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ABSTRACT
The abdomen houses multiple vital organs, which are associated with various dis-
eases posing significant risks to human health. Early detection of abdominal organ
conditions allows for timely intervention and treatment, preventing deterioration of
patients’ health. Segmenting abdominal organs aids physicians in more accurately
diagnosing organ lesions. However, the anatomical structures of abdominal organs
are relatively complex, with organs overlapping each other, sharing similar features,
thereby presenting challenges for segmentation tasks. In real medical scenarios, models
must demonstrate real-time and low-latency features, necessitating an improvement
in segmentation accuracy while minimizing the number of parameters. Researchers
have developed various methods for abdominal organ segmentation, ranging from
convolutional neural networks (CNNs) to Transformers. However, these methods
often encounter difficulties in accurately identifying organ segmentation boundaries.
MetaFormer abstracts the framework of Transformers, excluding the multi-head
Self-Attention, offering a new perspective for solving computer vision problems and
overcoming the limitations of Vision Transformers and CNN backbone networks.
To further enhance segmentation effectiveness, we propose a U-shaped network,
integrating SEFormer and depthwise cascaded upsampling (dCUP) as the encoder
and decoder, respectively, into the UNet structure, named SEF-UNet. SEFormer
combines Squeeze-and-Excitation modules with depthwise separable convolutions,
instantiating the MetaFormer framework, enhancing the capture of local details and
texture information, thereby improving edge segmentation accuracy. dCUP further
integrates shallow and deep information layers during the upsampling process. Our
model significantly improves segmentation accuracy while reducing the parameter
count and exhibits superior performance in segmenting organ edges that overlap each
other, thereby offering potential deployment in real medical scenarios.
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INTRODUCTION
The abdomen, as a critical region of the human body, encompasses several vital organs,
including the stomach, liver, gallbladder, pancreas, spleen, and kidneys. The health of
these organs directly impacts overall physiological functions and is closely associated with
various common diseases such as gastric ulcers, liver cirrhosis, gallbladder inflammation,
and pancreatitis, among others (Sykes, 2014). Abdominal-related diseases have a relatively
high incidence, and many patients may experience asymptomatic abdominal conditions.
Early detection of the relevant conditions of abdominal organs would contribute to timely
intervention and treatment, preventing the progression of the disease and avoiding adverse
consequences (Senkyire & Liu, 2021; Shojaee, Sabzghabaei & Heidari, 2020).

In the field of medicine, various imaging techniques are widely used for the detection
and diagnosis of abdominal diseases. Among them, computed tomography (CT) stands out
as an advanced medical imaging technology that utilizes X-rays and computer technology
to obtain detailed three-dimensional cross-sectional images of the human body. CT
technology can provide structural information for multiple organs such as the liver,
kidneys, spleen, and pancreas. By segmenting CT images, the anatomical structures of
various abdominal organs can be accurately depicted. This plays a crucial role in surgical
planning, clinical decision-making, radiation therapy, and computer-aided diagnosis,
among other applications (Ma et al., 2021;Wang et al., 2019).

Accurate segmentation and localization of different organs in abdominal images assist
doctors in diagnosing lesions and diseases of abdominal organs more precisely. Before
surgical procedures, doctors need a thorough understanding of the patient’s anatomical
structure to plan the surgery effectively. High-resolution three-dimensional images
generated through abdominal organ segmentation allow doctors to comprehensively
grasp the patient’s abdominal anatomy, enabling more precise surgical planning. For
patients with chronic diseases or those requiring regular treatment, abdominal multi-organ
segmentation techniques can monitor disease progression and treatment effects. Doctors
can assess the effectiveness of treatment by comparing images at different time points and
adjust treatment plans accordingly. In organ transplant surgeries, abdominal multi-organ
segmentation helps doctors evaluate the compatibility of organs between the patient and
the donor, ensuringminimal organ damage during the surgical process. Overall, abdominal
multi-organ segmentation technology plays a crucial role in improving the accuracy of
medical imaging diagnosis, guiding treatment and surgical planning, contributing to
enhanced patient outcomes.

However, the anatomical structure of abdominal organs is relatively complex, with
mutual occlusion and similar features among organs, making the segmentation task more
challenging (Selver, 2014). Firstly, due to the typically low contrast of soft tissues, boundaries
between organs such as the liver, pancreas, and stomach are often indistinct, leading to
potential errors. Secondly, there is significant variation in the shapes and positions of
abdominal organs among different patients, and disparities in imaging scanners and
CT phases can result in noticeable differences in organ appearances. Consequently, the
generalization capability of universal models across different individuals is challenged.
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Figure 1 Abdominal CT slice organ examples: (A) indistinct boundary between the liver and stomach;
(B) stomach with multiple disconnected segments, possibly leading to segmentation omission; (C) en-
hanced contrast of vascular tissue within the liver parenchyma, potentially causing excessive segmenta-
tion.

Full-size DOI: 10.7717/peerjcs.2238/fig-1

Figure 1 illustrates some challenging examples, indicating that personalized and adaptive
segmentation methods may be required to account for individual variations.

The development of abdominal multi-organ segmentation has undergone several
stages. Early methods were primarily based on traditional image segmentation techniques,
including threshold segmentation, edge detection, and mathematical morphology.
Although these methods may perform well in some simple contexts, their accuracy and
robustness are limited in complex medical images.

With the advancement of computer vision and machine learning, researchers began
utilizing image features for segmentation. These methods leverage image features such
as texture, shape, intensity, etc., combined with machine learning algorithms, including
support vector machine (SVM) (Mountrakis, Im & Ogole, 2011) and random forests, for
abdominal multi-organ segmentation. These approaches have to some extent improved
the accuracy of segmentation.

Entering the 21st century, the rise of deep learning has had a revolutionary impact
on image segmentation. Deep learning models, especially convolutional neural networks
(CNNs), possess the capability to learn high-level features in images, enablingmore accurate
medical image segmentation. The adoption of deep learning methods, particularly network
architectures like UNet (Ronneberger, Fischer & Brox, 2015), SegNet (Badrinarayanan,
Kendall & Cipolla, 2017), and others, has significantly improved the accuracy and efficiency
of medical image segmentation.

