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ABSTRACT
A high voltage circuit breaker (HVCB) plays a crucial role in current smart power
system. However, the current research on HVCB mainly focuses on the convenience
and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It
is very important to ensure the circuit breaker conducts in a normal state. According
to real statistics when HVCB works, most defects and faults in high voltage circuit
breakers is caused by mechanical faults such as contact fault, mechanism seizure, bolt
loosening, spring fatigue and so on. In this study, vibration sensors were placed at
four different locations in the HVCB system to detect four common mechanical
faults using vibration signal. In our approach, a convolutional attention network
(CANet) was introduced to extract features and determine which mechanical faults
occur within a fixed period of time. The results indicate that the mechanical fault
diagnosis accuracy rate is up to 94.2%, surpassing traditional methods that rely solely
on vibration signals from a single location.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Neural Networks
Keywords Artificial intelligence, Fault diagnosis, Deep learning

INTRODUCTION
The current smart power system puts forward the higher requirement of convenience,
reliability and economy to its mechanical switch and operating mechanism. A common
approach to monitoring the operational status of HVCB involves the installation of various
sensors, including vibration, current measurement, and acoustic sensors. The data
collected from these sensors not only indicate the occurrence of malfunctions but also help
identify the types of faults. However, due to the limitations of using individual sensors and
conflicts among data from different types of sensors, traditional methods exhibit several
drawbacks. The cumbersome process of installing and dismantling sensors, coupled with
their high sensitivity to operational conditions, renders the signals susceptible to
interference. The variability in sensor types further exacerbates the reliability issues of the
signals obtained. Additionally, diagnostic methods relying on a single source of signals
may fail to accurately identify all faults, especially when the selected feature data derived
from simulated environments do not encompass all potential fault scenarios. These
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limitations significantly reduce the overall accuracy and reliability of such diagnostic
approaches.

Most methods for diagnosing HVCB faults are based on vibration signals. Qi, Gao &
Huang (2020) improved the efficiency of feature extraction and fault recognition for high
voltage circuit breakers using a Light Gradient Boosting Machine based on time-domain
feature extraction. Chen & Wan (2021) enhanced the performance of intelligent fault
diagnosis for high-voltage circuit breakers by employing a Triangular Global Alignment
Kernel Extreme Learning Machine (TGAK-ELM), resulting in more stable and accurate
diagnostics. Li et al. (2022) introduced a multi-layer Integrated Extreme Learning Machine
(IELM) for diagnosing mechanical faults in high-voltage circuit breakers, which
significantly advanced diagnostic accuracy. Zhang et al. (2022) focused on the
identification of mechanical faults in high voltage circuit breakers through multi-sensor
information fusion, using wavelet packet decomposition and the Dempster-Shafer
evidence theory. Tahvilzadeh, Aliyari-Shoorehdeli & Razi-Kazemi (2023) developed a
model-aided intelligent fault detection system for SF6 high-voltage circuit breakers,
utilizing simulation and machine learning algorithms to improve fault detection
capabilities. Yang et al. (2023) optimized the fault diagnosis process for high voltage circuit
breakers by implementing a Whale Optimization Algorithm-Support Vector Machine
(WOA-SVM) based on principal component analysis (PCA), achieving greater diagnostic
precision. Cao et al. (2023) created a method for localizing and identifying mechanical
defects in high-voltage circuit breakers using vibration signal segmentation and chaotic
feature extraction, effectively pinpointing common mechanical defects. Chen et al. (2023)
introduced an ANFIS-based sound and vibration combined fault diagnosis method for
high voltage circuit breakers, which significantly outperformed traditional methods in
diagnostic accuracy. Li et al. (2023) proposed a robust fault diagnosis approach using an
ensemble echo state network with evidence fusion, providing superior diagnostic
performance through flexible and robust network parameters. Liu et al. (2024) suggested a
defect diagnosis method for high voltage circuit breakers based on a combination of stroke
curve and current signal, optimized by random forest, resulting in substantial
improvements in diagnostic accuracy. Xu et al. (2024) implemented an intelligent
mechanical fault diagnosis method employing Grey Wolf Optimization and Multi-
Grained Cascade Forest algorithms, which enhanced the accuracy of diagnosing high-
voltage circuit breakers.

