
Submitted 28 February 2024
Accepted 13 July 2024
Published 15 August 2024

Corresponding author
Esam Ali Khan, eakhan@uqu.edu.sa

Academic editor
Giancarlo Sperlì

Additional Information and
Declarations can be found on
page 37

DOI 10.7717/peerj-cs.2236

Copyright
2024 Khan

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A novel approach to secure communication
in mega events through Arabic text
steganography utilizing invisible Unicode
characters
Esam Ali Khan
The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University,
Makkah, Saudi Arabia

ABSTRACT
Mega events attract mega crowds, and many data exchange transactions are involved
among organizers, stakeholders, and individuals, which increase the risk of covert
eavesdropping. Data hiding is essential for safeguarding the security, confidentiality,
and integrity of information during mega events. It plays a vital role in reducing
cyber risks and ensuring the seamless execution of these extensive gatherings. In
this paper, a steganographic approach suitable for mega events communication is
proposed. The proposed method utilizes the characteristics of Arabic letters and
invisible Unicode characters to hide secret data, where each Arabic letter can hide two
secret bits. The secret messages hidden using the proposed technique can be exchanged
via emails, text messages, and social media, as these are the main communication
channels in mega events. The proposed technique demonstrated notable performance
with a high-capacity ratio averaging 178% and a perfect imperceptibility ratio of
100%, outperforming most of the previous work. In addition, it proves a perfor-
mance of security comparable to previous approaches, with an average ratio of 72%.
Furthermore, it is better in robustness than all related work, with a robustness against
70% of the possible attacks.

Subjects Cryptography, Multimedia, Security and Privacy, Text Mining
Keywords Arabic text steganography, Invisible unicode characters, Mega events

INTRODUCTION
The internet has completely changed the technological means via which data is shared
in many social interactions. As globalization has progressed, there has been a higher
dependence on social media to share data by both individuals and organizations especially
during mega events (Al-Khaldy et al., 2022). When a text message is sent via short message
service (SMS), email, or socialmedia, the information included in themessage is transmitted
as plain text, which implies that such information is vulnerable to malicious attacks and
unauthorized access. In some cases, this information may be sensitive or confidential, such
as passwords, banking credentials, or even some secrets that an individual seeks to send to
a friend. As a result, there is an increasing need for intelligence and multimedia security
studies that incorporate covert communication, whose primary goal is data concealment
(Ahvanooey et al., 2019).

How to cite this article Khan EA. 2024. A novel approach to secure communication in mega events through Arabic text steganography
utilizing invisible Unicode characters. PeerJ Comput. Sci. 10:e2236 http://doi.org/10.7717/peerj-cs.2236

https://peerj.com/computer-science
mailto:eakhan@uqu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2236
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2236

Text hiding, also known as information or data hiding, has gathered a lot of interest
recently because of its widespread use and its applications in the network communication
and cybersecurity sectors. It is the process of embedding secret data such that it is invisible
to adversary or casual readers using a cover text. In the context of mega events, data
hiding is important for several reasons. Mega events attract massive crowds, making it
easier for eavesdroppers to blend in and covertly listen to conversations. The sheer volume
of people creates a challenging environment for security personnel to monitor every
individual effectively. Mega events often involve the exchange of sensitive information
among organizers, security teams, and other stakeholders. Eavesdropping on these
communications can lead to the compromise of security protocols, emergency plans, or
confidential details. Mega data breaches, which usually involve millions of compromised
data records, can incur significant costs. Figure 1 shows the cost of mega data breaches
in 2023 (Invisible Characters, 2022). As depicted in the figure, the greater the amount of
data compromised, the higher the cost. As the number of cyber attacks are increasing
dramatically in recent mega events, as depicted in Fig. 2 (Poitevin, 2023; SOCRadar, 2022),
the cost of data breaches due to these attacks could be substantial unless data is protected
in a secure manner. Data hiding helps protect this information from unauthorized access
or interception by potential threats. Furthermore, mega events typically use tickets or
access credentials for attendees. Data hiding can be employed to embed additional security
features, making it more difficult for counterfeiters to replicate tickets or access passes.
This enhances the overall security of the event by reducing the risk of unauthorized entry.
In addition, security teams and organizers need to communicate discreetly to ensure
the effectiveness of security measures. Data hiding allows for covert communication,
reducing the risk of intercepted messages and maintaining the element of surprise in
security operations. Also, attendees at mega events may have concerns about privacy,
especially in the age of pervasive surveillance. Data hiding techniques can be used to secure
personal information, making it more challenging for malicious actors to exploit or misuse
attendees’ data (Ahvanooey et al., 2019).

Information hiding is classified into two categories in practice: watermarking and
steganography. Watermarking safeguards cover media against damaging attacks such
as modifications, forgeries, and plagiarism by demonstrating ownership. In contrast,
steganography is concerned with the invisible transmission of confidential information in
such a way that no one can detect it. In other words, the goal of steganography is concealing
the fact that a medium contains secret data (Ahvanooey et al., 2019).

Steganography is the art and science that involves hidingmessages within other messages
to conceal information. The phrase ‘‘secret message’’ refers to the concealed message, while
‘‘cover message’’ or ‘‘cover media’’ refers to the message used to cover the secret message.
The resulting message, which combines the cover message and the secret message, is known
as the ‘‘stego message’’ (Souvik, Banerjee & Sanyal, 2011; Gutub, Al-Alwani & Mahfoodh,
2010). The goal of steganography is to conceal the secret message by making use of any
redundancy in the cover message while maintaining the integrity of the cover media (Gutub
& Fattani, 2007).

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 2/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 1 The cost of mega breaches in 2023 as reported in (IBMSecurity, 2023).
Full-size DOI: 10.7717/peerjcs.2236/fig-1

Figure 2 Number of cyber attacks in somemega events.
Full-size DOI: 10.7717/peerjcs.2236/fig-2

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 3/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-1
https://doi.org/10.7717/peerjcs.2236/fig-2
http://dx.doi.org/10.7717/peerj-cs.2236

Basically, any digital file format can be used as a cover media. Based on the cover
media, steganography techniques can be classified into five main categories, image, audio,
video, text, and network steganography (Jebur et al., 2023). Information is concealed using
the noise present in the cover media in image, audio, and video steganography. On the
other hand, in text steganography, redundancy to conceal secret information can take on
different forms, including altering a text’s formatting, changing some words, and using
random character sequences (Bennett, 2004). In network steganography, data is concealed
by making use of the header and payload fields of network protocols. This is achieved by
creating hidden channels between a secret sender and a secret recipient (Jebur et al., 2023).