Transformer (Vaswani et al., 2017) is a groundbreaking innovation in the field of deep
learning, with its core idea being the Multi-Head Attention mechanism. By establishing
global dependencies in sequential data, this model captures contextual information more
effectively and has achieved significant success in natural language processing. Vision
Transformer (Dosovitskiy et al., 2020) takes a novel approach by treating images as one-
dimensional sequences, analogous to words, and processes them using a transformer
model. This has opened a new era for the application of transformer models in the field of
computer vision.

When applying Transformer to the field of medical image segmentation, directly
using the hidden features obtained from the Transformer encoder for upsampling to
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full resolution does not yield satisfactory results. Therefore, drawing inspiration from
the UNet architecture, an effective strategy involves utilizing convolutional layers and
upsampling in the decoder part to restore low-resolution feature maps to the original
resolution. Simultaneously, incorporating the UNet concept allows for the fusion of
high-level semantic information from the encoder, thus better capturing both global and
local information in the image.

In state-of-the-art deep learning models, researchers have conducted studies on
combining Transformer with the most classic medical image segmentation model, UNet,
exploring how to integrate them for medical image segmentation tasks (Xiao et al., 2023;
Aljabri & AlGhamdi, 2022). TransUNet, proposed by Chen et al. (2021) is the first work
that incorporates Transformer blocks into the UNet architecture. They employ a hybrid
CNN-Transformer architecture to extract features, then use a cascaded upsampler (CUP)
to decode hidden features, combining them with different high-resolution CNN features
from the encoder to achieve accurate segmentation of medical images.

However, the TransUNet model faces certain challenges in terms of computational
resources. Its substantial number of parameters and computational requirements may
result in limitations in memory and computing, especially when dealing with large-scale
datasets or extensive models. Training a high-performing TransUNet model demands a
significant amount of training data, training resources, and time.

In recent research, scholars have explored replacing the attention modules in
transformers with alternative modules. For instance, Tolstikhin et al. (2021) utilized spatial
MLPs as token mixers, and Lee-Thorp et al. (2021) employed Fourier transforms as a
replacement for attention. These alternative methods have demonstrated satisfactory
performance in image tasks. Building on these studies, Yu et al. (2022) synthesized
experiences from similar models, suggesting that the crucial element in the Transformer
is not the attention-based token mixer but a general architecture beyond the token mixer.
They proposed a non-parametric operator, pooling, as a token mixer and instantiated a
specific model called PoolFormer. PoolFormer outperforms traditional Transformers and
some MLP-based models, such as ResMLP (Touvron et al., 2022) and DeiT (Touvron et al.,
2021), with a substantial reduction in the number of parameters.

Inspired by these studies, we propose a SEF-UNet model. This model integrates the
principles of MetaFormer, utilizing squeeze-and-excitation modules and depthwise
separable convolution to instantiate a newMetaFormermodel, named SEFormer, serving as
the encoder for feature extraction. Simultaneously, we introduce deep convolutional layers
into the decoder, presenting a depthwise cascaded upsampling module. The purpose of this
is to strengthen the capture of local details and texture information while merging features
from the encoder, thereby enhancing segmentation accuracy. Through experiments, our
model has demonstrated superior performance on a multi-organ abdominal segmentation
dataset compared to the aforementioned models, with a reduction in the model parameter
count.

The main contributions of this article are as follows:
• We introduced the SEFormer structure, abstracting the architecture in Transformer
beyond the multi-head self-attention module. We employed SE depthwise separable

Zhao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2238 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2238


convolution as a token mixer, recalibrating features to enhance the weight of relevant
information, thereby improving the model’s performance.
• We incorporated depthwise convolution into the decoder structure, creating the
depthwise cascaded upsampling module (dCUP). By stacking multiple dCUPs, we
achieved multi-level upsampling of deep features, further enhancing feature fusion to
capture local details and texture information, thus improving segmentation effectiveness.
• In contrast to many models utilizing Transformer structures, our proposed model
significantly reduces the number of parameters. This reduction provides the potential
for deploying the model in practical medical applications.
• Through experiments, our model demonstrated a noticeable improvement in
segmentation accuracy, particularly excelling in the segmentation of organ edges that
are mutually occluded. This further substantiates the effectiveness of the model.

This article exhibits a clear structure. In the first section, we review the challenges
in abdominal organ segmentation, providing a detailed account of the motivation for
the study, the evolution of application methods, and the main contributions of the
article. The second section reviews two highly relevant architectures to this study, SE-Net
and MetaFormer, offering readers necessary background knowledge. The third section
elaborates on the architecture of the proposed SEF-UNet model, providing detailed
explanations for the two key components, SEFormer and dCUP. The fourth section outlines
the experimental process, encompassing experimental design, results presentation, and
data analysis, offering readers a comprehensive understanding of the model’s performance.
Finally, the fifth section provides a summary and conclusion, emphasizing the significance
of the research and the achieved results.

RELATED WORK
Squeeze-and-excitation networks
Squeeze-and-Excitation (SE) block (Hu, Shen & Sun, 2018) is an architectural unit
that focuses on channel relationships. This module selectively enhances the weight of
informative features and suppresses less useful features by learning global information.

The SE block consists of two main stages: Squeeze and Excitation. For an input X , a
transformation Ftr :X→U is performed, where X ∈RH ′×W ′×C ′ and U ∈RH×W×C . This
transformation can be operations such as convolution or convolution sets. The SE module
is introduced into this transformation process to recalibrate the features.

