16
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As we blend textual with categorical and numerical data, we unlock new levels of
classifier proficiency. The self-attention models, such as BiGRU-SA, set a benchmark in
effectively navigating the complexities of the GTD dataset, as they dynamically focus on
the most salient features to predict Gname with high accuracy and reliability.

A comprehensive evaluation against diverse classifiers, including traditional ML and DL
models, illuminates the BiGRU-SA model’s relative strengths. Its exceptional performance
across various metrics highlights its potential for accurately predicting and classifying
terrorist organisations. This emphasises the critical role of feature engineering and model
selection in the classification of terrorism-related Gname. Leveraging a combination of
textual, categorical, and numerical features and suitable classifiers facilitates achieving high
accuracy and precision in identifying Gname from complex datasets like the GTD.
Additionally, incorporating advanced architectures such as BiGRU-SA further boosts
performance by effectively capturing temporal dependencies and intricate data patterns.

Generalization ability of the method
This section evaluates how effectively the BiGRU-SA method generalises across various
terrorist activity environments, which vary in attack frequencies and levels of
organisational involvement. The analysis is grounded in the performance metrics outlined
in “Data Preprocessing”, with the addition of the F1-score as a crucial metric. The
F1-score, being the harmonic mean of precision and recall, adeptly balances the accuracy
and completeness of the model’s predictions, making it especially valuable in contexts
where the implications of false positives and negatives are significant for security measures.

The BiGRU-SA framework’s adaptability and effectiveness shine through,
consistently outperforming other ML algorithms across all evaluated metrics and datasets
in Table 11. The study evaluates the algorithm’s performance depicted in the curves from
Figs. 17A to 17E.

In Fig. 17A, where the attack range is greater than or equal to 1,000 with 19 terrorist
organizations responsible for 50,200 attacks, we would expect to see high performance
across algorithms due to the large number of attacks, which likely results in a rich dataset.
BiGRU-SA, in particular, would display a near-perfect curve, illustrating its proficiency in
handling dense data with complex patterns, supported by the highest accuracy and
precision metrics. Moving to Fig. 17B with greater than or equal to 500 attacks by 36
organizations, the performance curves might show a slight dip compared to Case 1, as the
data becomes less concentrated.

Algorithms like BiGRU-SA and random forests would still maintain a high level of
accuracy, demonstrating their robustness to variations in data volume and distribution.
Moving to Fig. 17C, with greater than or equal to 100 attacks from 122 organizations, the
curves would start to show more variation. The increased number of organizations might
introduce more noise and variability into the data, explaining why algorithms like decision
trees and bagging might display more significant dips in their performance curves. Despite
this, BiGRU-SA would continue to maintain a relatively high performance due to its ability
to capture and prioritize relevant features. Moreover, as shown from Fig. 17D which
represents an even broader range of greater than or equal to 50 attacks across 210
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Table 11 Performance of the proposed framework with various algorithms across attack ranges.

Terrorist attacks (range) �1,000 �500 �100 �50 �5
Terrorist organisations 19 36 122 210 936