Text-based steganography poses unique challenges due to the scarcity of redundant
information in text files compared to other carrier files like images or audio, making
it a particularly challenging form of steganography to implement effectively. However,
text steganography offers several practical advantages. It requires minimal memory
for storage, facilitating efficient memory usage. Its lightweight nature enables seamless
transmission over networks, ensuring swift data exchange. Additionally, it reduces
printing costs by embedding data within textual content, making it cost-effective for
printing. Text steganography is also widely used across social media platforms for covert
communication due to its simplicity and long-standing history of use. These practical
benefits of text steganography emphasize its efficiency, versatility, and adaptability across
various communication channels and mediums, making it the most suitable tool for secure
communication in mega events. Therefore, this article focuses on text steganography as
the preferred method for ensuring discreet and confidential communication amidst the
unique challenges of mega events.

More specifically, this work focuses on the Arabic language, which holds considerable
importance as a widely spoken language across numerous countries. It holds profound
cultural and religious significance as the language of the Quran, the central religious text in
Islam. With approximately 1.6 billion Muslims worldwide, Arabic serves as the language of
a significant portion of the global population (Al-Nofaie & Gutub, 2020). Moreover, given
that one of the largest and most significant mega events in the world, Hajj, occurs within
an Arabic-speaking context, targeting the Arabic language in this article is both logical and
pertinent.

The proposed method in this article is based on hiding secret bits within Arabic letters
through the utilization of invisible Unicode characters, where each letter can hide two
secret bits. With this capacity of each letter, this technique offers a notably greater capacity
than previous approaches.

The article is organized as follows. ‘Background Material’ provides a background
material about the features of Arabic language and Unicode encoding utilized in this study.
In ‘RelatedWork’, a review of the related work is covered. Themethodology of the proposed
work is explained in ‘Methodology’. In ‘Experimental Results’ the experimental results
of the proposed work are discussed and a comparison with similar previous methods are
discussed in ‘Discussion and Comparison’. Finally, the article is concluded in ‘Conclusion’
highlighting some potential directions for future research.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 4/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 1 Connected and un-connected Arabic letters.

Arabic letters that may be connected to previous or
following letters

1 Table 1: Connected and un-connected Arabic letters

Arabic letters that may be connected to

previous or following letters

ب، ت، ث، ج، ح، خ، س، ش، ص، ض، ط، ظ، ع، غ، ف، ق،
ك، ل، م، ن، ه، ي

Arabic letters that may be connected

only to previous letters
أ، ا، إ، آ، د، ذ، ر، ز، و، ؤ، ى، ة

Arabic letter that may not be connected

to previous nor following letters
ء

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

Arabic letters that may be connected only to previous letters

1 Table 1: Connected and un-connected Arabic letters

Arabic letters that may be connected to

previous or following letters

ب، ت، ث، ج، ح، خ، س، ش، ص، ض، ط، ظ، ع، غ، ف، ق،
ك، ل، م، ن، ه، ي

Arabic letters that may be connected

only to previous letters
أ، ا، إ، آ، د، ذ، ر، ز، و، ؤ، ى، ة

Arabic letter that may not be connected

to previous nor following letters
ء

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

Arabic letter that may not be connected to previous nor
following letters

1 Table 1: Connected and un-connected Arabic letters

Arabic letters that may be connected to

previous or following letters

ب، ت، ث، ج، ح، خ، س، ش، ص، ض، ط، ظ، ع، غ، ف، ق،
ك، ل، م، ن، ه، ي

Arabic letters that may be connected

only to previous letters
أ، ا، إ، آ، د، ذ، ر، ز، و، ؤ، ى، ة

Arabic letter that may not be connected

to previous nor following letters
ء

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

BACKGROUND MATERIAL
This work utilizes some characteristics of Arabic letters and the Unicode encoding system.
In this section, these features and characteristics are highlighted. First, the characteristics
of Arabic letters is discussed in ‘Arabic letter characteristics’. Then, the features of the
Unicode encoding is covered in ‘Unicode characteristics’

Arabic letter characteristics
The Arabic language holds a significant position among human languages, and it is one
of the sixth official languages of the United Nations. Around 400 million individuals
worldwide use Arabic as their primary language. Its alphabet comprises 28 characters.
Notably, Arabic letters are typically connected to each other in written texts, unlike
languages like English, where characters are usually written individually (Thabit et al.,
2021). Arabic language and its characters have some characteristics that might be useful
when thinking about data hiding (Al-Nofaie, Fattani & Gutub, 2016; Alanazi, Khan &
Gutub, 2022).

The unique right-to-left writing system of Arabic, contrasting with the left-to-right
orientation of languages like English or French, is a significant characteristic. This
unidirectional feature not only affects letter arrangement but also shapes the structure
of written Arabic, including numerical representation. This consistency aids Arabic readers
in processing text visually, ensuring a cohesive reading experience. Understanding this
aspect is crucial in applications like data hiding and steganography, emphasizing the need
to preserve readability while concealing information within Arabic text.

Another characteristic is connectivity of letters to neighbouring letters within words.
Letters can occur at the start, end, middle of a word, or isolated. Some Arabic letters
connect with both preceding and following letters, while others only join with preceding
ones. Additionally, certain letters cannot connect to either preceding or following ones.
Table 1 shows the connected and un-connected Arabic letters.

Furthermore, in Arabic script, some letters are characterized by the presence of dots,
while others are free of dots, as shown in Table 2. The dots may be one, two or three, and
they may be above or beneath the letter.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 5/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 2 Dotted and un-dotted Arabic letters.

