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ABSTRACT
Cancer remains one of the leading causes of death globally. New immunotherapies
that harness the patient’s immune system to fight cancer show promise, but their
development requires analyzing the diversity of immune cells called T-cells. T-cells have
receptors that recognize and bind to cancer cells. Sequencing these T-cell receptors al-
lows to provide insights into their immune response, but extracting useful information
is challenging. In this study, we propose a new computational method, TCellR2Vec, to
select key features from T-cell receptor sequences for classifying different cancer types.
We extracted features like amino acid composition, charge, and diversity measures and
combined them with other sequence embedding techniques. For our experiments, we
used a dataset of over 50,000 T-cell receptor sequences from five cancer types, which
showed that TCellR2Vec improved classification accuracy and efficiency over baseline
methods. These results demonstrate TCellR2Vec’s ability to capture informative
aspects of complex T-cell receptor sequences. By improving computational analysis
of the immune response, TCellR2Vec could aid the development of personalized
immunotherapies tailored to each patient’s T-cells. This has important implications for
creating more effective cancer treatments based on the individual’s immune system.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning, Neural Networks
Keywords Cancer, TCR sequence, Feature selection, Classification

INTRODUCTION
According to the World Health Organization (WHO), cancer is one of the leading causes
of death worldwide (World Health Organization, 2023). In 2022, in the United States alone,
an estimated 236,740 new cases of lung cancer are expected, resulting in approximately
130,180 deaths (Siegel et al., 2022). Disease variations across different regions, the influence
of availablemedical resources, and various socio-economic factors have collectively affected
the effective management of this disease (Chhikara & Parang, 2023). However, effective
treatment can cure many types of cancer (World Health Organization, 2023). For instance,
glioblastoma is an aggressive form of brain cancer that arises from glial cells in the brain or
spinal cord (Wirsching & Weller, 2017). It is characterized by a high degree of heterogeneity
and resistance to current treatment options, leading to a poor prognosis for patients (Soeda
et al., 2015). Lung cancer is another leading cause of cancer-related deaths worldwide
and it can be classified into two main types: small cell lung cancer and non-small cell
lung cancer (Minna, Roth & Gazdar, 2002; Lahiri et al., 2023). Another extremely deadly
cancer type is Melanoma, which is a type of skin cancer that is caused by the uncontrolled
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Figure 1 T-cells bind to specific peptides presented by cancer cells.
Full-size DOI: 10.7717/peerjcs.2239/fig-1

growth of melanocytes, the cells that produce pigment in the skin (Houghton & Polsky,
2002). Immunotherapy has shown promise in reducing the risk of melanoma recurrence
post-surgical resection, and in enhancing survival rates among patients with unresectable
versions of the disease. disease (Knight, Karapetyan & Kirkwood, 2023). Also, pancreatic
cancer arises from the cells in the pancreas and is known for its aggressive behavior and
low survival rate (Kleeff et al., 2016). Based on data from the Surveillance, Epidemiology,
and End Result Program (SEER), approximately 57,600 new cases of lung cancer were
diagnosed in 2020, resulting in 47,050 deaths (Howlader et al., 2020). Whether a tumor
can be removed with surgery (resectable) affects treatment options and how well patients
do (Millikan et al., 1999; Kolbeinsson et al., 2023). Another example is a rare type of bone
cancer called Osteosarcoma that develops in the cells that form the bone and can cause
severe pain and disability (Ta et al., 2009). Osteosarcoma exhibits complex heterogeneity
and abnormal production of immature osteoidmatrix (Liu et al., 2022). Current treatments
for Osteosarcoma struggle to eliminate all cancer cells, particularly those that have spread
(metastatic) or are circulating in the bloodstream, (Li et al., 2021; Lamhamedi-Cherradi et
al., 2021). These cancers represent a significant challenge to healthcare professionals and
researchers alike, highlighting the urgent need for effective treatment options.

Traditional cancer treatments such as chemotherapy and radiation therapy are often
associated with significant side effects (MacDonald, 2009; Schirrmacher, 2019), and there
is a need for more personalized and targeted treatments. Recently, immunotherapy has
emerged as a promising approach to treat cancer by utilizing the patient’s own immune
system to target cancer cells (Lizée et al., 2013; Kciuk et al., 2023). One key component of
the immune system is T-cells which are a type of white blood cell (Beshnova et al., 2020;
Speiser et al., 2023) and T-cell receptors (TCRs) which are proteins found on the surface
of T-cells. The diversity of TCRs allows them to recognize and bind to specific proteins or
peptides presented by cancer cells, as depicted in Fig. 1 (Raskov et al., 2021;Nikolich-Žugich,
Slifka & Messaoudi, 2004). Almost all cancer immunotherapies approved by the US Food
and Drug Administration (FDA) work by activating and expanding T cells that express
TCRs capable of recognizing tumor antigens (Rosenberg, 2014; Ribas & Wolchok, 2018).

TCR sequencing has emerged as a crucial tool for comprehending the immune response
to cancer and developing personalized cancer treatments (Pai & Satpathy, 2021). The TCR
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sequencing data provides valuable information about each TCR sequence like the type
and location of the antigen that the T-cell has identified (Klebanoff et al., 2023; Saotome
et al., 2023). Understanding the complexity and diversity of these sequences has created a
significant need for feature selection methods. Feature selection methods are techniques
used to select a subset of relevant and informative features from a larger set of input
variables or features (Li et al., 2017). Several embedding generation methods generate a
lower-dimensional representation of the data and can be used as a form of feature selection.

Machine learning-based embedding generation methods can capture information
about protein sequences that can be used for classification tasks (Stein, Jaques & Valiati,
2019; Bukhari et al., 2022; Bukhari et al., 2021). However, due to the specificity of the
cancer-related protein sequences we are working with, general embedding generation
methods such as one-hot encoding (OHE) and spaced K -mers may not be effective in fully
capturing the complexity and diversity of these sequences. Deep learning methods, such
as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), are
capable of handling the complexity and diversity of protein sequences by learning complex
relationships between sequence features (Lyu et al., 2023). RNNs can process sequences by
using recurrent connections to propagate information fromone step to the next (Tsukiyama
et al., 2021). Also, CNNs can be applied to sequences by treating them as a one-dimensional
signal and using convolutional filters to extract features (Vosoughi, Vijayaraghavan & Roy,
2016). However, using deep learning methods to generate embeddings is computationally
intensive and requires a large amount of computational resources to train and run
(Heinzinger et al., 2019). This can be a challenge for researchers who may not have access
to high-performance computing resources.