In recent years, deep learning methods have provided effective solutions in pattern
recognition and fault detection due to their powerful feature learning ability. Ye et al.
(2022) proposed a novel U-Net with CapsNet for high-voltage circuit breaker fault
diagnosis, achieving high precision and robust diagnosis in few-shot scenarios. This
approach reduces feature loss during pooling and enhances diagnosis accuracy with a
dynamic routing algorithm. Similarly, Wang et al. (2022) developed a few-shot transfer
learning approach with an attention mechanism for high-voltage circuit breaker fault
diagnosis, enhancing the robustness and accuracy of on-site diagnoses. This method
leverages one-dimensional CNNs with attention mechanisms to focus on important parts
of the fault signal. Furthermore, Zhuang et al. (2022) implemented a deep learning
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approach for mechanical fault diagnosis of high voltage circuit breakers, utilizing
time-frequency images of raw vibration data for high detection rates and low false alarm
rates. This purely data-driven method surpasses traditional diagnosis models in
performance. Yan et al. (2023) applied a Transformer-Convolutional Neural Network and
Metric Meta-learning for few-shot mechanical fault diagnosis of high-voltage circuit
breakers, achieving over 95% accuracy. This approach combines local and global feature
extraction for robust fault classification. Additionally, Zhang et al. (2023) developed a PCA
based Sparrow Search Algorithm (SSA) for optimizing a learning vector quantization
(LVQ) neural network for mechanical fault diagnosis of high voltage circuit breakers,
enhancing the diagnostic rate and training convergence. This method reduces feature
redundancy and improves recognition accuracy. Moreover,Wang et al. (2023) proposed a
hybrid transfer learning approach for on-site small-sample high-voltage circuit breaker
fault diagnosis, combining domain adaptation and domain adversarial training to achieve
high accuracy. This method ensures that the network focuses on key features while fully
extracting temporal information. Similarly, Zheng et al. (2023) proposed a prediction
method for the mechanical state of high-voltage circuit breakers based on long short-term
memory (LSTM) neural network and support vector machine (SVM), enabling predictive
maintenance and enhancing system reliability. This method predicts key mechanical
parameters and diagnoses the mechanical state using predicted data. Finally, Sui et al.
(2024) proposed a Dynamic Multi-Attention Graph Convolutional Network (DMGCN)
for mechanical fault diagnosis of high-voltage circuit breakers, utilizing adaptive graph
construction for better performance. This method effectively integrates structural and
numerical information for improved classification.

In our work, we have developed a data fusion technique aimed at overcoming the
limitations of traditional fault diagnosis methods by using multiple signals of the same
type. Considering that vibration signals are easy to acquire and analyze, our proposed
approach collects vibration signals from four distinct locations on the HVCB to identify
four types of mechanical faults: contact faults, mechanism seizures, bolt loosening, and
spring fatigue.

This article employs deep learning approach to analyze vibration signals from different
positions, aiming to detect faults during the operation of HVCB. Initially, data on the
normal operation and mechanical faults of the high-voltage circuit breaker (HVCB) are
collected from different locations where four vibration sensors are installed. This data is
used to construct a dataset. Subsequently, deep learning techniques are employed to detect
mechanical faults. All fault signals are generated from real operational environments.
Finally, we established a convolutional attention network (CANet) to extract signal
features for classifying mechanical faults.

Our contributions are summarized as follows:

(1) A high voltage circuit breaker fault detection platform was constructed, where vibration
signals collected from four different locations on the breaker effectively identify contact
faults, mechanism seizures, bolt loosening, and spring fatigue.
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(2) A simple and effective CANet was developed, utilizing the combination of one-
dimensional convolution and self-attention mechanisms to efficiently extract key features
from multi-point time series data and classify faults.