Arabic letters that have dots
1 Table 2: Dotted and un-dotted Arabic letters

Arabic letters that have dots ب، ت، ث، ج، خ، ذ، ز، ش، ض، ظ، غ، ف، ق، ن، ي، ة
Arabic letters that are free of dots أ، ا، إ، آ، ح، د، ر، س، ص، ط، ع، ك، ل، م، هـ ، و، ى، ء

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

Arabic letters that are free of dots

1 Table 2: Dotted and un-dotted Arabic letters

Arabic letters that have dots ب، ت، ث، ج، خ، ذ، ز، ش، ض، ظ، غ، ف، ق، ن، ي، ة
Arabic letters that are free of dots أ، ا، إ، آ، ح، د، ر، س، ص، ط، ع، ك، ل، م، هـ ، و، ى، ء

2

3

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

These characteristics are not unique for Arabic languages. Other languages, such as
Persian and Urdu, have the same characteristics. Therefore, the proposed methodology
could be adapted to be utilized in such languages.

Unicode characteristics
Unicode, established in 1987, serves as a comprehensive text encoding standard,
accommodating characters from diverse languages worldwide. Its integration into Internet
protocols, operating systems, and programming languages ensures interoperability,
fostering seamless communication across global platforms. Comprising three encoding
forms: UTF-8, UTF-16, and UTF-32, Unicode offers versatility to encode characters
efficiently. UTF-8, a variable-width encoding form, is well-suited for languages primarily
using Latin characters, offering compatibility with ASCII while supporting various scripts.
Conversely, UTF-16 employs a fixed-width approach, striking a balance between efficiency
and character support, albeit with potentially higher storage requirements. UTF-32, with
a fixed width of four bytes per character, ensures consistent encoding length but may
result in increased memory usage, particularly for texts dominated by ASCII characters.
Each encoding form caters to distinct use cases, with UTF-8 valued for compactness and
compatibility, UTF-16 for efficiency and character diversity, and UTF-32 for its uniform
encoding length (Ahvanooey et al., 2019; Product Knowledge, R&D, 2022).

Invisible Unicode characters, known as zero-width characters, play a crucial role in text
structure and layout despite lacking a visible representation when rendered. True invisible
characters, devoid of visible elements, are ideal for steganographic purposes, enabling
covert embedding of information without altering text appearance. Another category
includes invisible characters introducing added space into text, subtly influencing spacing
between words or characters while remaining visually imperceptible. These characters
offer flexibility for specific formatting needs or text layout adjustments. Understanding the
behaviour and application of invisible Unicode characters is vital, especially in contexts
like steganography, where concealing information within text is paramount (Product
Knowledge, R&D, 2022; Invisible Characters, 2022).

RELATED WORK
Various approaches have been proposed in Arabic text steganography, utilizing different
techniques to conceal information within Arabic text. The main categorizes of these

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 6/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

techniques are based on Arabic letters characteristics, diacritical marks, kashida character,
Unicode encoding, and Arabic poetry system (Thabit et al., 2021).

One of the approaches that are based on Arabic letters characteristics involves altering
the placement or arrangement of dots within Arabic letters to encode hidden information.
By strategically manipulating dot patterns, steganographers can embed covert messages
while maintaining the appearance of the text. Early research has explored the utilization
of points within Arabic and Persian letters to conceal sensitive information. For instance,
in Shirali-Shahreza & Shirali-Shahreza (2006) single secret bit (0 or 1) was hidden within
Arabic letters by adjusting the positions of the dots. A similar study proposed in Odeh
et al. (2012) addressed Arabic letters with multiple points, assigning two bits to each
multipoint letter to double the hidden bits. However, a challenge arose with this method:
the retyping process, which could destroy concealed bits. The authors proposed a solution
by consolidating all data into a single file to limit future font changes. While this approach
enhances capacity and decreases suspicion in the covert text, it is characterized by longer
processing times, fixed output format, and vulnerability to retyping or scanning.

Another feature of Arabic letters, which is the sharp edges and geometric shapes,
was also utilized to hide secret information. In Roslan, Mahmod & Udzir (2011), this
technique was employed by using two keys to determine whether dotted or undotted
letters are used for concealing secret bits and specifying the precise positions within the
letters where the information is hidden. Each edge of a letter is assigned a unique code,
facilitating the concealment of bits within those edges. Similarly, in Mersal et al. (2014),
the concept of sharp edges was utilized, with a 24-bit random key concealed within the
initial sharp edges of the letters in the cover text. The positioning of the letter within the
text determines the sequence of random numbers used to extract the binary representation
of the secret message. This binary number forms the code sequence for the message, with
each code number representing a binary bit concealed within a specific character of the
text. Furthermore, Roslan et al. (2014) introduced the primitive structural method, which
incorporates sharp edges, dots, and typo proportion from calligraphy writing. Each Arabic
character offers multiple hiding spots for secret bits, determined by its structural features
and proportion calculation, enhancing the capacity for concealing information within the
text.

Diacritical marks, such as vowel signs and other phonetic symbols, have been also
utilized to encode hidden information within the text, exploiting the subtle variations in
their placement and appearance. In Aabed et al. (2007), it was noted that the fatha diacritic
is almost as prevalent as other diacritics in Arabic, leading to the suggestion of using it to
encode ‘‘1’’, with other diacritics representing ‘‘0’’. However, this approach may attract
undue attention from readers. An improved method proposed in Gutub et al. (2010b)
introduced two algorithms based on the number of diacritics needed to conceal secret
bits, with one utilizing fixed-size blocks of secret bits and the other mapping consecutive
bits of the same value to their respective run lengths. Additionally, Gutub et al. (2008)
explored steganography using multiple diacritics, employing both textual and image-based
approaches. In Bensaad & Yagoubi (2013), three steganographic methods employing
diacritics were discussed: one involving the inclusion or removal of diacritics based on

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 7/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

secret bit values, another employing a switch technique, and a third introducing parity
bits for each letter. Moreover, Memon & Shah (2011) employed reversed fatha in Arabic
and Urdu text to convey concealed messages, a method that matches hidden messages
character by character to cover articles. Ahmadoh & Gutub (2015) presented an embedding
algorithm utilizing kasrah and fatha diacritics to hide messages, fragmenting messages into
binary value arrays and concealing them within respective diacritics based on their parity.
In another work, Malalla & Shareef (2016a) introduced a modified fatha for Arabic text
steganography, which encrypts secret messages using AES before concealing them within
text using a slightly altered fatha to avoid detection. Recently, Gutub (2024) proposed a
hiding technique based on multiple diacritics. The author presented two models for the
proposed technique. In each model, two diacritics are selected to hide secret bits. If the
secret bit is 1, the selected diacritic is kept and the neighbouring diacritics other than the
two selected diacritics are deleted. On the other hand, if the secret bit is 0, the selected
diacritic is deleted and the neighbouring diacritic is preserved.