Firstly, through the squeeze operation, features are aggregated into a H ×W feature
map, consolidating global information to generate channel descriptors. Following is the
excitation operation, where the model activates specific channels by learning sample-
specific activations through a channel-dependent gating mechanism. Subsequently, the
obtained activation data is used to weight the feature map U . It is noteworthy that, since
the size and number of channels of the feature map remain unchanged, the output can be
directly passed to subsequent layers without significant adjustments to the original model’s
structure. The introduction of the SEmodule contributes to improvedmodel performance,
allowing for more effective capture and utilization of global contextual information.
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The entire process can be represented by the following formula:

SE(x)= σ
(
W2δ(W1AvgPool(x))

)
·x (1)

For input x , the average value of each channel is obtained through global average pooling
to acquire global information for each channel. This helps reduce information within each
channel, incorporating global contextual information into the description of each channel.
The aforementioned part constitutes the Squeeze operation. The Excitation stage includes
the first fully connected layer, ReLU activation function, the second fully connected layer,
and the Sigmoid function. The first fully connected layer is a compressed fully connected
layer, reducing the number of channels from C to C

r . The second fully connected layer is
the excitatory fully connected layer, restoring the number of channels from C

r to C . The
goal of these two layers is to learn the weights for each channel, enhancing or diminishing
the feature response of that channel.

By introducing the Squeeze and Excitation stages, SENet can adaptively learn the
importance of each channel and capture key information more effectively through updated
feature maps. This has led to significant performance improvements for SENet in various
image tasks.

The SE block is computationally lightweight, providing noticeable improvements to the
model with minimal additional computation. The introduction of the SE module helps
the network capture crucial information more efficiently from input features, enhancing
model performance. This module is typically integrated into various layers of CNNs to
enhance the network’s representational capabilities.

MetaFormer
MetaFormer (Yu et al., 2022) is a versatile architecture that abstracts out parts of the
Transformer except for the multi-head self-attention module. A MetaFormer block
consists of two residual blocks, where the first residual block can be represented as:

X ′=TokenMixer(Norm(X))+X (2)

For input X , it first passes through the Norm(·) layer, representing the normalization
layer. Following that is TokenMixer(·), used for token information mixing, with various
implementations such as Identity Mapping, Random Mixing, Separable Convolution,
Attention, etc.

The second residual block primarily consists of a two-layer MLP and a non-linear
activation layer, expressed as:

Y =W2(σ (W1(Norm(X ′))))+X ′ (3)

Here, W1 ∈ RC×rC and W2 ∈ RrC×C are the learnable parameters for the two fully
connected layers, and σ (·) is the non-linear activation function, typically using ReLU or
its improved versions.

METHOD
The current methods for abdominal multi-organ segmentation have made some progress,
but there are still challenges and limitations:
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1. The anatomical structure of abdominal organs is relatively complex, with issues such
as mutual occlusion and unclear boundaries between organs. Existing methods have
room for improvement in the accuracy of organ segmentation edges.

2. In practical medical applications, especially in real-time scenarios like surgical
navigation, models must possess real-time capabilities and low latency. This requires
abdominal organ segmentation models to achieve real-time performance and low
latency while maintaining high accuracy. Striking a balance between reducing
the number of parameters and improving segmentation accuracy is a challenge.
Larger models may offer better performance, but they could also lead to increased
computational and memory requirements, making them less suitable for real-time
applications. Therefore, it is crucial to find a balance between the number of parameters
and performance.
Our research focuses on enhancing the accuracy of abdominal organ edge segmentation,

optimizing the model structure to meet real-time and low-latency requirements, and
finding a better balance between the number of parameters and segmentation accuracy.

We have designed and proposed a novelmodel with a basic structure in the formofUNet,
consisting of encoder and decoder with four-stage architectures each. In the encoder, the
ith block consists of a downsamplingmodule and Li SEFormer blocks. The entire four-stage
architecture is responsible for gradually extracting features at different levels. The first stage
focuses on extracting low-level features, typically related to the original information of the
input data, such as edges and textures in images. The second stage builds upon the first
stage to further extract mid-level features, including more complex structures like object
shapes. The third and fourth stages can extract higher-level abstract features, such as object
categories and scene semantics.

This multi-stage architecture allows the network to progressively learn and integrate
features at different levels, enhancing the model’s understanding of the images. The feature
maps obtained from the first three stages are transmitted to the decoder through skip
connections, while the output from the fourth stage serves as input to the decoder. After
passing through four dCUP modules, the decoder generates an output of the same size as
the original image. Throughout this process, features from the encoder are fused with the
feature information in the decoder’s upsampling, effectively utilizing both shallow and deep
features to preserve more detailed information and improve the model’s understanding of
image content. We named this model SEF-UNet, and its complete structure is illustrated
in Fig. 2.

The main innovations of this model lie in the SEFormer block and dCUP block.
The SEFormer block combines depthwise separable convolution with the SE structure.
Compared to regular convolution, depthwise separable convolution significantly reduces
the number of parameters and computations. The SE structureweights the featuremappings
at different levels within the network, enabling the network to recalibrate the feature
response of each channel. This enhances useful features and suppresses unimportant ones,
more effectively capturing crucial information in the input data. This is particularly useful in
situationswhere organs obscure each other, as themodel needs to distinguishwhich features
belong to the foreground organ and which belong to the obscured parts, thereby improving
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Figure 2 The overall architecture of SEF-UNet.
Full-size DOI: 10.7717/peerjcs.2238/fig-2

the accuracy of organ segmentation edges. The combination of these two structures not only
enhances the model’s information processing capabilities but also significantly reduces the
number of parameters compared to many other models that heavily use Transformers. The
dCUP block, built upon the upsampling structure, incorporates depthwise convolution.
With aminimal increase in the number of parameters and computations, it greatly enhances
the ability to restore details and semantic information from the original input image.

SEFormer block
The overall structure of the SEFormer block is illustrated in Fig. 3. We use the MetaFormer
(Yu et al., 2022; Yu et al., 2023) architecture as the backbone and instantiate the token
mixer with a combination of the Squeeze-and-Excitation module and depthwise separable
convolution. The use of depthwise separable convolution retains good performance while
significantly reducing the number of parameters and computations. Simultaneously, the
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Figure 3 Schematic of SEFormer.
Full-size DOI: 10.7717/peerjcs.2238/fig-3

SE module captures crucial information in the input features, enhancing the network’s
expressive capabilities.