(3) Multi-point data fusion was implemented, combining vibration signals from various
locations on the high voltage circuit breaker, overcoming the limitations of traditional fault
diagnosis methods that rely on a single signal source, and enhancing the accuracy and
reliability of fault diagnosis.

The remainder of the article is organized as follows. We describe the proposed method
in “Materials and Methods”. The performance of the CANet is evaluated in “Result”.
Finally, we provide discussion and conclusions in “Discussion” and “Conclusion”.

MATERIALS AND METHODS
In this article, we focus on a specific 12kV high-voltage circuit breaker with a spring
operating mechanism as our subject. Our primary objective was to detect the four most
common faults in HVCBs: contact fault, mechanism seizure, bolt loosening and spring
fatigue. The signals were downsampled and concatenated, and fault diagnosis was
conducted on the combined data using our CANet, ultimately determining the presence of
faults.

Signal acquisition
This study focuses on the 12kV spring-operated high-voltage circuit breaker model ZW32-
12F. Vibration signals at different operating positions of the spring-operated mechanism
were collected using TX9R033-2 vibration sensors. As shown in Fig. 1, the vibration
sensors were installed at various positions on the operating mechanism and the chassis
using strong magnets attached to the bottom of the sensors. By deploying multiple
vibration sensors, vibration signals from different positions on the operating mechanism
and the chassis were obtained. Additionally, acoustic sensors were used to collect sound
signals during the sampling process, although these signals were not used for fault
diagnosis. The collected signals were transmitted to a data storage unit via an NI 9234 data
acquisition card, with the sampling frequency controlled by edge computing devices set at
25.6 kHz. Finally, the collected data were uploaded to a cloud server. This study captures
the vibration signals of the operating mechanism and the chassis during HVCB
disconnection by setting a threshold to determine the start time of the vibration signals.

Convolutional attention network
To effectively detect and classify faults in high-voltage circuit breakers, our approach
involves a comprehensive analysis of collected data from various locations. These signals
are pivotal in determining the operational state of HVCB over time. To achieve this, we
have developed a specialized neural network model, termed CANet, designed to extract
and process features from these varied inputs and ultimately categorize the different types
of faults using a multi-layer perceptron (MLP).

The methodology begins with the selection of vibration signals of a fixed length,
ensuring a uniform input structure. These signals are then downsampled at a
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predetermined frequency to standardize the data and reduce noise, making them suitable
for deep learning processing. The downsampled signals are then concatenated, creating a
composite signal that combines the characteristics of each modality. This composite signal
is fed into the CANet for in-depth feature extraction.

CANet primarily consists of a one-dimensional convolution module and an attention
module. In the one-dimensional convolution process, filters slide along the time series,
engaging in point-wise multiplication with different parts of the series to effectively
capture local dependencies and features. By employing various filters, the one-dimensional
convolution can extract a diverse range of features from the raw time series. The attention
mechanism enables the model to focus more on the parts that are most critical for the
current task while processing information. When handling time series data, the attention
mechanism is particularly useful in identifying the information most relevant to the
current task. Compared to traditional convolutional networks, the attention mechanism
offers a more dynamic way of extracting features, as it can adaptively adjust its focus on
different parts of the series based on the task requirements and contextual changes.

The architecture of CANet is designed to handle the complexity of multi-point data.
The input tensor 2 RL�4, where L represents the signal length, is first subjected to one-
dimensional convolution. This process is pivotal for extracting and expanding features
from the vibration data. The convolutional layer not only captures the inherent
characteristics of each signal type but also begins the process of blending these features to
form a comprehensive fault signature. The vibration signals after feature extraction are
shown in Fig. 2.