In another approach, kashida (also called extension or tatweel character) is utilized
for steganography. Kashida, which is a typographical feature used in Arabic script to
elongate certain letters for aesthetic or spacing purposes without affecting the content
of the written message, can be manipulated to encode hidden data by varying the length
or position of the elongated strokes within the text. In Gutub, Al-Alwani & Mahfoodh
(2010), kashida was strategically employed with one kashida concealing ‘‘0’’ and two
consecutive kashidas hiding ‘‘1’’, optimizing the process by encoding all possible forms of
Arabic letters using 6 bits and introducing a ‘‘finishing character’’ to denote completion.
The MSCUKAT algorithm proposed in Al-Nazer & Gutub (2009) scans cover objects to
identify suitable letter locations for kashida insertion based on secret bit values. Another
algorithm proposed by the authors of Al-Haidari et al. (2009) encodes secret messages as
numbers by strategically inserting kashidas within extendable letters. This concept was
further developed by the authors of Gutub & Al-Nazer (2010) with the implementation
of MSCUKAT. In Gutub et al. (2007), kashida was utilized with both pointed and un-
pointed letters to conceal secret bits, while Gutub et al. (2010a) and Al-Haidari et al. (2009)
enhanced security by selectively utilizing potential kashida positions and employing secret
keys for bit-carrying positions. The kashida variation algorithm (KVA) in Odeh, Elleithy &
Faezipour (2013) aimed to enhance robustness by randomly concealing bits in text blocks.
Similarly, Alhusban & Alnihoud (2017) proposed four embedding strategies to conceal
two secret bits using kashida after specific letters. Techniques such as compressing secret
messages using Gzip and encrypting with AES, as shown inMalalla & Shareef (2016b), have
been integrated with kashida embedding methods, along with other approaches like hiding
voice files within text files using kashida and specific words (Al-Oun & Alnihoud, 2017).
Despite the effectiveness of kashida for steganography, challenges such as susceptibility
to suspicion and large output file sizes persist. Moreover, efforts to streamline algorithm
complexity for improved extraction of hidden information remain limited.

In literature, Unicode characters have also been utilized for concealing information
within text. One of the oldest proposals for using white spaces to hide secret bits was
presented in Bender et al. (1996), where three scenarios were proposed to hide bits within

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 8/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

text, the first at the end of sentences, the second at the end of lines, and the third between
words. In Shirali-Shahreza & Shirali-Shahreza (2010), the resemblance between certain

Arabic and Persian letters, such as ‘‘

277 (Shirali-Shahreza & Shirali-Shahreza, Arabic/Persian text steganography utilizing similar letters

278 with different codes, 2010), the resemblance between certain Arabic and Persian letters, such as

279 has been exploited, where Persian letters are used to represent "0" and Arabic letters ",ك" and "ي"

280 for "1". Additionally, in (Shirali-Shahreza & Shirali-Shahreza, High capacity Persian/Arabic text

281 steganography, 2008), the isolated and connected forms of Arabic and Persian letters are

282 leveraged to encode binary data, with the ZWJ character aiding in rendering the isolated forms.

283 Furthermore, zero-space characters like ZWJ and ZWNJ were used in (Shirali-Shahreza &

284 Shirali-Shahreza, Steganography in Persian and Arabic Unicode Texts Using Pseudo-Space and

285 Pseudo Connection Characters, 2008) to hide secret bits by controlling letter connections. The

286 special "La" character in Arabic is employed in (Shirali-Shahreza M. , A New Persian/Arabic

287 Text Steganography Using 'La' Word, 2007) and (Shirali-Shahreza & Shirali-Shahreza, An

288 Improved Version of Persian/Arabic Text Steganography Using "La" Word, 2008) for

289 concealing secret bits, with different representations used to encode "0" and "1". Moreover, each

290 Arabic letter's multiple Unicode codes were utilized in (Shirali-Shahreza & Shirali-Shahreza,

291 Persian/Arabic Unicode Text Steganography, 2008) to hide secret bits, distinguishing between

292 representative and positional codes for encoding binary data. The concealment is performed

293 word by word, as combining representative and contextual codes within a single word isn't

294 feasible due to text viewer limitations. The approach introduced in (Alanazi, Khan, & Gutub,

295 2022) resolved this issue by employing pseudo-spaces and extension characters, thereby

296 enhancing the method's capacity for concealing information. In (Obeidat, 2017), three scenarios

297 for concealing information in Arabic text were explored, involving character alterations,

298 preserving cover letters, and adjusting Unicode based on letter type. Two Arabic text

299 steganography methods were proposed in (Al-Nofaie, Gutub, & Al-Ghamdi, 2021). The first,

300 called Kashida-PS, builds upon previous work in (Gutub, Al-Alwani, & Mahfoodh, Improved

301 Method of Arabic Text Steganography Using the Extension �Kashida� Character, 2010) and (Al-

302 Nofaie, Fattani, & Gutub, 2016) by incorporating the Kashida feature with PS. The second

303 method, called PS-betWords, utilizes PS between words. Furthermore, (Alotaibi & Elrefaei,

304 Improved capacity Arabic text watermarking methods based on open word space, 2018)

305 presented two Arabic text watermarking methods leveraging word spaces, with the first method

306 enhancing a previous approach proposed in (Alotaibi & Elrefaei, Utilizing word space with

307 pointed and un-pointed letters for Arabic text watermarking, 2016) by incorporating dotting

308 features, and the second method selectively inserting different spaces based on watermark bits.

309 The Arabic poetry system, as described in (Khan, 2014), is capable of hiding secret bits, as each

310 Arabic poem contains a representation of binary units. The approach involves assuming that the

311 positions of embedded binary bits within poems contain the secret bits. The actual secret bit

312 corresponds either to the binary position or its reverse. To enhance the capacity of this

313 embedding technique, diacritics and kashida approaches are employed.