Total number of terrorist attacks 50,200 58,520 78,107 84,339 94,871

Accuracy (%) Decision trees 0.9600 0.9571 0.9025 0.8902 0.8608

Bagging 0.9608 0.9320 0.8333 0.7999 0.7406

Random forests 0.9831 0.9682 0.9045 0.8812 0.8357

ExtraTrees 0.9793 0.9595 0.8867 0.8603 0.8032

XGBoost 0.9835 0.9516 0.8539 0.7914 0.7986

LightGBM 0.9425 0.9375 0.9250 0.9125 0.8300

DNN 0.9500 0.9456 0.9310 0.9180 0.8450

GRU 0.9550 0.9487 0.9360 0.9230 0.8500

BiGRU 0.9827 0.9586 0.8784 0.8546 0.7962

BiGRU-SA 0.9910 0.9868 0.9440 0.9310 0.8880

Precision (%) Decision trees 0.9770 0.9282 0.8875 0.8456 0.6788

Bagging 0.9460 0.9322 0.8713 0.7856 0.6471

Random forests 0.9792 0.9577 0.9276 0.9174 0.8207

ExtraTrees 0.9733 0.9422 0.9112 0.8613 0.7768

XGBoost 0.9784 0.9372 0.8522 0.8235 0.8269

LightGBM 0.9435 0.9387 0.9260 0.9130 0.8905

DNN 0.9510 0.9248 0.9320 0.9190 0.8955

GRU 0.9560 0.9491 0.9370 0.9240 0.9005

BiGRU 0.9733 0.9422 0.8812 0.8613 0.7768

BiGRU-SA 0.9800 0.9606 0.9402 0.9240 0.9005

Recall (%) Decision trees 0.9595 0.9250 0.8905 0.8904 0.8900

Bagging 0.9401 0.9050 0.8051 0.7233 0.6048

Random forests 0.9747 0.9341 0.8853 0.8396 0.8120

ExtraTrees 0.9700 0.9262 0.8615 0.8086 0.7694

XGBoost 0.9761 0.9349 0.8465 0.8379 0.8387

LightGBM 0.9420 0.9390 0.9255 0.9120 0.8895

DNN 0.9495 0.9400 0.9315 0.9175 0.8945

GRU 0.9545 0.9520 0.8950 0.9225 0.8995

BiGRU 0.9761 0.9296 0.8860 0.8379 0.8122

BiGRU-SA 0.9750 0.9683 0.9365 0.9295 0.9075

F1-score (%) Decision trees 0.9682 0.9265 0.8865 0.8867 0.7809

Bagging 0.9430 0.8942 0.8361 0.7522 0.6247

Random forests 0.9769 0.9459 0.9145 0.8764 0.8163

ExtraTrees 0.9715 0.9340 0.8851 0.8341 0.7731

(Continued)

Abdalsalam et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2252 45/57

http://dx.doi.org/10.7717/peerj-cs.2252
https://peerj.com/computer-science/


organizations. The performance curves would further spread, with algorithms like
XGBoost and ExtraTrees showing steeper declines, as indicated by their lower accuracy
and precision. This case illustrates the challenges posed by more distributed datasets with
less frequent attacks per organization, making patterns harder to discern.

According to in Fig. 17E, depicting greater than or equal to five attacks by a vast number
of 936 organizations, we observed the most significant dips in performance curves,
especially for models like bagging and decision trees. However, BiGRU-SA’s curve would
remain the highest, although with a noticeable decline compared to previous cases. The
increased complexity and noise in the data with many low-frequency attack instances
make it challenging for algorithms to maintain high performance. In scenarios with fewer
terrorist organizations, as indicated by the performance curves in Fig. 17A through
Fig. 17E, the data distribution is less sparse, which considerably benefits models like
BiGRU-SA. This allows the model to identify representative patterns with greater accuracy.
As such, the accuracy, precision, sensitivity, and F1-scores are notably higher. The
improved signal-to-noise ratio in these cases aids the model in distinguishing relevant
patterns from irrelevant data effectively, leading to enhanced predictive performance.
Moreover, the simpler structure of these datasets enables the model to generalize better
across various situations, capturing the underlying trends and dynamics with efficiency.
The strength of the BiGRU-SA model is particularly evident in its generalization
capabilities, ensuring that it maintains robust performance in diverse settings of terrorist
activities. As datasets expand to include a larger number of terrorist organizations, and as
the frequency of attacks per organization diminishes, a decline in the performance of all
algorithms is observed. Sophisticated models, such as BiGRU-SA, which incorporate self-
attention mechanisms, exhibit considerable resilience in the face of these challenges.
Moreover, their ability to focus on the most salient features amid data noise and to manage
the complexities and imbalances of the datasets becomes apparent. This capability is
especially valuable as datasets grow more complex, underscoring the critical role of
algorithm selection and its contribution to handling intricate classification tasks.

In the second scenario, the study evaluates the proposed framework’s performance
using a 10-fold cross-validation approach alongside the hold-out method. Using the hold-
out method, the model’s performance is assessed on data it has not encountered during the
training phase. This approach offers a more accurate estimate of the model’s behaviour on

Table 11 (continued)

XGBoost 0.9772 0.9361 0.8489 0.8302 0.8328

LightGBM 0.9427 0.9388 0.9257 0.9125 0.8900

DNN 0.9503 0.9324 0.9318 0.9183 0.8950

GRU 0.9551 0.9505 0.8865 0.8740 0.9000

BiGRU 0.9747 0.9359 0.8976 0.8496 0.7935

BiGRU-SA 0.9775 0.9644 0.9367 0.9233 0.9142
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new, unseen data. The hold-out method is widely utilised for model selection,
hyperparameter tuning, and comparing the performance of various models. Additionally,
this method gauges the model’s resilience and efficiency in addressing data imbalances, a
common challenge in this field.

Table 12 further explores the performance of various models under two data split
verification methods in scenarios with attack frequencies over 500, offering a detailed

Figure 17 Comparative analysis of the generalization ability.
Full-size DOI: 10.7717/peerj-cs.2252/fig-17
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Table 12 Framework performance with ten fold, hold-out methods and (terror attack frequency
� 500).