Following initial feature extraction, the data are fed into the convolutional attention
(CA) module for further processing. This module employs both one-dimensional
convolution and attention modules to extract spatial and temporal features, offering a
more nuanced understanding of the data. The convolutional component of the CAmodule

Figure 1 The vibration, sound and current signal acquisition.
Full-size DOI: 10.7717/peerj-cs.2248/fig-1
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Figure 2 Partial signals collected by vibration sensors (A–D) after feature extraction.
Full-size DOI: 10.7717/peerj-cs.2248/fig-2
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works to fuse features across different channels, effectively synthesizing information from
vibration signals collected at various locations. The attention module then comes into play,
focusing on crucial segments of the data sequence. It identifies patterns and correlations
over time, bringing out subtle but significant anomalies indicative of potential faults.

Finally, the processed data are passed through a final one-dimensional convolutional
layer. This layer integrates the temporal information and prepares the data for fault
classification. The MLP module then takes over, applying its powerful classification
capabilities to accurately categorize the faults in HVCB.

CA module
As shown in Fig. 3, the CA module we designed utilizes one-dimensional convolutional
modules and attention modules to effectively extract features from input data across
temporal and spatial dimensions, enhancing the interaction between local and global
features. Initially, the one-dimensional convolutional module captures local features of the
time-series signal, expanding the feature space to facilitate the exchange of information

Figure 3 The architecture of the algorithm. Full-size DOI: 10.7717/peerj-cs.2248/fig-3
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across channels. After convolution, the MLP is used to further enrich the feature tensor,
introducing non-linearity to uncover more complex data characteristics. Following this,
the application of the attention module allows us to focus on crucial parts of the sequence,
capturing global correlations within the time-series signal.

We employ a multi-head attention module to adaptively learn different features. The
tensor is passed through three separate FFN modules, generating Query, Key, and Value
respectively. We first multiply Query and Key, and then apply a Softmax function to
generate the corresponding heatmap. Following this, we multiply the heatmap with Value.
Finally, we concatenate the results along the channels and project them through an FFN
for mapping. The specific expression formula is as follows:

MultiHeadðQ;K;VÞ ¼ Concatðhead1;…; headhÞWo

headi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ

AttentionðQi;Ki;ViÞ ¼ softmax
QiKi

Tffiffiffiffiffi
dk

p
� �

Vi

(1)

where h denotes the number of heads, headi represents the output of the i
th head, andWo is

the output transformation matrix. WQ
i , W

K
i , W

V
i are the transformation matrices for query,

key, and value, respectively, and dk is the dimensionality of the key tensor.
Ultimately, the features outputted by the convolutional layer are combined with those

enhanced by the attention module through residual connections. This not only preserves
the original information but also enhances the expressiveness of features, providing robust
support for deep learning and fault detection within the model.

RESULTS
Implementation details
Following the installation method described in ‘Signal Acquisition’, we collected a total of
42,468 data entries. A total of 200 vibration signals were collected during the high-voltage
circuit breaker operation. Among them, there were 17 sets of vibration signals with contact
faults, nine sets with mechanism seizure, 23 sets with bolt loosening, and 10 sets with
spring fatigue. Due to the limited number of faulty vibration signal data, it is necessary to
augment the data. The method involves overlaying faulty vibration signals with normal
vibration signals and adding random noise to generate a completely new faulty vibration
signal. Similarly, multiple faulty signals can be overlaid to augment the dataset. To test the
performance of our models, we employed the Monte Carlo cross-validation method. We
randomly selected 80% of the continuous data from the entire dataset and split it into a
training set and a test set in a 4:1 ratio. Each model was trained five times following the
aforementioned method, and we saved the weights of the model that performed best on the
test set. The average accuracy of each model was calculated and used as a key indicator to
measure model performance.

The entire process was conducted in a Python environment, using the PyTorch
framework for building, training, and testing the models. We only employed one CA
modules to construct CANet. The output dimension of the first convolutional layer is set to
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128, with a kernel length of five. In the CA module, the input and output feature
dimensions of the first convolution operation are both 128, with a kernel length of five. The
MLP is configured with a three-layer structure, where the input and output dimensions are
both 128, and the hidden layer dimension is 256. The number of heads in the attention
module is eight. In the final convolutional layer, the input dimension is 128, and the output
dimension is 256, with a kernel length of 50. The ultimate MLP is also configured with a
three-layer structure, where the input dimension is 256, the output dimension is four, and
the hidden layer dimension is 512.