314 The combination of multiple steganographic techniques can enhance the concealment and

315 robustness of hidden information. For example, combining Unicode with kashida was employed

316 in several methods. In (Al-Nofaie, Fattani, & Gutub, 2016), kashida is inserted between Arabic

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ and ‘‘

277 (Shirali-Shahreza & Shirali-Shahreza, Arabic/Persian text steganography utilizing similar letters

278 with different codes, 2010), the resemblance between certain Arabic and Persian letters, such as

279 has been exploited, where Persian letters are used to represent "0" and Arabic letters ",ك" and "ي"

280 for "1". Additionally, in (Shirali-Shahreza & Shirali-Shahreza, High capacity Persian/Arabic text

281 steganography, 2008), the isolated and connected forms of Arabic and Persian letters are

282 leveraged to encode binary data, with the ZWJ character aiding in rendering the isolated forms.

283 Furthermore, zero-space characters like ZWJ and ZWNJ were used in (Shirali-Shahreza &

284 Shirali-Shahreza, Steganography in Persian and Arabic Unicode Texts Using Pseudo-Space and

285 Pseudo Connection Characters, 2008) to hide secret bits by controlling letter connections. The

286 special "La" character in Arabic is employed in (Shirali-Shahreza M. , A New Persian/Arabic

287 Text Steganography Using 'La' Word, 2007) and (Shirali-Shahreza & Shirali-Shahreza, An

288 Improved Version of Persian/Arabic Text Steganography Using "La" Word, 2008) for

289 concealing secret bits, with different representations used to encode "0" and "1". Moreover, each

290 Arabic letter's multiple Unicode codes were utilized in (Shirali-Shahreza & Shirali-Shahreza,

291 Persian/Arabic Unicode Text Steganography, 2008) to hide secret bits, distinguishing between

292 representative and positional codes for encoding binary data. The concealment is performed

293 word by word, as combining representative and contextual codes within a single word isn't

294 feasible due to text viewer limitations. The approach introduced in (Alanazi, Khan, & Gutub,

295 2022) resolved this issue by employing pseudo-spaces and extension characters, thereby

296 enhancing the method's capacity for concealing information. In (Obeidat, 2017), three scenarios

297 for concealing information in Arabic text were explored, involving character alterations,

298 preserving cover letters, and adjusting Unicode based on letter type. Two Arabic text

299 steganography methods were proposed in (Al-Nofaie, Gutub, & Al-Ghamdi, 2021). The first,

300 called Kashida-PS, builds upon previous work in (Gutub, Al-Alwani, & Mahfoodh, Improved

301 Method of Arabic Text Steganography Using the Extension �Kashida� Character, 2010) and (Al-

302 Nofaie, Fattani, & Gutub, 2016) by incorporating the Kashida feature with PS. The second

303 method, called PS-betWords, utilizes PS between words. Furthermore, (Alotaibi & Elrefaei,

304 Improved capacity Arabic text watermarking methods based on open word space, 2018)

305 presented two Arabic text watermarking methods leveraging word spaces, with the first method

306 enhancing a previous approach proposed in (Alotaibi & Elrefaei, Utilizing word space with

307 pointed and un-pointed letters for Arabic text watermarking, 2016) by incorporating dotting

308 features, and the second method selectively inserting different spaces based on watermark bits.

309 The Arabic poetry system, as described in (Khan, 2014), is capable of hiding secret bits, as each

310 Arabic poem contains a representation of binary units. The approach involves assuming that the

311 positions of embedded binary bits within poems contain the secret bits. The actual secret bit

312 corresponds either to the binary position or its reverse. To enhance the capacity of this

313 embedding technique, diacritics and kashida approaches are employed.

314 The combination of multiple steganographic techniques can enhance the concealment and

315 robustness of hidden information. For example, combining Unicode with kashida was employed

316 in several methods. In (Al-Nofaie, Fattani, & Gutub, 2016), kashida is inserted between Arabic

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ has been exploited, where Persian letters
are used to represent ‘‘0’’ and Arabic letters for ‘‘1’’. Additionally, in Shirali-Shahreza
& Shirali-Shahreza (2008b), the isolated and connected forms of Arabic and Persian
letters are leveraged to encode binary data, with the ZWJ character aiding in rendering
the isolated forms. Furthermore, zero-space characters like ZWJ and ZWNJ were used
in Shirali-Shahreza & Shirali-Shahreza (2008d) to hide secret bits by controlling letter
connections. The special ‘‘La’’ character in Arabic is employed in Shirali-Shahreza (2007)
and Shirali-Shahreza & Shirali-Shahreza (2008a) for concealing secret bits, with different
representations used to encode ‘‘0’’ and ‘‘1’’. Moreover, each Arabic letter’s multiple
Unicode codes were utilized in Shirali-Shahreza & Shirali-Shahreza (2008c) to hide secret
bits, distinguishing between representative and positional codes for encoding binary data.
The concealment is performed word by word, as combining representative and contextual
codes within a single word isn’t feasible due to text viewer limitations. The approach
introduced in Alanazi, Khan & Gutub (2022) resolved this issue by employing pseudo-
spaces and extension characters, thereby enhancing the method’s capacity for concealing
information. In Obeidat (2017), three scenarios for concealing information in Arabic text
were explored, involving character alterations, preserving cover letters, and adjusting
Unicode based on letter type. Two Arabic text steganography methods were proposed in
Al-Nofaie, Gutub & Al-Ghamdi (2021). The first, called Kashida-PS, builds upon previous
work in Gutub, Al-Alwani & Mahfoodh (2010) and Al-Nofaie, Fattani & Gutub (2016) by
incorporating the Kashida feature with PS. The second method, called PS-betWords,
utilizes PS between words. Furthermore, Alotaibi & Elrefaei (2018) presented two Arabic
text watermarking methods leveraging word spaces, with the first method enhancing a
previous approach proposed inAlotaibi & Elrefaei (2016) by incorporating dotting features,
and the second method selectively inserting different spaces based on watermark bits.