Data split verification method

Hold-out method 10-fold cross-validation method

Metrics Models Mean Max Min

Accuracy (%) Decision trees 0.9586 0.9560 0.9644 0.9499

Bagging 0.9320 0.9335 0.9368 0.9276

Random forests 0.9682 0.9660 0.9687 0.9626

ExtraTrees 0.9595 0.9594 0.9624 0.9560

XGBoost 0.9716 0.9678 0.9708 0.9632

LightGBM 0.9375 0.9375 0.9563 0.9188

DNN 0.9456 0.9456 0.9645 0.9267

GRU 0.9487 0.9487 0.9677 0.9297

BiGRU 0.9571 0.9571 0.9763 0.9380

BiGRU-SA 0.9868 0.9743 0.9860 0.9766

Precision (%) Decision trees 0.9281 0.9281 0.9467 0.9095

Bagging 0.9322 0.9272 0.9381 0.9116

Random forests 0.9577 0.9556 0.9638 0.9478

ExtraTrees 0.9422 0.9415 0.9457 0.9352

XGBoost 0.9572 0.9528 0.9568 0.9440

LightGBM 0.9387 0.9387 0.9575 0.9200

DNN 0.9248 0.9248 0.9433 0.9063

GRU 0.9241 0.9241 0.9426 0.9056

BiGRU 0.9282 0.9291 0.9436 0.9181

BiGRU-SA 0.9606 0.9556 0.9554 0.9446

Recall (%) Decision trees 0.9250 0.9250 0.9435 0.9065

Bagging 0.8581 0.8625 0.8712 0.8550

Random forests 0.9341 0.9350 0.9414 0.9290

ExtraTrees 0.9262 0.9289 0.9348 0.9235

XGBoost 0.9449 0.9423 0.9505 0.9337

LightGBM 0.8900 0.8900 0.9078 0.8722

DNN 0.9100 0.9100 0.9282 0.8918

GRU 0.9120 0.9120 0.9302 0.8938

BiGRU 0.9296 0.9318 0.9441 0.9231

BiGRU-SA 0.9550 0.9575 0.9620 0.9456

F1-score (%) Decision trees 0.9240 0.9240 0.9425 0.9055

Bagging 0.8752 0.8759 0.8862 0.8668

Random forests 0.9429 0.9427 0.9494 0.9357

ExtraTrees 0.9328 0.9336 0.9374 0.9271

XGBoost 0.9500 0.9465 0.9531 0.9375

LightGBM 0.9108 0.9108 0.9290 0.89.26

DNN 0.9173 0.9173 0.9356 0.8990

GRU 0.9180 0.9180 0.9364 0.8996

BiGRU 0.9286 0.9301 0.9437 0.9206

BiGRU-SA 0.9627 0.9502 0.9664 0.9483
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comparison to understand the framework’s adaptability and reliability in handling
complex datasets. The 10-fold cross-validation approach is a rigorous evaluation method
that simulates real-world data conditions by repeatedly splitting the available data into
training and testing sets.

This process ensures the model is not simply memorising specific patterns in the
training data but can genuinely learn and generalise to unseen instances. When applied to
the BiGRU-SA method, the 10-fold cross-validation results solidify its potential as a
valuable tool for counter-terrorism efforts.

Firstly, the BiGRU-SA method consistently outperforms other models across various
evaluation metrics in both the hold-out and 10-fold cross-validation approaches (as shown
in Table 12). This indicates its ability to learn robust patterns even with data fragmentation
introduced by cross-validation. This is particularly impressive considering the inherent
challenges of data imbalance in this domain, where the number of attacks from specific
organisations might be significantly lower than others.

Secondly, focusing specifically on the 10-fold cross-validation scenario, we observe that
the BiGRU-SA method maintains high accuracy, precision, recall, and F1-scores across all
folds. This consistency further emphasises its ability to handle data imbalance and
effectively generalise to unseen data points. The 10-fold process presents the model with
various challenges through cross-validation. It throws a series of data subsets at the model,
testing its ability to adapt and learn from each unique combination. The BiGRU-SA
method consistently overcomes these challenges, showcasing its remarkable resilience and
generalizability. These findings suggest that the proposed framework with the BiGRU-SA
method is a high-performing model in controlled settings and a practical and reliable tool
for real-world applications. Its ability to handle data imbalance and generalise across
diverse scenarios, as demonstrated by the 10-fold cross-validation results, makes it a
valuable asset in the fight against terrorism.

Comparison with existing approaches
In this section, the study comprehensively compares our framework with the BiGRU-SA
model against existing methodologies as highlighted in studies (ALfatih, Li & Saadalla,
2019; Bangerter et al., 2022; Talreja et al., 2017). This comparison showcases our
framework’s advancements over traditional ML techniques, referenced in Table 13.
Through performance metrics analysis for varying terrorist attack scenarios and terrorism
organisation numbers, the proposed framework demonstrates superior accuracy and
adaptability, especially in addressing data imbalances. This comparative discussion reveals
our model’s enhanced capability to predict and analyse terrorist activities more precisely,
contributing significantly to counter-terrorism research. The comparison primarily
focuses on accuracy and F1-score. The accuracy pinpoints the overall correctness of
predictions, gauging the model’s general classification ability.