During the training process, we trained the model for 100 epochs, set the learning rate to
1e-4, and fixed the batch size at 256. We set the length of the time series data to 50 and used
a GTX 2080Ti graphics card for training the models.

Evaluation metrics
To evaluate the performance of our constructed CANet in detecting four types of faults in
high-voltage circuit breakers, we utilize accuracy, precision, recall, and the F1-score (F1
measure) as metrics to measure the performance of CANet on our custom-built dataset.
The following sections will provide a detailed introduction to these evaluation metrics.

Accuracy refers to the proportion of samples that are correctly classified out of the total
number of samples. Precision and Recall are the most commonly used metrics in
evaluating classification tasks. Precision is defined as the proportion of true positive
samples among all samples predicted as positive. Recall, from the perspective of the
original samples, is defined as the probability of samples that are truly positive being
predicted as positive. The mathematical definitions of these metrics are as follows:

Precision ¼ True Positive
True Positiveþ False Positive

Recall ¼ True Positive
True Positiveþ False Negative

:
(2)

To take into account both Precision and Recall, the F1-score is commonly used as a
measure. The F1-score is the harmonic mean of Precision and Recall, designed to balance
the two metrics. It is defined as:

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

: (3)

Experiments
In our dataset, we randomly allocated 80% of the data for training and testing purposes,
and conducted fivefold cross-validation. The CANet produces an output tensor of length
four, representing four types of faults: contact fault, mechanism seizure, bolt loosening and
spring fatigue. In this study, we adapted existing models—LSTM, GRU, TIMESNet (Wu
et al., 2022) and Anomaly Transformer (Xu et al., 2022)—by modifying their source code
to accept our data for fault detection. We then conducted a comparative analysis across
these models and CANet, evaluating their performance on four types of mechanical faults
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in HVCB in terms of precision, recall, and F1-scores. The result is as shown in Table 1. The
results demonstrate that CANet slightly outperforms Anomaly Transformer in terms of
overall recall and F1-score, indicating a superior ability to detect all relevant cases and
maintain a balance between precision and recall. While Anomaly Transformer exhibits a
marginally higher average precision, suggesting fewer false positives, the differences
between the two methods are relatively minor.

The classification results of CANet are presented in Table 2. In Table 2, we present the
accuracy, recall, precision, and F1-score of CANet across fivefold cross-validation.
Averaging the results of the fivefold cross-validation, we obtained an accuracy of 0.942, a
recall of 0.972, a precision of 0.970, and an F1-score of 0.971. The high accuracy indicates
that CANet performs well across the entire dataset. The high recall and precision
demonstrate that the model effectively identifies and classifies positive samples with
minimal misclassification of negative samples as positive. An F1-score of 0.971 reflects a
good balance between precision and recall, showcasing the model’s excellent overall
performance.

In Table 3, we present the average detection performance metrics of CANet for four
types of faults under fivefold cross-validation. The faults include contact fault, mechanism
seizure, bolt loosening and spring fatigue. We list the Precision, Recall, and F1-score for the
detection of these four faults. Among these faults, CANet demonstrates the best detection
performance for spring fatigue, with Precision, Recall, and F1-score all approaching one.
The detection performance for the other three faults is also high, with Precision and Recall
exceeding 0.95, and F1-scores close to or exceeding 0.95.

Table 1 Performance comparison of CANet, LSTM, GRU, TIMESNET, and Anomaly Transformer in mechanical fault detection of HVCB
(The maximum value for each metric is highlighted in bold).