In this study, we used machine learning approaches along with an informative feature
selection method to train these models effectively and faster while also improving
their accuracy. This study showcases TCellR2Vec’s effectiveness in selecting features
for cancer classification from TCR sequences. Beyond this, it has broader implications.
TCellR2Vec aids in identifying tumor-reactive T-cell receptors and neoantigens, leading
to personalized cancer immunotherapies like tailored vaccines and cell transfer therapies.
It also helps monitor immune responses during treatment, discover biomarkers for
prognosis, and understand tumor-immune interactions. Integrating TCellR2Vec with
neoantigen prediction improves vaccine development and enhances cancer immune
evasion understanding. Our contributions can be summarized as follows:
1. We introduce a novel feature selection method named TCellR2Vec, which generates

embeddings that can be used as input to machine learning classifiers to improve
supervised analysis.

2. To provide a numerical representation of the TCR sequences, we extract multiple
features, including amino acid sequence compositions, the length of the CDR3,
hydrophobicity, charge distribution, average motif similarity score, Shannon entropy,
and Simpson index, using a real dataset of around 50K TCR sequences. These features
are utilized to generate input for the classification models.

3. To ensure that our classification methods were not prone to overfitting or slow
performance, we carefully selected six different embedding generation methods from
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the literature and aggregated (concatenated) them with our proposed embedding
method (TCellR2Vec) to provide a diverse set of embeddings with different properties
and characteristics.

4. We assess the effectiveness of our approach by employing various metrics and
comparing it to other state-of-the-art methods without using our extracted feature
vectors. Our findings indicate that merging baselines with our feature extraction
method improves their evaluation metrics like predictive accuracy and efficiency for
classification.
Based on the aforementioned considerations, the paper is organized as follows. The

‘Related Work’ section offers an overview of prior research on the problem addressed
in this study. Following that, the proposed approach section introduces our method.
The ‘Experimental Setup’ section details the dataset and experimental configuration
utilized to assess our proposed approach and baselines. The results of the experiments are
presented and discussed in the ‘Result and Discussion’ section. Results and discussions of
the experiments are presented in the respective section. Lastly, the ‘Conclusion’ section
summarizes key findings and suggests potential directions for future research.

RELATED WORK
The field of TCR sequencing has gained significant interest in recent years due to
its potential applications in immunology, cancer research, and personalized medicine
(Pauken et al., 2022). Consequently, there has been a growing body of research focused
on developing computational methods for TCR sequence analysis (Finotello et al., 2019).
Various algorithms and tools have been proposed for TCR sequence alignment, clustering,
and classification. For instance, the MiTCR algorithm was developed to identify TCR
alpha and beta chains and determine their variable region sequences (Bolotin et al., 2013).
However, accurately identifying and classifying TCR sequences poses challenges due to
their high diversity and variable region lengths (Chen et al., 2017; Tillinghast, Behlke & Loh,
1986).

Machine learning approaches have been employed to generate embeddings from TCR
sequences and utilize them for classification tasks. For example, the TCRdist algorithm
utilizes a k-nearest neighbors approach to cluster TCR sequences based on similarity (Dash
et al., 2017). Similarly, the TCRex model employs random forests to predict TCR-major
histocompatibility complex (MHC) binding affinity (Gielis et al., 2018). Spike2Vec and
PWM2Vec are two additional methods for generating embeddings from protein sequences.
Spike2Vec counts the occurrences of consecutive substrings of length K to convert protein
sequences into numerical vectors (Ali & Patterson, 2021), while PWM2Vec generates
numerical vectors while preserving the position-wise relative importance and ordering
information of amino acids (Ali et al., 2022). However, these methods may face challenges
in accurately and efficiently performing classification tasks given the complexity and
diversity of the dataset.

Deep learning approaches have also been applied to TCR sequencing data for cancer
classification. For instance, the DeepTCR model utilizes a deep convolutional neural
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network (CNN) to classify TCR sequences as cancer-specific or non-cancer-specific
(Sidhom et al., 2021). The model is trained on a dataset of TCR sequences from patients to
classify different types of cancer (Sidhom & Baras, 2021). Deep learning methods have been
used to generate embeddings from protein sequences as well, particularly for predicting
protein functions and properties. ProtTrans utilizes a transformer-based neural network
to generate embeddings from protein sequences (Elnaggar et al., 2021). Another approach,
UniRep, generates fixed-length vector representations of protein sequences for tasks such
as protein family classification (Alley et al., 2019) (Bao et al., 2022).

While deep learning methods have shown promise in generating embeddings and
performing classification tasks, they can be computationally expensive, especially for
large TCR datasets. This computational complexity poses challenges when applying deep
learning-based embedding generation methods for protein sequence analysis to large-scale
TCR datasets.

PROPOSED APPROACH
This section begins with an explanation of the features of TCR protein sequences and how
we incorporate them into our embeddings. We then provide a comprehensive overview of
the entire pipeline using the flowchart-based approach for each embedding combination
method.

Features of TCR protein sequences
The amino acid sequence of a TCR is highly variable, reflecting the diversity of the TCR
repertoire that is necessary for effective immune function. Given a TCR (protein) sequence
as input, various features can provide insights into its structure, function, and diversity.
These features include (i) amino acid sequence composition, (ii) the length of the CDR3
region, (iii) hydrophobicity, (iv) charge distribution, (v) average motif similarity score,
(vi) Shannon entropy, and (vii) Simpson index. We will now discuss those features one by
one.

Amino acid sequence composition
Amino acid sequence composition in the shape of a numerical vector refers to the
frequencies or proportions of the different amino acids in a protein sequence. The numerical
vector has a length of 20 because 20 common amino acids can be found in protein sequences.
In the context of TCR sequencing data, amino acid sequence composition can be used to
characterize the diversity and functional properties of the TCR repertoire (Izraelson et al.,
2018). Moreover, the amino acid sequence composition can provide information about
the functional properties of the TCR repertoire. For example, certain amino acids may
be enriched in TCR sequences that are specific for tumor-associated antigens or other
disease-associated antigens (Pan & Li, 2022).

Length of the CDR3 region
The complementarity-determining region 3 (CDR3) is highly variable in the antigen
receptor genes of B-cells and T-cells, which is critical for the specificity of antigen
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recognition. The length of the CDR3 region is typically measured in terms of the number
of amino acids, forming a scalar integer.

The length of the CDR3 region can be associated with the affinity and specificity of TCR
recognition (Glanville et al., 2017).