The Arabic poetry system, as described in Khan (2014), is capable of hiding secret bits,
as each Arabic poem contains a representation of binary units. The approach involves
assuming that the positions of embedded binary bits within poems contain the secret bits.
The actual secret bit corresponds either to the binary position or its reverse. To enhance
the capacity of this embedding technique, diacritics and kashida approaches are employed.

The combination of multiple steganographic techniques can enhance the concealment
and robustness of hidden information. For example, combining Unicode with kashida was
employed in several methods. In Al-Nofaie, Fattani & Gutub (2016), kashida is inserted
between Arabic letters to represent a secret bit of one, while white spaces are used to
represent zero, with two consecutive white spaces indicating the presence of a zero. A
similar approach was adopted in Taha, Hammad & Selim (2020), where kashida and
Unicode methods utilize small spaces for concealing bits, with specific patterns indicating
the presence of a one. Moreover, Malalla & Shareef (2017) employed techniques like Gzip
compression and AES encryption alongside kashida and Unicode methods to embed secret
messages. In Alanazi, Khan & Gutub (2022), Medium Mathematical Spaces (MSPs), ZWJ,
ZWJN, and kashida were combined to conceal one secret bit per alteration of format,

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 9/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

whitespace, or kashida insertion. Kadhem & Ali (2017) proposed a method that merges
Unicode with diacritics, utilizing RNA encoding for secret messages and non-printed
characters to obscure codes, with compression using modified run length encoding (RLE).
Lastly, Alshahrani & Weir (2017) explored the integration of kashida with diacritics, where
fatah and consecutive kashidas are used to conceal different bits, demonstrating the
versatility of combining different encoding techniques for steganographic purposes.

Table 3 summarizes themain pros and cons of previous work, classified by the techniques
used. From this table, it is evident thatmethods utilizing kashida or diacritics raise suspicion,
as kashida are not commonly used in most Arabic texts, and diacritics, when used, should
appear on all letters, not just some. Other techniques, such as those using the points of
letters or similar letters, have low capacity because not all letters can be utilized to hide
secret data. Although the technique of using sharp edges does not add visible characters
and can hide more secret bits, it is not robust enough due to the need for a reference table
and code sequence that must be securely transmitted to the receiver and correctly retrieved.
In general, methods utilizing Unicode have better imperceptibility, as they minimize the
addition of visible characters. However, most of these methods cannot hide more than one
bit per character and some suffer from incorrect connectivity between letters due to the
use of different Unicode forms. Table 4 provides a more detailed analysis of methods based
on Unicode techniques.

The proposed method in this study aims to leverage the benefits of Unicode techniques
while addressing the limitations of previous work.

METHODOLOGY
The methodology of the proposed technique is based on hiding secret bits on the letters
of a cover text utilizing invisible Unicode characters. The utilization of invisible Unicode
characters to hide secret data has been proposed in several previous works, as discussed in
‘Related Work’. However, the novelty of the proposed methodology in this work is based
on combining the utilization of invisible Unicode characters with two characteristics of the
Arabic letters explained in ‘Arabic Letter Characteristics’. The first is whether the letter is
dotted or not, which has been utilized for hiding secret data in several previous works such
as (Roslan, Mahmod & Udzir, 2011; Alhusban & Alnihoud, 2017) and (Alotaibi & Elrefaei,
2018). The second is whether the letter is connected or not, which has not been utilized
before –up to our knowledge –as proposed in this work.

Based on the two characteristics of each Arabic letter of a word, a two-bit value DC is
assigned to that letter, as shown in Table 5. The two-bit DC of each character of the word
is XORed with two secret bits. The result of the XOR is a two-bit value EN. Based on EN,
an invisible white space is appended at the end of the word. Using this methodology, each
letter hides two secret bits and will correspond to one white space. Therefore, four invisible
characters are required.

The selection of invisible Unicode characters to be utilized in the proposed method is
based on the following criteria:

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 10/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 3 Summary of the related work and their main characteristics.

Ref. Techniques employed pros cons

Shirali-Shahreza & Shirali-Shahreza (2006)

Odeh et al. (2012)
Points of letters

Robustness against insertion and deletion attacks, and also retyping and
copying attacks if stego text is converted to image

High computational time
Low capacity
Data hidden may be lost if stego text is retyped or copied and pasted.

Roslan, Mahmod & Udzir (2011)

Mersal et al. (2014)

Roslan et al. (2014)

Sharp edges No visible characters are added, which increases imperceptibility.
Hiding secret bits in sharp edges increases capacity.

The reference tables or code sequence must
be sent with the stego text in a secure manner.
Data hidden may be lost if stego text is retyped or copied and pasted.

Aabed et al. (2007)

Gutub et al. (2010b)

Gutub et al. (2008)

Bensaad & Yagoubi (2013)

Memon & Shah (2011)

Ahmadoh & Gutub (2015)

Malalla & Shareef (2016a)

Gutub (2024)

Diacritics Robustness against retyping and copying attacks as long as diacritics are not
added or deleted.

Using diacritics in some letters and not in others raises suspicions.
Data hidden may be altered by adding or deleting some diacritics.

Gutub, Al-Alwani & Mahfoodh (2010)

Gutub et al. (2007)

Al-Nazer & Gutub (2009)

Al-Haidari et al. (2009)

Gutub & Al-Nazer (2010)

Gutub et al. (2010a)

Al-Haidari et al. (2009)

Odeh, Elleithy & Faezipour (2013)

Alhusban & Alnihoud (2017)

Malalla & Shareef (2016b)

Al-Oun & Alnihoud (2017)

Kashida Robustness against copying attacks.
Not all letters accept kashida, which decreases capacity.
Data hidden may be altered by adding or deleting some kashidas.
Having kashida in some locations of the text raises suspicions.

Alshahrani & Weir (2017) Kashida + diacritics Using more than one method to hide bits increases capacity. Having kashida and diacritics in some locations of the text raises suspi-
cions.