Figure 3 depicts the complete structure of the SEFormer block. The expression for the
SEFormer block is as follows:

X ′= SESepConv(Norm(X))+X (4)
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SEFormerBlcok(X)=X ′+MLP(Norm(X ′)) (5)

This module consists of two residual structures. First, the input X is normalized using
LayerNorm (Norm(·)). Subsequently, after passing through the SESepConv(·) module, the
output is added to the original input to obtain an intermediate value X ′. This intermediate
value is then normalized again through LayerNorm and processed through a Multilayer
Perceptron (MLP) containing two fully connected layers. Finally, the output of the MLP is
added to the unprocessed intermediate value X ′ to obtain the final output of the module.

The SE Separable Convolution is the core unit of this module, as shown in the structure
in Fig. 4. The entire structure mainly consists of pointwise convolution, depthwise
convolution, and the branched Squeeze-and-Excitation structure.

The specific expression for this module is as follows:

SEConv(X)=Convpw2(SE(Convdw(σ (Convpw1(X))))) (6)

whereConvdw(·) represents depthwise convolution, independently convolving each channel
of the input. Convpw1 and Convpw2 denote pointwise convolution, merging the output of
depthwise convolution through a 1×1 convolution.

For the input X , the calculation formula to obtain the output Y through depthwise
convolution is as follows:

Yi,j,c =
∑
m,n

Xi×s+m,j×s+n,c×Km,n,c (7)

where i,j are the spatial coordinates of the output tensor, c is the channel index, s is the
stride of depthwise convolution, m,n are the coordinates of the convolution kernel for
depthwise convolution, Xi,j,c is the element of the input tensor, and Km,n,c is the parameter
of the depthwise convolution kernel.

The calculation formula for pointwise convolution is:

Yi,j,c =
∑
k

Xi,j,k×K1,1,k,c (8)

where K1,1,k,c is the convolutional kernel parameter for pointwise convolution, and the
other parameters are consistent with Eq. (7).

The Squeeze-and-Excitation structure mainly consists of two stages: Squeeze and
Excitation. Assuming the input feature map X has dimensions H×W ×C , where H and
W represent the height and width of the input feature map respectively, and C represents
the number of channels. During the squeezing stage, global average pooling is used to
capture the global information of each channel of the input feature map X .

zc =
1

H×W

H∑
i=1

W∑
j=1

xcij (9)

Here, zc is the global average of the c-th channel, and xcij is the value of input X at the
c-th channel, where the row and column indices are i and j, respectively.
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Figure 4 Structure of the SE separable convolution.
Full-size DOI: 10.7717/peerjcs.2238/fig-4
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In the Excitation stage, two fully connected layers are introduced, and the Sigmoid
activation function is used to learn the weights of each channel. These two fully connected
layers are referred to as Squeeze and Excitation, respectively. The first fully connected layer
is used to compress the number of channels, reducing the global average value zc of each
channel by a compression ratio r :

sc = σ (W1 ·zc) (10)

whereW1 is the weight matrix of the first fully connected layer, σ is the activation function,
typically chosen as ReLU.

The second fully connected layer is used to restore the number of channels by exciting
the original feature map with the learned weights sc :

fc = σ (W2 · sc) (11)

where W2 is the weight matrix of the second fully connected layer, and σ is the Sigmoid
activation function.

Finally, by applying the weights of each channel to the original feature map, the updated
feature map is obtained:

ycij = fc ·xcij (12)

where ycij represents the value at position (c,i,j) in the updated feature map.
Therefore, the overall representation of the Squeeze and Excitation process can be

expressed as:

SE(X)= σ (W2σ (W1(AvgPool(X))))∗X (13)

dCUP as decoder
To further enhance model computational efficiency, reduce parameter count, and
improve segmentation accuracy, we designed a depthwise cascaded upsampling (dCUP)
structure, which utilizes a depthwise convolution layer. This structure is constructed using
components shown in Fig. 5.

The dCUP architecture comprises upsampling layers, feature fusion layers, convolution
layers, activation functions, etc. The upsampling layers aim to increase the resolution of the
feature map, gradually improving resolution by stacking multiple dCUP blocks to generate
an output of the same size as the input image. Feature fusion involves concatenating feature
maps from the corresponding stages of the encoder with the current feature map of the
decoder stage. The concatenated data undergoes a convolution layer to adjust the channel
count to the target channel count, followed by batch normalization and ReLU operations
to enhance network training stability. Finally, through a depthwise convolution layer,
features are further fused to capture local details and texture information. The expression
for the entire process is as follows:

Y =Convdw(σ (Norm(Conv(cat (feature,Up(X)))))) (14)

where Up(·) represents bilinear interpolation upsampling, which is concatenated with
features from the encoder using the cat method. σ (·) is the activation function, and
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Figure 5 Architecture of dCUP.
Full-size DOI: 10.7717/peerjcs.2238/fig-5

Norm(·) is the batch normalization operation. Since there are three sets of features from
the encoder, only the first three dCUPs need to receive features and perform feature fusion
operations, while subsequent dCUPs do not need to combine with features but proceed
directly to the subsequent steps.

The decoder structure of the entire model consists of four dCUPs. Such upsampling
blocks can simultaneously achieve upsampling, feature concatenation, and feature
processing. The introduction of the depthwise convolutional layer significantly enhances
the ability to restore details and semantic information of the original input image with only
a small increase in the number of parameters and computational complexity.
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The entiremodel extracts high-level semantic information from the input image through
the encoder, retains low-level detail information through skip connection, and gradually
combines these pieces of information in the decoder to generate the final segmentation
result.

EXPERIMENTS
Dataset
Our dataset is Multi-Atlas Labeling Beyond the Cranial Vault (BCV) (https://www.synapse.
org/#!Synapse:syn3193805/wiki/217789). The dataset has a total of 30 abdomen CT scans
taken during portal venous contrast phase. The pixel size of the scans is 512×512 and the
slices ranges from 85 to 198. Field of view size is approximately 280× 280× 280 mm3

−500
× 500 × 650 mm3, and the voxel spatial resolution of ([0.54∼0.54] × [0.98∼0.98] ×
[2.5∼5.0]) mm3

The BCV dataset consists of a total of 13 categories, and we have selected 8 abdominal
organs for the segmentation task. These 8 organs are the spleen (Sp), right kidney (RK),
left kidney (LK), gallbladder (Ga), liver (Li), stomach (St), aorta (Ao), and pancreas (Pa).
We selected these eight categories because these organs are of significant importance in
clinical diagnosis and treatment. Additionally, this selection aligns with the multi-organ
segmentation tasks in existing literature, facilitating a fair and effective comparison with
existing methods.