In counter-terrorism scenarios, both accuracy and identifying true positives hold
immense significance. F1-score balances precision (identifying true positives) and recall
(not missing true positives), offering a more nuanced performance view, especially critical
for imbalanced datasets like GTD. False positives can lead to severe repercussions while
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missing true positives hampers prevention efforts. As shown in Table 13 the proposed
model exhibits a marked improvement in accuracy and F1-score, achieving 98.6% and
96.27% respectively, surpassing other cited studies. Furthermore, the proposed model
considers more terrorist organizations (36 groups) than the 20 groups analyzed in other
studies, suggesting a broader application range. The higher accuracy and F1-score,
combined with a broader scope of terrorist organization classification, highlight the
model’s superior performance. As presented in Fig. 18 this significant improvement
implies that our model generalises terrorist organisations better and correctly classifies
them while minimising false positives. Furthermore, including 36 organisations in our
assessment adds another validation layer to our model’s robustness. By successfully
handling a more extensive and potentially more intricate dataset with potential data
sparsity issues, our model demonstrates its broader applicability and adaptability to
complex scenarios.

Table 13 Comparison of prediction with state-of-arts.

Study Acc F1-Score Number of terrorist organizations

ALfatih, Li & Saadalla (2019) 89.00 82.00 20 groups

Bangerter et al. (2022) 87.81 84.41 20 groups

Talreja et al. (2017) 87.00 85.50 (Not mentioned)

Proposed model 98.60 96.27 36 groups

Figure 18 Comparison of study performances with the state-of-the-art.
Full-size DOI: 10.7717/peerj-cs.2252/fig-18
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CONCLUSION
Terrorist organizations pose a significant threat to global security, making the prediction of
their activities based on historical data a complex task. However, recent advancements in
DL models, particularly in NLP and time series analysis, offer promising avenues for
improvement. In this study, we proposed a novel framework centred around a bi-
directional gated recurrent unit (BiGRU) and a self-attention mechanism for classifying
and predicting terrorist organizations. By leveraging textual features extracted from
DistilBERT and addressing data imbalance with the SMOTE-T method. The proposed
framework achieved remarkable performance metrics, with the BiGRU-SA model
attaining an accuracy of 98.68%, precision of 96.06%, sensitivity of 96.83%, specificity of
99.50%, and Matthews correlation coefficient of 97.50, respectively. These results
underscore the efficacy of our model in classifying and predicting terrorist organizations
with high reliability and precision. Furthermore, we assessed the effectiveness of several
classifiers and observed that both BiGRU-SA and BiGRU consistently delivered superior
prediction accuracies. Additionally, the random forest algorithm demonstrated robust
classification performance across various metrics. This methodology holds potential for
extending its applicability to a wider array of terrorist organizations. The proposed model
contributes to the prediction of global terrorist attacks, identifies relevant factors, and
provides decision support for anti-terrorism organizations and related countries. With
joint efforts and advanced models based on AI, we anticipate that these technologies will
enhance the accuracy of predictions related to terrorist groups, thereby bolstering efforts
and proactive measures to combat terrorism. A significant limitation of our study is the
reliance of the model’s effectiveness on the continual updating and refinement of the
dataset. The dynamic nature of global terrorism, characterized by the emergence of new
groups, the evolution of existing ones, and the changing methods of attack, necessitates a
dataset that is regularly updated to accurately reflect these changes. Without timely
updates, the model may lose its predictive accuracy over time as it becomes outdated
relative to the current state of global terrorism. This limitation opens several avenues for
future work, including developing automated or semi-automated processes for data
collection and updates, which could ensure that the dataset remains current thereby
preserving the model’s relevance and accuracy. Such processes could leverage
advancements in web scraping, NLP, and ML to identify and integrate new data from a
variety of sources, including news reports, government releases, and specialized counter-
terrorism databases.

NOMENCLATURE
The most commonly used abbreviations in this article are summarized in below:
GTD Global Terrorism Database

ML Machine Learning

DL Deep Learning

BNN Bayesian Neural Network

RELU Rectified Linear Unit
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MLP Multilayer Perceptron

BAAD Broad Agency Announcement Database

EDTG Extended Data on Terrorist Groups

RNN Recurrent Neural Network

DGAN Deep Generative Adversarial Network

T2A Tweet-to-Act

Gname Terrorism Group name responsible for attacks in GTD

AI Artificial Intelligence

NLP Natural Language Processing

GRU Gated Recurrent Unit

SA Sentiment Analysis

BiGRU Bidirectional Gated Recurrent Unit

SOMTE Synthetic Minority Over-sampling

EDA Exploratory Data Analysis

PCC Pearson Correlation Coefficient

NMI Normalized Mutual Information

BLSTM Bidirectional Long Short-Term Memory
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