Khan (2014) Arabic poetry + kashida +
diacritics

All letters can hide secret bits. Having kashida and diacritics in some lo-
cations of the text raises suspicions.
Limited to Windows-1256 encoding

Shirali-Shahreza & Shirali-Shahreza (2010)

Shirali-Shahreza (2007)

Shirali-Shahreza & Shirali-Shahreza (2008a)

Similar letters with differ-
ent codes No extra characters are added. Only some letters are used to hide secret bits, which decreases capacity.

(continued on next page)

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

11/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 3 (continued)
Ref. Techniques employed pros cons

Shirali-Shahreza & Shirali-Shahreza (2008d)

Bender et al. (1996)

Shirali-Shahreza & Shirali-Shahreza (2008c)

Shirali-Shahreza & Shirali-Shahreza (2008b)

Obeidat (2017)

Kadhem & Ali (2017)

Al-Nofaie, Gutub & Al-Ghamdi (2021)-Method 2

Alotaibi & Elrefaei (2018)-Method 2

Unicode Visible characters added are minimized which improves imperceptibility.
Extra characters added are minimal.

In most techniques, not all characters are
utilized to hide secret bits, which degrades capacity.
In some cases, characters are not connected properly, which degrades
imperceptibility.

Alotaibi & Elrefaei (2016)

Alotaibi & Elrefaei (2018)-Method 1
Unicode + dotted letters No visible characters are added, which increases imperceptibility. Bits are hidden word by word, which decreases capacity.

Alanazi, Khan & Gutub (2022)

Al-Nofaie, Gutub & Al-Ghamdi (2021)-Method 1

Al-Nofaie, Fattani & Gutub (2016)

Taha, Hammad & Selim (2020)

Malalla & Shareef (2017)

Unicode + kashida
Extra characters added are minimal.
Improved capacity over kashida-based methods. Kashidas added are visible, which degrades imperceptibility.

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

12/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 4 A detailed review of the related work based on Unicode.

Ref. Techniques employed Methodology Pros Cons

M1 Bender et al. (1996) Unicode Normal spaces are in-
serted to hide secret bits
at the end of sentences,
at the end of lines, or be-
tween words. If hidden
between words, every se-
cret bit is hidden using
two spaces, and an extra
space is inserted for en-
coding

Hiding of secret bits does
not depend on characters
of cover text, so it can be
implemented in any lan-
guage

Bits are hidden word
by word, which
lowers capacity.
Extra spaces degrade
imperceptibility

M2 Alotaibi & Elrefaei (2016) Unicode + dotted letters ZWNJ is used to hide se-
cret bits. it is inserted or
not based on the last letter
of the word whether dot-
ted or not.

No visible characters are
added, which increases
imperceptibility.

Bits are hidden word by
word, which decreases ca-
pacity.

M3 Alotaibi & Elrefaei (2018) -1 Unicode + dotted letters ZWNJ is used to hide se-
cret bits. it is inserted or
not based on the last letter
of the word before it and
the first letter of the word
after it, whether dotted or
not.

No visible characters are
added, which increases
imperceptibility.

Bits are hidden word by
word, which decreases ca-
pacity.

M4 Alotaibi & Elrefaei (2018) -2 Unicode Four white spaces (PS,
HS, TS, and ZWS) are
used to hide 4 bits after
each word.

Hiding of secret bits does
not depend on characters
of cover text, so it can be
implemented in any lan-
guage.

Some white spaces are
visible, which decreases
imperceptibility.
ZWS (200B) cannot
be sent over Gmail.

M5 Al-Nofaie, Fattani & Gutub (2016) Unicode + kashida Kashida between letters
and whitespaces between
words are inserted to hide
secret bits.

Improved capacity over
kashida-based methods.

Not all letters are uti-
lized to hide secret bits,
which decreases capacity.
Kashidas added are visi-
ble, which degrades im-
perceptibility.

M6 Al-Nofaie, Gutub & Al-Ghamdi (2021)-1 Unicode + kashida Kashida is used between
two connected letters, and
PS is inserted between
two unconnected letters,
and also after normal
spaces.

All letters can be utilized
to hide secret bits.

Kashidas added are visi-
ble, which degrades im-
perceptibility.

(continued on next page)

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

13/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 4 (continued)

Ref. Techniques employed Methodology Pros Cons

M7 Al-Nofaie, Gutub & Al-Ghamdi (2021)-2 Unicode PS’s are inserted between
words to hide secret bits

No visible characters
are added, which in-
creases imperceptibility.
Hiding of secret bits does
not depend on characters
of cover text, so it can be
implemented in any lan-
guage

The number of PS’s to be
added may be high for
some secret bit sequences.

M8 Shirali-Shahreza & Shirali-Shahreza (2008d) Unicode One bit is hidden in each
letter. If it is connected
to the next letter,
ZWJ is inserted for hiding
bit 1 and not inserted for
hiding bit 0. If the letter
is not connected to the
next letter, ZWNJ is used
instead.

No visible characters are
added, which increases
imperceptibility

Not all characters are uti-
lized to hide secret bits.

M9 (Taha, Hammad & Selim, 2020) Unicode + kashida Kashida is inserted when
possible to hide 1, and
then three white spaces
(Thin space, Hair space,
and Six-PRE-EM space)
are used between words
to hide 3 secret bits.

Improved capacity over
kashida-based methods.

Kashidas and some white
spaces are visible, which
decreases imperceptibil-
ity.

M10 Shirali-Shahreza & Shirali-Shahreza (2008c) Unicode Representative and po-
sitional codes of Parsian
and Arabic letters are
used to hide secret bits
word by word.

No extra characters are
added.

Bits are hidden word
by word, which
lowers capacity.
In some cases, characters
are not connected
properly, which degrades
imperceptibility.

M11 Shirali-Shahreza & Shirali-Shahreza (2008b) Unicode Representative and po-
sitional codes of Par-
sian and Arabic letters
are used to hide secret
bits in each letter. ZWJ
is inserted if representa-
tive and positional codes
come after each other.

All letters can be utilized
to hide secret bits.
Extra characters
added are minimal.
No visible characters are
added.

In some cases, characters
are not connected prop-
erly, which degrades im-
perceptibility.

(continued on next page)

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

14/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 4 (continued)

Ref. Techniques employed Methodology Pros Cons

M12 Alanazi, Khan & Gutub (2022) Unicode + kashida General and contextual
codes of Arabic letters
are used to hide secret
bits. kashida, ZWJ, and
ZWNJ are used for con-
necting letters when dif-
ferent codes come after
each other.