In all 30 samples, complete annotations for the 8 classes are provided. We randomly
chose 21 samples for training, and the remaining 9 samples were used for testing. The 21
training samples were divided into 2,698 slices horizontally along the axial direction. All
experimental results were averaged over the 9 test samples.

Inspired byXie et al. (2021), for the original CT dataset, we first truncated theHounsfield
Unit (HU) values to the range [−125, 275] and then normalized them to scale the values
between [0, 1]. During the training process, we applied random flips, rotations, and other
operations to the input slice data to increase the diversity of the training set. Subsequently,
the image size was resized to 224×224 to obtain fixed-size inputs for further training.

Implementation details
The SEF-UNet model is implemented in Python 3.7 with PyTorch 1.13. It utilizes the
SGD optimizer with a learning rate of 0.01, momentum set to 0.9, and weight decay of
1e−4. The batch size for all experiments is set to 24, and the input resolution is 224×224.
Each model is trained for 150 epochs on 2,698 slices, with each epoch containing 113
iterations, resulting in a total of 16,950 iterations. The experiments were conducted on a
single NVIDIA GeForce RTX 4060 GPU.

Other relevant parameters during training include: the encoder consists of four blocks,
with the repetition count for each block, i.e., [L1,L2,L3,L4], set as [3, 3, 9, 3], and the
corresponding channel numbers for each block (downsampling module is used for
adjusting image resolution and channel numbers, while the block is mainly used for
feature extraction with unchanged channel numbers) set as [64, 128, 320, 512].
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The backbone network in the encoder is pretrained on ImageNet21k. The decoder stage
uses four dCUPs with an upsampling factor of 2, and the output channel numbers for each
upsampling block are [256, 128, 64, 16]. The first three dCUPs receive fused skip features
from the encoder, while the last one does not receive fusion information and is mainly
used for further feature processing.

The training data consists of processed 2D slices. During the prediction process, inference
is performed slice by slice, and the predicted 2D slices are stacked together to construct the
3D prediction result.

The loss function used in the experiments is a combination of CrossEntropyLoss and
DiceLoss. For a sample with N classes and true labels y1,y2,...,yN , and model output
probability distribution p1,p2,...,pN , the loss function is defined as:

Lseg = (LCE+LDice)/2= (−
N∑
i=1

yi · log(pi)+1−
2
∑N

i=1yi ·pi+ε∑N
i=1yi+

∑N
i=1pi+ε

)/2 (15)

where ε is a small constant added for numerical stability.
CrossEntropyLoss effectively measures the matching degree between the model’s output

probability distribution and the true labels. On the other hand, DiceLoss provides a
smoother computation, contributing to training stability. However, DiceLoss may appear
overly optimistic in certain situations as it does not consider subtle differences between true
labels andpredictions. Therefore, we choose to combine these two losses to comprehensively
consider both the matching degree of the model’s output probability distribution with
true labels and sensitivity to subtle differences, aiming for a more holistic model training
approach.

Result
We conducted experiments comparing our model with several traditional medical image
segmentation models and advanced segmentation models. The models include the classic
UNet (Ronneberger, Fischer & Brox, 2015), UNet++ (Zhou et al., 2018) that enhances UNet
with more skip connections to improve multi-scale feature modeling, UNet3+ (Huang
et al., 2020) that introduces attention mechanism and dense connections, as well as two
important and classic models in the medical image segmentation field that incorporate
Transformer: the hybrid CNN-Transformer model TransUNet (Chen et al., 2021) and the
pure Transformer model SwinUNet (Cao et al., 2022).

Table 1 shows the average dice similarity coefficient (DSC), 95% average Hausdorff
distance (HD) and segmentation results for each abdominal organ. The bar chart (Fig. 6)
visually presents the average DSC for each organ. From the results, it can be observed that
gallbladder and pancreas have relatively poorer segmentation results compared to other
organs. This is because they overlap significantly with other organs, making it challenging
to distinguish them from adjacent organs and other structures. The segmentation accuracy
for other organs mostly exceeds 85%, averaging 89.56%, indicating good segmentation
results.

The SEF-UNet model achieved the best results in terms of average DSC (83.90%)
and average HD (15.64%). Compared to basic CNN models like UNet, UNet++, and
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Table 1 Comparison of results frommultiple methods on the BCV dataset containing average dice score (%), average Hausdorff distance (mm)
and average dice score for each organ (%).

Method DSC HD95 Organs

Ao Ga LK RK Li Pa Sp St

UNet 75.61 32.50 87.80 62.02 78.96 72.98 93.48 52.02 84.02 73.65
UNet++ 77.87 29.12 88.90 62.92 83.84 74.36 94.41 57.40 86.99 74.18
UNet3+ 77.16 28.67 87.37 65.62 84.98 82.76 92.59 55.60 82.42 65.97
SwinUNet 80.49 19.29 83.21 70.52 87.14 81.02 93.89 57.17 89.21 81.76
TransUNet 81.31 28.79 86.56 61.84 88.80 87.34 95.07 57.77 91.90 81.18
Ours 83.90 15.64 86.11 69.38 91.66 89.03 94.38 64.45 91.12 85.08

Notes.
The best results are shown in bold.
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Figure 6 Mean dice scores for image segmentation classes.
Full-size DOI: 10.7717/peerjcs.2238/fig-6

UNet3+, the SEF-UNet showed significant improvements in segmentation accuracy. It
exhibited an 8.29% increase in average DSC compared to UNet and a 6.03% increase
compared to the best-performing UNet++. Additionally, it demonstrated a reduction in
Hausdorff distance by 13.03%–16.86%, surpassing a 40% decrease. When compared to the
hybrid CNN-Transformer model TransUNet and the pure Transformer model SwinUNet,
SEF-UNet not only showed improved average DSC by 2.59% and 3.41%, respectively, but
also exhibited a reduction in HD by 13.15% and 3.65%, showcasing a clear advantage.