Fault Contact fault Mechanism seizure Bolt loosening Spring fatigue Average

Metric P R F1 P R F1 P R F1 P R F1 A R P F1

LSTM 0.939 0.881 0.909 0.915 0.921 0.918 0.918 0.891 0.904 0.933 0.891 0.911 0.841 0.894 0.927 0.911

GRU 0.924 0.923 0.924 0.951 0.946 0.948 0.931 0.911 0.921 0.938 0.919 0.929 0.873 0.924 0.935 0.929

TIMESNET 0.952 0.975 0.963 0.957 0.936 0.947 0.926 0.963 0.944 0.938 0.956 0.947 0.909 0.959 0.943 0.951

Anomaly transformer 0.964 0.992 0.978 0.994 0.882 0.932 0.976 0.978 0.976 0.994 0.996 0.994 0.934 0.949 0.984 0.966

CANet(Ours) 0.974 0.978 0.976 0.964 0.948 0.954 0.958 0.982 0.97 0.992 0.992 0.992 0.941 0.972 0.97 0.97

Table 2 Performance of CANet on the dataset.

No. Accuracy Recall Precision F1-score

I 0.965 0.986 0.987 0.986

II 0.938 0.982 0.961 0.971

III 0.937 0.954 0.976 0.965

IV 0.926 0.954 0.961 0.957

V 0.941 0.984 0.967 0.975

Ave. 0.942 0.972 0.970 0.971

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2248 10/16

http://dx.doi.org/10.7717/peerj-cs.2248
https://peerj.com/computer-science/


In Table 4, we have listed the F1-scores for four types of faults in each round of the
fivefold cross-validation. “C. F1-score” represents the F1-score in detecting contact fault,
“M. F1-score” for mechanism seizure, “B. F1-score” for bolt loosening, and “S. F1-score”
for spring fatigue. The F1-scores for all four types of fault detection are generally very high,
indicating that the model possesses a high level of accuracy and reliability. The model’s
performance is relatively stable across different rounds, with only minor fluctuations
occurring in a few instances. However, these fluctuations are minimal, demonstrating the
model’s robustness in detecting various types of faults. For the mechanism seizure, the F1-
scores are slightly lower in some rounds (dropping to as low as 0.91), which could suggest
that this type of fault is more challenging to detect compared to others, or that the dataset
features for this part are not sufficiently distinct.

In Tables 5 and 6, we have listed the precision and recall for four types of faults in each
round of the fivefold cross-validation. CANet achieves a Precision and Recall of over 0.95
in detecting these four types of faults. This indicates that CANet is both accurate and

Table 3 Four types of fault detection performance.

Types of faults Precision Recall F1-score

Contact fault 0.974 0.978 0.976

Mechanism seizure 0.964 0.948 0.954

Bolt loosening 0.958 0.982 0.97

Spring fatigue 0.992 0.992 0.992

Table 4 Five-fold cross-validation F1-scores for four types of fault.

No. C. F1-score M. F1-score B. F1-score S. F1-score

I 0.97 1.0 0.98 0.99

II 0.92 0.98 0.95 0.99

III 1.0 0.94 0.96 1.0

IV 1.0 0.91 0.97 0.99

V 0.99 0.94 0.99 0.99

Ave. 0.976 0.954 0.97 0.992

Table 5 Five-fold cross-validation precision for four types of fault.

No. C. Precision M. Precision B. Precision S. Precision

I 0.95 1.0 0.99 0.99

II 0.93 0.98 0.90 0.99

III 1.0 0.98 0.95 1.0

IV 1.0 0.94 0.95 1.0

V 0.99 0.92 1.0 0.98

Ave. 0.974 0.964 0.958 0.992
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comprehensive in its fault detection capabilities, particularly excelling in the detection of
spring fatigue. The minor variations in Precision and Recall across different data splits
suggest that the model’s performance is stable and not significantly affected by specific data
partitions, demonstrating good robustness.