Hydrophobicity
In TCR biology, hydrophobicity refers to the tendency of certain amino acid residues in
the TCR to interact with hydrophobic residues in the major histocompatibility complex
(MHC) molecule and/or the peptide antigen that is presented by the MHC(Chowell et al.,
2015). It forms a scalar value represented by a float. Hydrophobic interactions play an
essential role in the binding of the TCR to the MHC-peptide complex, and the strength
of these interactions can affect the affinity and specificity of the TCR for the antigen
(Maruyama et al., 1993).

Charge distribution
Charge distribution in TCR refers to the distribution of charged amino acid residues(i.e.,
positively charged lysine and arginine and negatively charged aspartic acid and glutamic
acid) in the complementarity-determining regions (CDRs) of the TCR (Robbins et al.,
2008). The charge distribution in the TCR can affect the binding affinity and specificity
of the receptor for the antigen (Davis et al., 1998). Therefore, the charge distribution in
the TCR CDRs can provide information about the antigen-binding properties of the TCR
repertoire.

Average motif similarity score
The average motif similarity score in TCR shows as a scalar float and refers to the average
similarity score between the TCR CDR amino acid sequences and a set of predefined
motifs or patterns that are known to be associated with certain antigens or disease (Gupta
et al., 2007). The average motif similarity score in TCR can provide information about the
antigen specificity of the TCR repertoire. TCRs that have high similarity scores with known
antigen motifs may be more likely to recognize and respond to the corresponding antigen
(Wadie et al., 2022).

Shannon entropy
Shannon entropy is a measure of diversity or uncertainty in a set of data (Shannon, 1948).
In the context of TCR sequencing data, Shannon entropy can be used to determine the
frequency of each amino acid at each position in the sequence and then use that information
to compute the entropy. A high Shannon entropy implies that multiple different amino
acids are observed at a particular position in the TCR protein sequence. This can be an
indication of functional flexibility or adaptability, as different amino acids at that position
may confer different properties or functions to the TCR protein (Krishna et al., 2020).

Simpson index
The Simpson index is a scalar float value between 0 and 1 and is a measure of diversity
commonly used in ecology to quantify the evenness of species abundance in a community
(Simpson, 1949). In the context of a single TCR (T-cell receptor) protein sequence, the
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Simpson index can be used to assess the clonality or dominance of specific amino acids in
the sequence. A Simpson index closer to 0 indicates higher diversity or richness (Leinster
& Cobbold, 2012), meaning that the amino acids in the sequence are evenly distributed
or relatively equal in abundance. Conversely, a Simpson index closer to 1 suggests lower
diversity or richness, indicating that a few amino acids are dominant or highly abundant
in the sequence (Choudhury et al., 2016).

Shannon entropy and Simpson index are measures of diversity or uncertainty within a
sequence or a set of sequences. While they are commonly used to assess diversity across
a repertoire or a population of sequences, they can also be computed for individual
sequences. It’s important to note that when considering a repertoire or a set of sequences,
Shannon entropy and Simpson index can provide a broader picture of diversity within the
entire population. However, computing these measures for individual sequences allows for
a more detailed analysis at the sequence level.

TCellR2Vec generation
The seven features (discussed above) are used to generate our TCellR2Vec embedding.
The dimensionality of all features in our approach is equal to one, except for amino acid
sequence compositions, which is 20. Therefore, for each TCR sequence, we generate a
numerical feature vector with a length of 26. It’s important to note that each of these
features is calculated individually for each TCR sequence, rather than being derived from
the entire TCR protein sequence. Algorithm 1 presents the pseudocode for computing
TCellR2Vec features and its final embedding. The input for this algorithm is a set of
sequences S= {s1,s2,...,sn} where S is the set of sequences, n is the number of sequences,
and s1 to sn represent the first sequence to the nth sequence in the sequence set. One
sequence is shown as an example in Fig. 2A. The algorithm operates by iterating over each
sequence in S and calculating features such as CDR3, aa_comp, hydrophobicity, charge,
similarity, Shanon, and Simpson as shown in lines 4 to 10, also shown in Fig. 2B. The
first feature, CDR3, is computed by counting the number of unique amino acids in each
sequence. The second feature, aa_comp, is generated by analyzing the sequence of amino
acids present in each protein sequence and counting the frequency of occurrence of each
amino acid, line 5 of Algorithm 1. For example, if a protein sequence contains 15 amino
acids and the amino acid alanine appears four times in the sequence, then the frequency
of alanine in that sequence would be 0.26. Similarly, the frequency of occurrence of all the
other amino acids is also calculated to generate the aa_comp feature vector. We followed
the same procedure to calculate the frequency distribution of each amino acid in the
sequence ‘‘CASSATGNEQFF’’, as depicted in the Fig. 2 and the result is the following: [0,
0.166, 0, 0, 0.083, 0, 0.166, 0, 0.083, 0.083, 0, 0, 0.083, 0.166, 0, 0.083, 0.083, 0, 0, 0].

The similarity score feature is calculated by using the BLOcks SUbstitution Matrix 62
(Blosum62) which is a substitution matrix used in bioinformatics for sequence alignment
of protein (Henikoff & Henikoff, 1992). It assigns a score to each possible substitution of one
amino acid with another, based on the observed frequency of that substitution in the set of
aligned sequences. The value calculated for the specific sequence in Fig. 2B is 1. Finally, to
calculate hydrophobicity, charge, Shanon, and Simpson features we used specific libraries.
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Figure 2 Overall process for generating a feature embedding of a TCR protein sequence associated
with lung cancer using TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-2

For example, to calculate the hydrophobicity, we used the Kyte-Doolittle hydrophobicity
scale, which assigns a score to each amino acid based on its hydrophobicity (Kyte & Doolittle,
1982). The hydrophobicity value calculated for the sequence ‘‘CASSATGNEQFF’’ in Fig. 2
is−0.125. The charge distribution was calculated by counting the number of positively and
negatively charged amino acids in each sequence. The charge distribution value computed
for the sequence ‘‘CASSATGNEQFF’’ in Fig. 2 is −1.465.

For the Shannon feature, we used the Shannon entropy algorithm, which measures
the diversity of amino acids in each sequence. This algorithm takes into account both the
frequency of each amino acid and the number of different amino acids present in each
sequence. The Simpson diversity feature was calculated using the Simpson index, which
measures the probability that two amino acids selected at random from a sequence will
be different. This index ranges from 0 to 1, with 1 indicating the highest diversity and
0 indicating no diversity. Figure 2 displays the calculated values for Shannon entropy
(3.084) and Simpson diversity (0.875). After calculating these features for each sequence
in the input set, the algorithm concatenates all the calculated features to obtain the final
embedding vector which is shown in Algorithm 1, line 11 and Fig. 2C. The resulting
embeddings can be merged with baseline embedding generator methods and utilized as an
input for classification methods in supervised analysis.