The SEF-UNet model has a parameter count of 24.65 M, placing it in the middle range
when compared to other models. It has a comparable parameter count to the larger CNN
model UNet3+, but it significantly reduces the parameter count by over 75% compared
to the Transformer-based TransUNet. This optimization addresses the issue of excessive
parameters in Transformer models, leading to improved segmentation performance
without excessive computational resource consumption.
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Table 2 Comparison of GFLOPs, number of model parameters (M), and time taken per sample (min-
utes) between the experimental model and the comparative model.

Method GFLOPs Param Test duration

UNet 30.74 16.46 1.55
UNet++ 26.71 8.74 1.81
UNet3+ 154.03 25.74 1.92
SwinUNet 5.95 25.91 4.57
TransUNet 24.73 100.40 4.60
Ours 5.16 24.65 1.41

Notes.
The best results are shown in bold.

Additionally, to further validate the improvements of our experimental model in terms
of real-time performance and low latency, we compared the GFLOPs and the average
time taken to segment each test sample across all models, which is shown in Table 2. It
can be observed that our model has the lowest GFLOPs, indicating the least number of
floating-point operations required. Compared to the highest GFLOPs model, UNet3+, our
model reduces the GFLOPs by 29.8 times.

Furthermore, we measured the average time taken by each model to process nine test
samples from the BCV dataset. Our model takes only 1.41 min on average, making it the
fastest model. This is more than three times faster than the slowest model, TransUNet. It is
also important to note that a single test sample is 3D data, with its width and height resized
to the target size during training, while the number of channels remains unchanged. The
average number of channels for all samples is 125.9. The testing process involves processing
a single 2D image and then combining them into a 3D image. Therefore, the average time
taken by our experimental model to process a single 2D image is 0.67 s. These data can be
found in Table 2.

In addition, we have presented the average DSC and HD of both the proposed
experimental model and the comparative models for each test case (Table 3). The more
intuitive comparative results are illustrated in Figs. 7 and 8. It can be observed that our
experimental model exhibits the most consistent performance across all test cases, with
both DSC and HD outperforming those of the other comparative models on the whole
Fig. 9 displays the visual segmentation results of nine test cases. It can be observed that the
segmentation boundaries are clear, indicating stable segmentation performance.

In summary, the experimental results indicate that, in medical image segmentation
tasks, the SEF-UNet model exhibits significant advantages over CNN models, hybrid
CNN-Transformer models, and pure Transformer models.

Ablation experiment
To comprehensively validate the effectiveness of our experimental model, we conducted
multiple sets of experiments. We explored different combinations of encoders, decoders,
SEFormer, and dCUP within the SEF-UNet framework, and validated the model on the
BCV dataset. Additionally, we investigated the impact of varying the number of stages
in the model on segmentation performance. Furthermore, we used a larger resolution
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Table 3 Average dice score (%) and average Hausdorff distance (mm) for our method as well as the
comparisonmodel on each test sample.

Sample Evaluation
indicator

Method

Ours UNet UNet++ UNet3+ SwinUNet TransUNet

DSC 78.70 72.84 73.11 74.91 73.91 74.25
1

HD 27.97 41.02 24.73 20.44 33.09 42.20
DSC 85.58 79.10 82.09 84.33 84.62 85.03

2
HD 23.04 36.69 41.28 24.35 6.78 29.38
DSC 87.73 75.22 78.92 82.21 84.57 87.70

3
HD 8.99 30.73 30.36 27.40 26.72 22.35
DSC 84.16 69.75 69.22 73.86 77.78 79.28

4
HD 20.18 25.17 33.51 23.78 20.86 26.85
DSC 82.40 71.73 79.25 69.78 72.37 74.41

5
HD 24.31 53.24 25.45 53.17 30.20 44.78
DSC 87.49 80.19 82.15 76.62 86.60 87.07

6
HD 6.33 21.96 26.13 37.04 8.43 19.61
DSC 86.87 79.26 83.08 72.33 85.29 86.81

7
HD 3.08 35.78 8.66 24.49 4.76 13.32
DSC 83.42 78.95 78.67 82.70 81.36 81.99

8
HD 14.84 23.27 30.72 19.25 22.91 26.45
DSC 78.76 73.42 74.36 77.73 77.92 75.22

9
HD 12.05 24.68 41.27 28.12 19.88 34.22

Notes.
The best results are shown in bold.
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Figure 7 Average dice score of our model and the comparisonmodels.
Full-size DOI: 10.7717/peerjcs.2238/fig-7

of 384× 384 as the model input to further explore the effectiveness of the SEF-UNet
model. This series of experiments aims to thoroughly assess the model’s performance
under different configurations, ensuring its robustness and generalizability across various
conditions.
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Figure 9 (A–I) Visual segmentation results on nine test samples.
Full-size DOI: 10.7717/peerjcs.2238/fig-9
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Table 4 Comparative experiments exploring the validity of model encoder and decoder separately.

Framework DSC HD95 Organs

Encoder Decoder Ao Ga LK RK Li Pa Sp St

ResNet-50 dCUP 74.45 32.50 86.75 60.53 77.78 71.25 93.25 51.07 82.93 72.02
ConvNeXt dCUP 77.11 20.94 86.41 61.31 79.56 74.94 93.00 60.13 83.78 77.76
ConvFormer dCUP 79.18 25.55 86.94 64.19 81.19 76.32 93.88 62.15 89.39 79.34
3SE+1Trans dCUP 82.20 23.98 84.77 67.67 89.69 86.06 94.46 63.24 87.10 84.62
2SE+2Trans dCUP 83.69 17.14 87.02 65.77 91.17 87.58 94.66 66.16 90.67 86.45
SEFormer None 68.18 37.49 77.21 48.46 72.82 69.06 91.96 42.90 80.20 62.85
SEFormer CUP 82.13 23.34 87.35 66.25 90.21 88.80 94.02 60.03 88.54 81.86

Ours 83.90 15.64 86.11 69.38 91.66 89.03 94.38 64.45 91.12 85.08

Notes.
The best results are shown in bold.