DISCUSSION
Our study employs multi-point data fusion technology for diagnosing mechanical faults in
HVCB. Traditional HVCB fault diagnosis methods primarily focus on the convenience
and efficiency of mechanical structures, often overlooking the crucial aspect of fault
diagnosis. Our research enhances fault detection accuracy and reliability by aggregating
multi-point vibration signals.

Traditional fault diagnosis techniques usually rely on a single signal source or manual
feature selection, limiting their diagnostic capabilities. To address this, we introduced the
deep learning model CANet. CANet is capable of processing multi-point data, providing a
more comprehensive analysis of the circuit breaker’s condition. This is particularly evident
in its superior performance in detecting faults such as contact fault and spring fatigue.

One of our main findings is the effectiveness of the attention mechanism in CANet. The
inclusion of the attention mechanism not only improved the average accuracy but also
enhanced the model’s ability to detect each type of fault. This underscores the value of
integrating such mechanisms into deep learning models, especially for applications
involving time-series data.

While CANet demonstrates excellent fault detection performance, it is less satisfactory
in identifying certain faults, such as mechanism seizure and bolt loosening. This suggests a
need for further refinement of the model, possibly by expanding the dataset to include a
wider range of fault types and operational environments. Such enhancements could
improve the model’s generalizability and robustness.

Transformers have great potential in the fault diagnosis process. Known for their
effectiveness in handling sequence data, transformers could further enhance fault detection
accuracy. This aligns with the broader trend in machine learning and deep learning
research, where the focus is shifting towards models that can effectively process and
analyze complex data structures. In addition, the integration of transformer models into
fault diagnosis systems in real-world settings could be challenging due to their high
computational demands, requiring substantial hardware resources. Future studies might

Table 6 Five-fold cross-validation recall for four types of fault.

No. C. Recall M. Recall B. Recall S. Recall

I 0.99 0.99 0.97 0.99

II 0.92 0.98 0.99 0.99

III 1.0 0.91 0.97 0.99

IV 1.0 0.89 0.99 0.99

V 0.98 0.97 0.99 1.0

Ave. 0.978 0.948 0.982 0.992
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explore the development of more efficient transformer models or hybrid approaches that
combine the strengths of different models.

Our study demonstrates the substantial potential of combining multi-point data fusion
with attention mechanisms in the field of HVCB mechanical fault diagnosis. We plan to
explore the use of improved transformer models to further increase fault diagnosis
accuracy and to expand the dataset to include a wider range of fault types and various
operational environments.

Future research directions could include exploring methods to mitigate the impact of
environmental variables on signal accuracy and developing more cost-effective
deployment strategies. Additionally, integrating advanced data preprocessing techniques
to handle diverse environmental conditions could be a key area of focus.

CONCLUSIONS
This article establishes a mechanical fault diagnosis method for HVCB based on multi-
point data fusion technology. By integrating multi-point data fusion, we have successfully
addressed the limitations of traditional fault diagnosis methods, which primarily focus on
mechanical structure efficiency and often neglect the crucial aspect of accurate fault
detection. Our work can be summarized as follows:

(1) We constructed a platform for collecting mechanical fault data of HVCBs using
vibration sensors. By using fault injection methods to expand the dataset, we have
overcome the challenges associated with the scarcity of fault data.

(2) We developed a simple yet effective CANet, utilizing one-dimensional convolution and
an attention mechanism for feature extraction from multi-point data. The capability of
CANet to process and analyze multi-point data has been proven to be highly effective.

(3) We have validated the capability of the attention mechanism in processing multi-point
time-series data. Our findings demonstrate that the attention mechanism is a key factor in
enhancing the diagnostic capabilities of CANet, not only improving overall accuracy but
also increasing the precision of the model in identifying various types of faults.

Overall, our research not only proves the effectiveness of combining deep learning with
multi-point data fusion for mechanical fault diagnosis in HVCBs but also lays the
groundwork for further innovations in the important field of smart power systems. In the
future, we will continue to explore advanced deep learning techniques, aiming to provide
more efficient, accurate, and reliable fault diagnosis methods for high voltage circuit
breakers.
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