In Algorithm 1, the loop runs for each sequence in |S|, which has n sequences. Thus, the
complexity is O(n).Within each sequence of average lengthm, finding the CDR3 length and
calculating amino acid composition, hydrophobicity/charge scores, charge distribution,
and the CDR3 motif all take O(m) time. Since these operations are performed for all n
sequences, their overall complexity becomes O(m * n). Loading the Blosum62 matrix has
a constant time complexity of O(1) as it’s independent of sequence size. Calculating the
similarity score for the motif involves iterating over its length (k), which is much smaller
than m, resulting in O(k) complexity. Finally, calculating Shanon Entropy and Simpson
Index based on sequence length have a complexity of O(m). Overall, the code’s complexity
is dominated by O(m * n) operations due to its dependence on both sequence length and
the number of sequences.
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Algorithm 1 TCellR2Vec
Input: TCR Sequences S
Output: TCellR2Vec Embedding φ

1: φ← [] F Initialize Embedding 2D array
2: for i← 0 To |S| do
3: seq← S[i]
4: CDR3← CDR3Lenght(seq)
5: aa_comp← AminoAcidCompositions(seq)
6: hydrophobicity←Hydrophobicity(seq)
7: charge← ChargeDistribution(seq)
8: similarity←MotifSimilarity(seq)
9: Shannon← ShannonIndex(seq)
10: Simpson← SimpsonIndex(seq)
11: Vec← Concatenate(CDR3, aa_comp, hydrophobicity, charge, similarity, Shan-

non, Simpson)
12: φ.append(Vec)
13: end for
14: return φ F Returning list of embeddings for all TCR sequences

Concatenating TCellR2Vec with baseline methods
After generating TCellR2Vec embedding using the features extracted from the protein
sequences, we aggregate (concat) those embeddings with recent embedding methods from
the literature to enhance their performance. To this end, the embeddingmethods used from
the literature are (i) one-hot encoding, (ii) Spike2Vec, (iii) PWM2Vec, (iv) spaced K -mers,
(v) autoencoder, and (vi) WDGRL. We will now discuss these methods in more detail
and the process of their concatenation with TCellR2Vec using a TCR protein sequence
associated with lung cancer as an example.

One-hot encoding (OHE) and TCellR2Vec
OHE is a method for generating numerical embeddings of sequences by creating binary
vectors for each character. Each binary vector has a size equal to the number of possible
characters and assigns a value of 1 to the location corresponding to the character and 0 to
all others. The resulting binary vectors are then concatenated to form the final numerical
embedding of the sequence (Kuzmin et al., 2020). Figure 3 illustrates a flowchart outlining
the process of generating an OHE feature embedding merged with embeddings generated
through our feature selection method, TCellR2Vec. First, we generate OHE for each amino
acid in the TCR sequence, Figs. 3A–3B, and then combine these vectors together to get
the final numerical representation of the TCR sequence, in Fig. 3C. Eventually, we merged
them with the numerical vectors of TCellR2Vec, Fig. 3D, and used them as our input of
classifiers to classify cancer types.

Tayebi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2239 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2239


Figure 3 (A–D) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer using OHE and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-3

Spike2Vec and TCellR2Vec
Spike2Vec is a method for converting bio-sequences, such as DNA or protein sequences,
into numerical embeddings that can be used in machine learning-based classification tasks.
It does so by counting the occurrences of K -mers, which are consecutive substrings of
length K that retain the ordering information of the sequence (Ali & Patterson, 2021). We
set k equal to 3 in our experiments. The flowchart in Fig. 4 provides an overview of the
process of a combination of embeddings generated by Spike2Vec and TCellR2Vecmethods.
First, in the Spike2Vec part of the approach, the TCR protein sequence is obtained and a set
ofK -mer, representing subsequences of length k, is generated from the TCR sequence while
preserving the order of the sequence, in Figs. 4A to 4B. Next, each K -mer is transformed
into a low-dimensional vector using the Spike2Vec embedding method, which learns
representations of biological sequences based on cooccurrence patterns in large-scale
sequence data, Fig. 4C. Finally, we merged the TCellR2Vec features with the Spike2Vec
embeddings to get a single feature vector representation of the TCR sequence, which is
used as an input for machine learning models to classify the TCR as associated with cancer
target label, Fig. 4D.

PWM2Vec and TCellR2Vec
PWM2Vec is a technique for obtaining numerical embeddings of biological sequences
using the K -mers concept. However, unlike other methods that use K -mer frequencies,
PWM2Vec assigns weights to each amino acid in aK -mer and uses these weights to generate
the embeddings (Ali et al., 2022). Figure 5 presents a flowchart outlining the steps involved
in generating a feature embedding using PWM2Vec combined with embeddings generated
through our feature selection method, TCellR2Vec. Initially, the TCR protein sequence
is used and a set of K -mers are generated and the k is 3 in our approach, Figs. 5A to 5B.
Next, a position frequency matrix (PFM) which shows occurrences of amino acids in each
K -mer and subsequently a position probability matrix (PPM) is calculated by dividing the
frequency of a character in the column by the sum of that column, Figs. 5C to 5D. Then, to
avoid 0 values 0.1 is added to all values of PPM, and by using amino acids frequency tables a
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Figure 4 (A–D) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer using Spike2Vec and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-4

Figure 5 (A–G) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer using PMW2Vev and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-5

position weight matrix (PWM) is deliberated by taking the log-likelihood of each character
in each cell of the matrix, Fig. 5E divided by its value in amino acids frequency tables, in
Figs. 5E to 5G. Lastly from the PWM2Vec part, we generated the numerical representation
of the TCR sequence which shows in Fig. 5H. Finally, we merged both, PWM2Vec and
TCellR2Vec embeddings and used them as an input for our classifiers, in Fig. 5I.

Spaced K-mers and TCellR2Vec
In bioinformatics, generating embeddings using K -mers can be challenging due to the
sparsity and high dimensionality of the resulting feature space. To address these issues,
spaced K -mers have been introduced, which are non-contiguous substrings of length K
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Figure 6 (A–E) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer using spacedK -mers and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-6

called g -mers (Singh et al., 2017). The presented flowchart in Fig. 6 outlines the different
stages involved in creating a feature embedding for a TCR protein sequence while using
a combination of spaced K -mers and TCellR2Vec embeddings. As a first step, the TCR
protein sequence is taken as input for the feature embedding generation process, Fig. 6A.
the second step is generating g -mers (we considered g = 9 here) for the TCR sequence due
to generating compact feature vectors with reduced sparsity and size, Fig. 6B. From those
generated g -mers then we computed K -mers (K = 3) and produced the frequency of those
K -mers which represent the numerical vector of spaced K -mers method, in Figs. 6C to
6D. Ultimately, we merged spaced k-mers and TCellR2Vec embeddings and used them as
our classification models input, Fig. 6E.