Architecture of the encoder
To validate the effectiveness of the improved encoder architecture, we conducted
experiments using classical models: ResNet-50 (He et al., 2016), high-performance CNN
network ConvNeXt (Liu et al., 2022), and the state-of-the-art MetaFormer (instantiated as
ConvFormer model; Yu et al., 2023) as encoder structures. These encoders were combined
with our decoder, and experiments were performed on the BCV dataset.

Results from Table 4 indicate that our SEF-UNet outperforms all three comparison
models in the segmentation of all organs. The average dice score improved by 4.72%–
9.45%, and the average Hausdorff distance decreased by 5.3%–16.86%, demonstrating a
significant enhancement in segmentation performance.

Additionally, we explored replacing the last one or two stages of the four SEFormer
blocks with Transformer blocks. The results showed that the model using SEFormer blocks
in all four stages performed the best. This demonstrates that our SEF-UNet, incorporating
the SEFormer model with the squeeze-and-excitation module as the encoder, has a
stronger capability to learn effective representations for medical image segmentation tasks.
This experiment confirms the superiority of the SEF-UNet model in terms of encoder
architecture improvements.

In Tables 5 and 6, the DSC and HD for the ablation experiments on nine test cases are
listed. Figures 10 and 11 respectively present the DSC and HD for different encoder and
decoder experiments.

Compared to several models such as ResNet, ConvNeXt, and ConvFormer serving as
encoders, our experimental model demonstrates significant improvements in segmentation
performance both overall and on individual cases. When investigating the impact of the
number of SEFormer modules on segmentation results, it is evident that our model,
consisting of four SEFormer modules, exhibits more stable DSC and HD across all cases,
achieving the overall best performance.

Architecture of the decoder
To verify the effectiveness of the decoder architecture used in this experiment, we compared
two different models. The combination of SEFormer with None Decoder represents the use
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Table 5 Average dice score (%) and average Hausdorff distance (mm) for different encoder and decoder experiments (sample 1–5).

Framework Sample1 Sample2 Sample3 Sample4 Sample5

Encoder Decoder DSC HD DSC HD DSC HD DSC HD DSC HD

ResNet-50 dCUP 74.07 39.51 80.43 22.44 72.26 31.20 62.99 47.58 70.00 44.50
ConvNeXt dCUP 71.41 28.22 82.39 15.12 87.71 9.58 72.48 30.75 68.47 28.80
ConvFormer dCUP 74.55 39.97 83.96 21.88 83.47 21.02 75.73 27.12 69.82 50.27
3SE+1Trans dCUP 74.63 43.00 85.39 17.84 87.68 32.52 77.09 28.55 81.70 25.48
2SE+2Trans dCUP 77.86 35.53 85.44 14.67 87.53 12.21 83.21 20.24 82.13 25.15
SEFormer None 72.84 41.02 77.39 26.69 70.22 30.73 57.13 55.17 46.03 73.24
SEFormer CUP 76.13 35.16 85.23 21.61 87.51 9.98 74.32 23.56 79.66 31.49

Ours 78.70 27.97 85.58 23.04 87.73 8.99 84.16 20.18 82.40 24.31

Notes.
The best results are shown in bold.

Table 6 Average dice score (%) and average Hausdorff distance (mm) for different encoder and de-
coder experiments (sample 6–9).

Framework Sample6 Sample7 Sample8 Sample9

Encoder Decoder DSC HD DSC HD DSC HD DSC HD

ResNet-50 dCUP 81.01 18.93 82.15 15.18 75.68 43.44 71.47 29.75
ConvNeXt dCUP 73.92 21.70 82.53 17.54 81.05 15.19 74.06 21.60
ConvFormer dCUP 82.70 11.48 84.00 14.74 81.55 19.65 76.81 23.83
3SE+1Trans dCUP 87.43 23.89 87.30 10.08 81.93 21.84 76.65 12.64
2SE+2Trans dCUP 87.43 7.44 88.42 3.12 83.28 18.38 77.92 17.53
SEFormer None 80.19 17.86 64.26 28.78 73.95 29.27 71.62 34.68
SEFormer CUP 87.34 7.24 88.25 3.23 82.34 15.93 78.42 61.85

Ours 87.49 6.33 86.87 3.08 83.42 14.84 78.76 12.05

Notes.
The best results are shown in bold.
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Figure 10 Average dice score for different encoder and decoder experiments.
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of naive upsampling, where deep features are only upsampled to the same size as the input
image without any further operations. The combination of SEFormer with CUP represents
the use of an upsampling structure without the introduction of depthwise convolutional
layers. After fusing the upsampled data with features passed from the encoder layers, only
one convolutional layer is used to adjust the channel size of the concatenated data to a
predetermined size, facilitating subsequent upsampling and feature fusion operations.

From Table 4, it can be observed that our model outperforms the naive upsampling
method, with a noticeable improvement in average DSC by 15.72%. Compared to the
version without the depthwise convolutional layer (CUP), the average DSC increased by
1.77%, and the segmentation results for most organs were improved.

From the results presented in Tables 5 and 6, it is evident that models without a decoder
yield unsatisfactory segmentation results across all test cases. Moreover, models employing
CUP as the decoder without the inclusion of deep convolutional layers demonstrate
inferior overall segmentation stability compared to the combination of SEFormer and
dCUP utilized in our experiment.

Number of blocks
Our final model adopts a four-stage SEFormer architecture. In such a four-stage
architecture, the first stage is mainly responsible for extracting low-level features, typically
associated with the original information of the input data, such as edges, textures, etc., in
the image. The second stage builds upon the first stage to further extract mid-level features,
such as more complex structures like the shape of objects. The third and fourth stages
can extract higher-level abstract features, including object categories, scene semantics, and
other advanced concepts.

To validate the effectiveness of the four-stage architecture, experiments were conducted
using three-stage and two-stage architectures, as shown in Fig. 12. The model with four
blocks significantly outperformed the other two models, achieving a difference of 11.63%
in overall DSC. There were also noticeable differences in the segmentation results of various
specific organs. Upon observation, it was found that the segmentation results for organs
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Table 7 Average dice score (%) of different input resolutions onmodel results.