Autoencoder and TCellR2Vec
The autoencoder approach uses a neural network to obtain numerical features from
bio-sequence data. It follows an autoencoder architecture in which the encoder module is
optimized to generate the embeddings. The encoder performs a non-linear transformation
of the data from space X to a low dimensional numerical feature space Z (Xie, Girshick &
Farhadi, 2016). In our experiments, we use a two-layered autoencoder network with an
ADAM optimizer and MSE loss function to generate the embeddings. Figure 7 illustrates
the process of generating embeddings of a TCR sequence, where we combine the outputs
of the autoencoder method and TCellR2Vec. Initially, the TCR sequence is taken as input,
and for each amino acid in the sequence, the OHE vector is computed, as shown in Figs. 7A
and 7B. Subsequently, the OHE vectors are combined to generate the input for a two-layer
autoencoder network that includes an encoder and a decoder to generate a low-dimensional
numerical representation of the TCR sequence, as depicted in Fig. 7D. Finally, we combine
the autoencoder output with TCellR2Vec embeddings to create the final embedding, which
serves as input for the classification models, as shown in Fig. 7E.

Tayebi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2239 12/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2239/fig-6
http://dx.doi.org/10.7717/peerj-cs.2239


Figure 7 (A–E) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer using autoencoder and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-7

Figure 8 (A–E) Overall process for generating a feature embedding of a TCR protein sequence associ-
ated with lung cancer usingWDGRL and TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-8

Wasserstein distance guided representation learning (WDGRL) and
TCellR2Vec
TheWDGRL approach utilizes a neural network to extract numerical features by optimizing
the Wasserstein distance (WD) between source and target distributions, making it an
unsupervised domain adaptation technique (Shen et al., 2018). Figure 8 illustrates the
process of embedding generation for a TCR protein sequence using WDGRL and the
TCellR2Vec approach. The first step involved converting each amino acid in the sequence
into separate one-hot encoded vectors, as shown in Figs. 8A and 8B. In the next step, we
combined all the numerical vectors to form a single vector, which was then used as an input
for the WDGRL network. This network was used to extract embeddings by optimizing the
WD between the source and target features, as depicted in Fig. 8D. Finally, we combined
the results of the WDGRL and TCellR2Vec embeddings to produce a final embedding,
which served as the input for the classifier models, as shown in Fig. 8E.
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EXPERIMENTAL SETUP
In this section, we provide information about the dataset and data visualization techniques.
For the classification task, we employed various ML classifiers, including support vector
machine (SVM), naive Bayes (NB), multi-layer perceptron (MLP), K-nearest neighbors
(KNN) with K = 3, random forest (RF), logistic regression (LR), and decision tree (DT).
A stratified sampling-based 70–30% train-test split was applied, with 10% of the training
set reserved for hyperparameter tuning. We repeat experiments with 5 random splits and
report average results. Evaluation metrics such as accuracy, precision, recall, weighted F1
score, macro F1 score, ROC-AUC, and classifiers training runtime were used to assess the
performance of the baseline models and their combination with our proposed method. For
the multi-class classification task, the one-vs-rest approach was utilized to convert binary
metrics to multi-class metrics. The choice of evaluation metrics was driven by the need to
comprehensively assess the performance of TCellR2Vec and the baseline methods across
multiple dimensions, including predictive accuracy, precision, recall, and computational
efficiency. Additionally, we aimed to evaluate the methods’ ability to handle the multi-class
nature of the cancer classification task. Accuracy is a fundamental metric that provides an
overall measure of the correctness of predictions. However, in multi-class classification
problems, accuracy alone may not provide a complete picture of performance, as it
does not account for class imbalances or the ability to distinguish between different classes.
Therefore, we included precision, recall, and F1 scores (bothweighted andmacro-averaged)
to assess the methods’ performance in identifying each cancer type correctly.

Precision measures the proportion of true positives among the positive predictions,
indicating the method’s ability to avoid false positives. Recall quantifies the proportion
of actual positives that are correctly identified, reflecting the method’s ability to detect all
instances of a particular class. The F1 score combines precision and recall into a single
metric, providing a balanced measure of performance.

Furthermore, we employed the weighted F1 score to account for class imbalances,
ensuring that the performance of minority classes is appropriately weighted. Conversely,
the macro-averaged F1 score treats all classes equally, providing an unbiased assessment
of performance across all classes, irrespective of their sample sizes. The ROC-AUC (area
under the receiver operating characteristic curve) metric was included to evaluate the
methods’ ability to discriminate between different classes. ROC-AUC is particularly
useful in multi-class classification tasks, as it provides a comprehensive measure of the
trade-off between true positive rate and false positive rate across all classes. Finally, training
runtime was considered an essential metric to assess the computational efficiency of the
methods. In real-world applications, where large-scale TCR sequence analysis is required,
computational efficiency can be a critical factor in determining the feasibility and scalability
of the approach.

By considering this diverse set of evaluation metrics, we aimed to provide a
comprehensive andmulti-faceted assessment of TCellR2Vec and the baselinemethods. This
approach allowed us to evaluate not only the predictive performance but also the ability to

Tayebi et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2239 14/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2239


Table 1 Dataset statistics of TCR sequences. The table shows the total number and the unique number
of sequences for each cancer type, the minimum, the average, and the maximum length of TCR sequences
in the dataset used for the experiments in this study.

Sequence length statistics

Cancer type Total sequences Unique sequences Min. Max. Average

Glioblastoma 13,970 13,543 6 28 14
Lung 12,616 12,065 7 30 15
Melanoma 17,063 11,303 8 25 15
Osteosarcoma 1,453 1,453 7 24 15
Pancreatic 5,629 5,617 11 25 15
Total 50,731 43,981 – – –

handle class imbalances, discriminative power, and computational efficiency, which are all
crucial factors in the context of TCR sequence analysis and cancer classification.

The experiments were conducted on a computer system with an Intel(R) Core i5
processor, 32 GB of memory, and a 64-bit Windows 10 operating system. The models
were implemented in Python. Our preprocessed data and code is available online for
reproducebility (http://www.github.com/zara77/TcellR2Vec.git).

Dataset statistics
We obtained our TCR beta chain sequence data from TCRdb, a comprehensive database
for T-cell receptor sequences that offers a powerful search function (Chen et al., 2021) with
more than 277 million sequences collected from over 8265 TCR-Seq samples derived from
hundreds of tissues, clinical conditions, and cell types. This study focused on identifying and
extracting data on the five most prevalent types of cancer, as determined by their incidence
rates. To extract a subset from the original data while preserving the distribution of target
labels(cancer types), we used the Stratified ShuffleSplit method and randomly extracted
50,731 TCR sequences for five different types of cancer (see Table 1). The Sequence Length
Statistics in Table 1 indicate that the average sequence length is 15 for most cancer types,
highlighting the challenge of working with sequences of very short lengths. Total unique
TCR sequences compared with the total number of sequences for each cancer type shows
the diversity of this dataset which is due to the importance of the uniqueness of the TCR
sequences for the immune system’s ability to recognize and respond to a wide variety of
pathogens.

Table 2 provides examples of TCR sequences, cancer names, and gene mutations for
Five different cancer types. The ‘‘Gene Mutation’’ column presents the tumor suppressor
gene mutations that are linked to an elevated risk of developing these cancers. For instance,
BRAF and EGFR mutations are linked to a higher likelihood of developing lung cancer.

Data visualization
To explore the data visually, we employed t-distributed stochastic neighbor embedding
(t-SNE) to map the input sequences into a 2D representation (Van der Maaten & Hinton,
2008). Figures 9A to 9F shows the t-SNE results for different embedding methods,
including one-hot-encoding (OHE), Spike2Vec, PWM2Vec, spaced K -mer, autoencoder,
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Table 2 An example of sequences for five different cancer types, glioblastoma, lung, melanoma, pan-
creatic, and osteosarcoma along with their respective gene mutations.

Sequence Cancer name Gene mutation Reference

CSATGSSYNEQFF Glioblastoma EGFR, TP53, PIK3CA, NF1 Aldape et al. (2015)
CSAPGTNYNEQFF Lung BRAF, KRAS, ALK, EGFR, ROS1 Li, Qu & Xu (2015)
CATSSGNTIYF Melanoma TP53, CDKN2A, NRAS, BRAF Daniotti et al. (2004)
CASRRTGRNQPQHF Pancreatic KRAS,TP53, CDKN2A, BRCA1/BRCA2 Waddell et al. (2015)
CSVKKGAGNTIYF Osteosarcoma MYC,TP53, RB1, PIK3CA, CDKN2A Perry et al. (2014)

Figure 9 (A–K) tSNE plots for different types of baseline embedding generationmethods, TCellR2Vec
embeddings, and combination of baselines with TCellR2Vec.

Full-size DOI: 10.7717/peerjcs.2239/fig-9

and TCellR2Vec (our embeddings). Our observations indicate that OHE, Spike2Vec,
PWM2Vec, and autoencoder exhibit a smaller number of groups for different cancer
types, whereas spaced K -mer shows a more scattered pattern. Our method in Fig. 9F
provides a cohesive representation, resulting in a cleaner overall structure. Additionally,
we provided t-SNE plots for merging embeddings of different baseline methods with
TCellR2Vec embeddings, as shown in Fig. 9G to 9K. The same pattern is repeated here,
except for autoencoder, which shows a more scattered pattern. Overall, this improved
representation enhances the interpretability and effectiveness of the results, facilitating a
better understanding of the underlying patterns and relationships in the data.

RESULTS AND DISCUSSION
In this section, we present the classification results for both baseline methods and their
aggregation with our proposed method using various evaluation metrics. The findings of
this study unequivocally demonstrate the remarkable efficacy of the proposed TCellR2Vec
method in significantly enhancing the classification performance of TCR sequences for
accurately identifying different cancer types. By ingeniously combining meticulously
selected informative features extracted from TCR sequences with state-of-the-art baseline
embeddingmethods, TCellR2Vec introduces a powerful and comprehensive representation
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that adeptly captures themost pertinent characteristics crucial for achieving superior cancer
classification accuracy. Table 3 presents a comparison of the classification performance of
different baseline methods. We can observe that OHE and Spike2Vec utilizing RF classifier,
outperform other methods including our proposed method (TCellR2Vec) in terms of
evaluation metrics except for the training runtime metric. Considering the training
runtime metric, our method outperforms all baseline methods. Although there is only a
small difference (around 2%) in accuracy between TCellR2Vec and OHE, our proposed
approach exhibited a distinct competitive edge by demonstrating remarkable efficiency
in training runtime. This computational efficiency is an invaluable asset for real-world
applications where time and resource constraints are critical factors. Additionally, it makes
our method suitable for use with large datasets. Comparing TCellR2Vec with PWM2Vec,
autoencoder, and WDGRL shows our method outperformed these baseline methods in
terms of predictive performance.

Furthermore, we compared baseline methods while combining them with our proposed
method, Table 4, and the results demonstrate that resoundingly integrating TCellR2Vec
with baseline methods such as Spike2Vec, PWM2Vec, spaced K -mers and Autoencoder
consistently yielded substantial performance improvements across a comprehensive array
of evaluation metrics. The observed improvements, ranging from approximately 1–2%
in accuracy, precision, recall, F1 score, and ROC AUC, unequivocally underscore the
synergistic potential of TCellR2Vec and its unparalleled ability to augment and fortify
existing embedding techniques.

Upon comparing the evaluation metrics, we found that the combination of TCellR2Vec
with OHE and WDGRL did not show any improvement in comparison to using OHE
and WDGRL methods alone, except for the training runtime metric which shows an
enhancement. Since Table 1 (‘‘Unique Sequences’’ column) elaborates on the diversity of
our dataset, it is evident that the similarity between sequences for different cancer types
is very low. As a result, the underlying classifiers face a difficult time in differentiating
between them. However, even with such a challenging dataset, merging baselines with
TCellR2Vec has led to improvement in the predictive performance of ML classifiers,
which is evidence of the effectiveness of our method. The findings of this study highlight
the potential of TCellR2Vec as an efficient and effective feature selection method for
TCR sequence analysis in cancer classification. However, the applications and utilities of
TCellR2Vec extend beyond cancer classification alone. TCellR2Vec can play a pivotal
role in the development of personalized cancer immunotherapies by aiding in the
identification of tumor-reactive T-cell receptors and neoantigens, paving the way for the
development of personalized cancer vaccines and adoptive cell transfer therapies tailored
to individual patients’ immune profiles. Additionally, TCellR2Vec can be employed to
monitor the patient’s immune response during cancer treatment, providing insights into
the effectiveness of immunotherapies and guiding treatment decisions. The ability of
TCellR2Vec to capture informative features from TCR sequences could also facilitate the
discovery of novel biomarkers associated with cancer prognosis, treatment response, or
immune system dysfunction. Furthermore, TCellR2Vec embeddings could be integrated
with neoantigen prediction algorithms to improve the identification of tumor-specific
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Table 3 Classification results (averaged over five runs) for different evaluationmetrics. The best values are shown in bold.