Resolution DSC Organs

Ao Ga LK RK Li Pa Sp St

224 83.90 86.11 69.38 91.66 89.03 94.38 64.45 91.12 85.08
384 86.00 89.57 70.73 92.84 92.09 95.23 69.08 92.34 86.12

Notes.
The best results are shown in bold.

like Aorta and Liver had smaller differences, and satisfactory results could be obtained with
smaller models. However, organs like Gallbladder, Kidney, Pancreas, Stomach, Spleen, etc.,
with unclear boundaries and prone to confusion with other abdominal contents, required
more complex models for clear segmentation. This further validates the effectiveness of
our four-stage architecture.

Input image size
To conserve computational resources, the model in this experiment used an input image
size of 224×224, while the original dataset images were of size 512×512. Using a smaller
input size theoretically may impact the model’s accuracy. Therefore, we trained the model
at a larger resolution of 384× 384, only changing the input size, while keeping other
experimental settings consistent. The results are presented in Table 7.

It can be observed that increasing the resolution from 224×224 to 384×384 raised
the average dice score from 83.90% to 86.00%, showing an improvement of 2.1%. There
was a noticeable enhancement in segmentation accuracy for various organs. However, this
improvement comes with a significant increase in computational cost, with training time
increasing by over five times. Therefore, in subsequent experiments, we consistently used a
resolution of 224×224 as the input to validate the effectiveness of our experimental model.

At the same time, we conducted experiments on other comparative models using
384× 384 resolution images. The results are shown in Table 8. As can be seen, all
methods show a certain degree of improvement in average DSC when using 384×384
resolution input. Specifically, for smaller organs, such as the pancreas, there is a noticeable
improvement. The increase for UNet++ is the smallest at 3.59%, while TransUNet shows
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Table 8 Results obtained using 384× 384 input images across all comparative models.

Method DSC Organs

Ao Ga LK RK Li Pa Sp St

UNet 77.69 88.57 63.34 82.55 77.26 94.74 60.15 85.57 69.29
UNet++ 79.62 89.27 70.99 82.66 75.77 93.56 60.99 89.10 74.62
UNet3+ 79.14 89.02 70.87 83.16 79.80 93.54 62.51 84.50 69.73
SwinUNet 82.87 88.81 71.94 86.33 84.53 96.61 65.00 90.94 78.80
TransUNet 84.03 89.78 71.28 88.19 85.88 94.59 71.23 87.92 83.37
Ours 86.00 89.57 70.73 92.84 92.09 95.23 69.08 92.34 86.12

Notes.
The best results are shown in bold.

the largest improvement at 13.46%. Similarly, for small-sized organs like the gallbladder
and aorta, the DSC also shows an upward trend when using high-resolution input, proving
that input image resolution has a significant impact on the segmentation of small-sized
organs. However, for other organs, the DSC did not universally improve with increased
resolution, and in some cases, it even decreased, indicating that high-resolution input does
not necessarily have a positive impact on the segmentation of all organs.

Preprocessing
We have added a comparative experiment between pre-processed and non-pre-processed
data. We will train our model using data with random flip and random rotation operations,
as well as data without these operations, and thenmake predictions on the same test set. We
have selected some slices from the prediction results of both cases for visual comparison,
as shown in Fig. 13. It can be seen that, in terms of segmentation accuracy and detail
precision, the results obtained by training with pre-processed data are significantly better.

Qualitative visualization
Next, we conducted a qualitative comparative analysis of the experimental results, as shown
in Fig. 14. The observations include:

(1) Pure CNN methods like UNet and ResNet-50 tend to exhibit over-segmentation
or under-segmentation. For instance, in the third row, UNet produces multiple segments
outside the boundary between the lungs and stomach, and ResNet-50 in the second row
fails to segment a significant portion of the stomach. In comparison, our SEF-UNetmethod
demonstrates stronger segmentation capabilities, both globally and locally.

(2) SEF-UNet achieves more precise contour segmentation. In the third row, SEF-UNet
nearly approaches the ground truth for the outer edge of the lungs, while the other
three models extend the outer edge into some actual organ regions, leading to increased
false-positive areas. This indicates that SEF-UNet has an advantage in handling organ edge
segmentation issues.

Overall, our SEF-UNet model outperforms other models in precise edge segmentation,
noise suppression, and accurate shape recognition.
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Figure 13 (A–B) Comparison of segmentation results with and without data preprocessing.
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CONCLUSION
To address the limitations in edge segmentation accuracy, parameter count, and
computational load for multi-organ abdominal segmentation, we propose the SEF-UNet
model in this article. Themodel adopts a four-stage U-shaped architecture, with its encoder
consisting of four SEFormers. Each SEFormer combines the Squeeze and Excitationmodule
with depthwise separable convolution to reduce parameter count while capturing crucial
channel information. This allows the network to focus more on important features, thereby
improving model performance. In the decoder, multiple cascaded upsampling modules
with depthwise convolution (dCUP) are employed to stack, significantly enhancing the
ability to restore details and semantic information of the original input image with a
minimal increase in computational load. Our SEF-UNet model not only improves overall
segmentation performance but also excels in edge segmentation accuracy compared to other
models. Compared to CNN methods, our approach achieves an improvement of 6.03%
to 8.29% in average dice score, and compared to Transformer methods, an improvement
of 2.59% to 3.41%. Additionally, we conducted an ablation study on the model’s encoder,
decoder, stage count, and input image resolution, confirming the effectiveness of our
experimental model. In visualized quantitative analyses, the SEF-UNetmodel demonstrates
more precise segmentation edges and overall superior performance compared to other
models. These results indicate that our method successfully addresses the weaknesses of
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Figure 14 Comparison of different methods. (A) Original image, (B) ground truth, (C) our method
SEF-UNet, (D) TransUNet, (E) UNet, (F) ResNet-50 as encoder and dCUP as decoder.

Full-size DOI: 10.7717/peerjcs.2238/fig-14

previous approaches, making it more suitable for multi-organ abdominal segmentation
tasks and holding promise for better application in real-world medical scenarios.
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