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time
(sec.) ↓

SVM 0.4289 0.4049 0.4289 0.3291 0.2246 0.5549 159188.43
NB 0.0496 0.3978 0.0496 0.2612 0.0430 0.5059 5.0369
MLP 0.4152 0.3783 0.4152 0.3657 0.2697 0.5593 722.7711
KNN 0.3934 0.3650 0.3934 0.3613 0.2682 0.5544 48.9053
RF 0.4779 0.4343 0.4779 0.4230 0.3080 0.5888 73.2682
LR 0.4304 0.3885 0.4304 0.3525 0.2477 0.5597 518.7145

OHE

DT 0.4465 0.4286 0.4465 0.4089 0.3234 0.5874 9.4110
SVM 0.4054 0.3571 0.4054 0.3073 0.2000 0.5388 746.112
NB 0.3654 0.3502 0.3654 0.3347 0.2514 0.5472 0.0790
MLP 0.4166 0.3763 0.4166 0.3587 0.2430 0.5523 24.0041
KNN 0.3921 0.3661 0.3921 0.3722 0.2659 0.5536 14.0131
RF 0.4710 0.4297 0.4710 0.4404 0.3118 0.5874 36.5958
LR 0.4202 0.3748 0.4202 0.3516 0.2345 0.5511 1.7132

Spike2Vec

DT 0.4303 0.4226 0.4303 0.4256 0.3143 0.5811 4.3699
SVM 0.4015 0.4079 0.4015 0.2936 0.1898 0.5350 899.8259
NB 0.3375 0.3378 0.3375 0.2989 0.2303 0.5368 0.0823
MLP 0.4031 0.3598 0.4031 0.3216 0.2114 0.5412 31.6471
KNN 0.3791 0.3510 0.3791 0.3605 0.2570 0.5463 23.6907
RF 0.4545 0.4139 0.4545 0.4241 0.3002 0.5792 90.4235
LR 0.4018 0.3958 0.4018 0.3158 0.2072 0.5386 4.3419

PWM2Vec

DT 0.4152 0.4065 0.4152 0.4099 0.3053 0.5743 8.4342
SVM 0.3857 0.2716 0.3857 0.2878 0.1860 0.5316 645.3608
NB 0.2843 0.3340 0.2843 0.2583 0.2153 0.5366 0.0471
MLP 0.3980 0.3411 0.3980 0.3234 0.2137 0.5397 23.5225
KNN 0.3908 0.3624 0.3908 0.3687 0.2620 0.5519 11.0880
RF 0.4610 0.4204 0.4610 0.4325 0.3068 0.5833 35.0048
LR 0.3905 0.3352 0.3905 0.3036 0.1984 0.5343 1.6265

Spaced K -mers

DT 0.4189 0.4091 0.4189 0.4136 0.3030 0.5734 3.8643
SVM 0.4009 0.3270 0.4009 0.3083 0.2037 0.5417 942.0830
NB 0.3878 0.3475 0.3878 0.3299 0.2319 0.5423 0.0581
MLP 0.4074 0.3465 0.4074 0.3472 0.2347 0.5485 29.9132
KNN 0.3890 0.3561 0.3890 0.3661 0.2612 0.5517 26.3019
RF 0.4667 0.4175 0.4667 0.4126 0.2832 0.5795 82.0532
LR 0.4081 0.3385 0.4081 0.3211 0.2135 0.5461 2.2471

Autoencoder

DT 0.4252 0.4134 0.4252 0.4181 0.3117 0.5792 6.8419
SVM 0.3350 0.1122 0.3350 0.1681 0.1004 0.5000 235.7632
NB 0.3382 0.4161 0.3382 0.2481 0.1695 0.5128 0.0609
MLP 0.3690 0.3493 0.3690 0.3407 0.2411 0.5363 74.9861

(continued on next page)
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Table 3 (continued)

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time
(sec.) ↓

KNN 0.3427 0.3235 0.3427 0.3278 0.2359 0.5291 2.5699
RF 0.4255 0.3871 0.4255 0.3923 0.2746 0.5632 27.8623
LR 0.3447 0.2132 0.3447 0.2313 0.1462 0.5085 0.9741

WDGRL

DT 0.3956 0.3854 0.3956 0.3892 0.2917 0.5650 1.0738
SVM 0.3892 0.2428 0.3892 0.2935 0.1888 0.5331 139.6315
NB 0.3766 0.3258 0.3766 0.3185 0.2160 0.5335 0.0234
MLP 0.3909 0.3178 0.3909 0.3208 0.2110 0.5360 18.6838
KNN 0.3595 0.3333 0.3595 0.3401 0.2410 0.5364 10.7244
RF 0.4574 0.3999 0.4574 0.4168 0.2835 0.5758 15.9207
LR 0.3877 0.3037 0.3877 0.3015 0.1956 0.5338 0.2061

TCellR2Vec (Ours)

DT 0.4057 0.3968 0.4057 0.4003 0.2921 0.5665 1.1230

neoantigens and enhance the development of personalized cancer vaccines. By analyzing
the diversity and characteristics of TCR sequences associated with different cancer types,
TCellR2Vec can contribute to a better understanding of tumor-immune interactions and
the mechanisms underlying immune evasion by cancer cells.

Statistical significance
To ensure the credibility and reliability of the classification results, we performed p-value
calculations for each method. These calculations were based on the average and standard
deviation (the std. values are not included in the paper due to page limitation) of all
evaluation metrics, obtained from five experiment runs. Notably, the p-values for all
comparisons between the proposed model and the baselines were found to be less than the
significance level of 0.05. However, it is important to highlight that the training runtime
metric exhibited different behavior, revealing higher variability in the training runtime
values, which led to certain p-values exceeding the 0.05 threshold. This discrepancy can be
attributed to several factors, such as processor performance and the number of concurrent
processes at any given time, which can impact the training time.

Statistical analysis
One approach to assess the efficacy of the feature embeddings is through an analysis of their
compactness. To accomplish this, we conduct statistical analyses, specifically employing
Pearson and Spearman correlation measures. These measures allow us to calculate the
correlation values between the various features of the embeddings, which correspond to
the target labels (cancer types). We then determine the proportion of attributes within
each feature embedding that exhibit a strong correlation with the class labels. The Pearson
correlation values for different thresholds are presented in Fig. 10, while Fig. 10 displays
the Spearman correlation values for different thresholds spanning from −1 to 1, across
multiple embeddings. We can observe that although WDGRL shows a higher correlation
within the range <−0.1 and > 0.1, the autoEncoder and TCellR2Vec (only sequence
features) show a comparable behavior. This shows that with only features (and not
sequences) in the embeddings, TCellR2Vec is able to capture a correlation of features with
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Table 4 Classification results for merging baseline embeddings and TCellR2Vec embeddings (averaged over five runs) for different evaluation
metrics. The best values are shown in bold.

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train time
(sec.) ↓

SVM 0.4082 0.3499 0.4082 0.3108 0.2031 0.5411 1527.89
NB 0.4008 0.3439 0.4008 0.3322 0.2223 0.5435 0.0596
MLP 0.4154 0.3746 0.4154 0.3518 0.2360 0.5502 17.5448
KNN 0.3901 0.3579 0.3901 0.3677 0.2603 0.5510 11.4929
RF 0.4740 0.4231 0.4740 0.4231 0.2897 0.5825 33.3112
LR 0.4119 0.3308 0.4119 0.3244 0.2138 0.5463 1.2806

TCellR2Vec
+
OHE

DT 0.4280 0.4188 0.4280 0.4224 0.3129 0.5798 3.4360
SVM 0.4358 0.4028 0.4358 0.3397 0.2229 0.5563 1155.2585
NB 0.3823 0.3583 0.3823 0.3541 0.2613 0.5524 0.0556
MLP 0.4363 0.3950 0.4363 0.3826 0.2598 0.5627 39.1359
KNN 0.3998 0.3705 0.3998 0.3785 0.2704 0.5565 21.9391
RF 0.4901 0.4416 0.4901 0.4472 0.3095 0.5923 56.4536
LR 0.4380 0.3825 0.4380 0.3640 0.2424 0.5604 2.7763

TCellR2Vec
+
Spike2Vec

DT 0.4396 0.4326 0.4396 0.4354 0.3212 0.5857 7.4239
SVM 0.4248 0.3979 0.4248 0.3293 0.2171 0.5519 556.2903
NB 0.3453 0.3375 0.3453 0.3153 0.2384 0.5395 0.0624
MLP 0.4254 0.3740 0.4254 0.3452 0.2306 0.5554 15.7060
KNN 0.3939 0.3620 0.3939 0.3717 0.2668 0.5538 12.2160
RF 0.4758 0.4256 0.4758 0.4333 0.3012 0.5866 31.2911
LR 0.4279 0.4045 0.4279 0.3451 0.2304 0.5556 1.3041

TCellR2Vec
+
PWM2Vec

DT 0.4248 0.4151 0.4248 0.4191 0.3090 0.5779 3.2203
SVM 0.4065 0.3656 0.4065 0.3093 0.2012 0.5424 342.856
NB 0.2945 0.3310 0.2945 0.2678 0.2215 0.5378 0.1191
MLP 0.4274 0.3984 0.4274 0.3437 0.2280 0.5543 26.7004
KNN 0.3770 0.3488 0.3770 0.3570 0.2533 0.5450 12.2576
RF 0.4696 0.4233 0.4696 0.4304 0.3004 0.5837 31.5703
LR 0.4163 0.3290 0.4163 0.3287 0.2158 0.5485 1.4139

TCellR2Vec
+
Spaced
K -
mers

DT 0.4267 0.4180 0.4267 0.4216 0.3121 0.5792 3.8184
SVM 0.4079 0.3376 0.4079 0.3150 0.2065 0.5433 1467.6195
NB 0.3901 0.3466 0.3901 0.3307 0.2273 0.5410 0.0531
MLP 0.4150 0.3931 0.4150 0.3471 0.2335 0.5494 27.9985
KNN 0.3906 0.3590 0.3906 0.3689 0.2617 0.5515 12.2362
RF 0.4727 0.4155 0.4727 0.4200 0.2859 0.5811 33.3520
LR 0.4087 0.3286 0.4087 0.3231 0.2130 0.5449 1.1202

TCellR2Vec
+
Autoencoder

DT 0.4236 0.4148 0.4236 0.4184 0.3109 0.5783 3.4886
SVM 0.3488 0.2140 0.3488 0.2177 0.1331 0.5050 71.0521
NB 0.3514 0.2961 0.3514 0.2572 0.1638 0.5121 0.0359
MLP 0.3603 0.3363 0.3603 0.3259 0.2290 0.5292 20.6209
KNN 0.3296 0.3147 0.3296 0.3159 0.2299 0.5236 1.7007
RF 0.4153 0.3765 0.4153 0.3824 0.2648 0.5570 9.9161
LR 0.3551 0.2181 0.3551 0.2517 0.1585 0.5120 0.1929

TCellR2Vec
+
WDGRL

DT 0.3846 0.3768 0.3846 0.3799 0.2792 0.5572 0.4387
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Figure 10 Correlation values for the T-Cell dataset where (A) and (B) show the fraction of features
having correlation values greater than or less than the thresholds (on the x-axis). The fractions are
computed by taking the denominator as the size of the embeddings.

Full-size DOI: 10.7717/peerjcs.2239/fig-10

the cancer-type labels that is comparable to the correlations of WDGRL and autoEncoder
from the baseline. Compared to embedding methods like Spike2Vec and PWM2Vec, the
TCellR2Vec’s embedding features are highly correlated with the class label, demonstrating
that this embedding is more compact, hence preserving more valuable information.

CONCLUSION
In this study, we proposed TCellR2Vec, a novel feature selectionmethod for TCR sequences
in cancer classification. Our approach focuses on identifying informative features such
as amino acid sequence compositions and CDR3 length, etc., and merging them with
baseline methods’ embedding vectors for supervised analysis. We observed improved
predictive performance in TCR-based cancer classification models. This demonstrates the
effectiveness and suitability of our proposed method for the task at hand. Future work can
explore the incorporation of additional features and the utilization of other unsupervised
learning methods to further enhance the performance of TCellR2Vec. Furthermore,
the applicability of TCellR2Vec to other TCR datasets, such as different cancer types or
autoimmune disease datasets, warrants investigation. Integration of TCellR2Vec with other
bioinformatics tools, such as those for neoantigen identification or TCR binding affinity
prediction, could provide a more comprehensive analysis of TCR sequences and their
implications.
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