Extra characters added are
minimal.

Using kashida decreases
imperceptibility.
In some cases, characters
are not connected
properly, which degrades
imperceptibility.

M13 Malalla & Shareef (2017) Unicode + kashida To hide 1, kashida is used
when possible, or the
code of Arabic letter is
changed from isolated to
medium or vice versa.

Extra characters added are
minimal.

Using kashida decreases
imperceptibility.
In some cases, characters
are not connected
properly.

M14 Kadhem & Ali (2017) Unicode Some non-printed ASCII
characters are used to
hide 1, along with isolated
and connected forms of
Unicode

All characters are utilized
to hide secret bits which
increases capacity.

The non-printed ASCII
characters are only invisi-
ble in some platforms. In
others, they are shown

M15 Obeidat (2017) Unicode Representative and po-
sitional codes of letters
not joining with previous
character are used to hide
secret bits

Extra characters added are
minimal.

Not all letters are uti-
lized to hide secret bits,
which decreases capacity.
In some cases, characters
are not connected prop-
erly, which degrades im-
perceptibility.

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

15/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 5 The two-bit value given for each Arabic character.

Dotted Undotted

Connected 1 1 0 1
Not connected 1 0 0 1

1. Any invisible Unicode character inserted should not be visible in any way. In other
words, the cover Arabic text should not be visually changed after inserting the invisible
Unicode character. This increases the imperceptibility of the proposed method.

2. The inserted invisible Unicode characters should not be omitted when the stego text is
sent via communication media or copied and pasted through different software. This
increases the robustness of the proposed method.
Among the available invisible Unicode characters, we selected the four invisible

characters shown in Table 6, which all satisfy the above mentioned criteria (Invisible
Characters, 2022; Unicode Explorer, 2024).

In addition to the above four invisible white spaces used to hide secret bits, two other
invisible characters are used at the end of the hiding process, as will be explained below.
These two characters are \ufe00 and \ufe01.

UTF-16 is used in this work because it has fixed size of two bytes, while UTF-8 has
different sizes. Specifically, some of the Arabic letters and the selected invisible characters
are represented in more bytes using UTF-8 than UTF-16.

The advantages of the proposed method compared to previous work can be summarized
in the following:
1. The proposed method can hide two secret bits for each character, while all previous

methods based on Unicode could hide one secret bit per character at most. This
advantage increases the capacity of the proposed method in comparison to other
works.

2. Using the four selected white spaces to hide secret bits after words of the cover text
increases the imperceptibility of the stego text. In other words, no one can notice the
insertion of these white spaces in the stego text since there is no visible difference
between the cover text and the stego text.

3. Adding one white space for each character helps in detecting alterations of the stego
text, since the number of white spaces after each word should be equal to the number
of characters in that word.
In addition, it is worth noting that secret bits could be hidden directly using the selected

four invisible Unicode characters instead of XORing them with the characteristics of
the corresponding Arabic letter. However, using the proposed XORing step has several
advantages:
1. The secret bits cannot be extracted directly from the Unicode characters without

knowing the characteristics of the corresponding letter in the text. This is important
if someone has noticed the insertion of invisible characters and tried to extract secret
bits from them.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 16/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 6 Invisible Unicode characters that satisfy the first criterion.

Unicode character Unicode
number

Description

Right-to-left mark (RLM) \u200f Used in computerized typesetting for bi-directional text,
affecting the grouping of adjacent characters according to
text direction.

Arabic letter mark (ALM) \u061c Utilized in computerized typesetting for bi-directional text,
similar to the Right-to-left mark (RLM), but with some
differences in its effects on bidirectional level resolutions
for nearby characters.

Zero width non-joiner (ZWNJ) \u200c Causes two characters that would normally be joined into
a ligature to be printed in their final and initial forms,
respectively.

Combining grapheme joiner
(CGJ)

\u034f Used to semantically separate characters that should not
form digraphs and to prevent canonical reordering of
combining marks during text normalization.

2. The XORing with the characteristics of the Arabic letters will scramble the pattern of
secret bits. The advantage of this is specifically important for structured secret bits,
such as all ones, all zeros, or alternating patterns.
The proposed method consists of two main processes: one for embedding the secret

message in the cover text, and the other for extracting it from the stego text. In the following,
these two processes are explained in detail.

Embedding algorithm
The embedding process, which is shown in detail in Algorithm 1, consists of the following
steps:
1. Preprocessing: In this step, the number of secret bits is checked. If it is odd, a redundant

‘‘0’’ is appended to the end of the secret bits. This is because each character will hide
two secret bits, so the number of secret bits should be even. In addition, the number of
characters in the cover text should be more than or equal to twice the number of secret
bits.

2. Hiding secret bits: For each word of the cover text, the following steps are performed:
(a) Find the number of characters in each word, which is checked by reading characters

until a normal space (\u0020) is found.
(b) For each character of the word, a two-bit value DC is given based on its

characteristics, as shown in Table 5.
(c) The two-bit DC of each character of the word is XORed with two secret bits S1S0.

The result of the XOR is a two-bit value EN ; as illustrated in the following equation:

EN =DC⊕S1S0 (1)
(d) Based on EN, one of the invisible white spaces is appended at the end of the word,

as shown in Table 7.
(e) The above steps are repeated until all secret bits are hidden.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 17/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 7 The corresponding invisible white space for the two-bit value EN.

EN The corresponding
invisible white space

0 0 \u061c
0 1 \u200f
1 0 \u200c
1 1 \u034f

3. Post-processing: After all secret bits are encoded, an invisible Unicode character is
appended to indicate the number of secret bits, whether odd or even. For odd number
of secret bits, \ufe00 is inserted. Otherwise, \ufe01 is appended.
A flowchart of the embedding algorithm is shown in Fig. 3, which highlights the main

steps of the algorithm. Table 8 shows an example of the embedding process, where the
inserted invisible white spaces are bolded.

Extracting algorithm
Algorithm 2 shows the details of the extracting process, which is depicted in Fig. 4. The
algorithm consists of the following steps:
1. Read a character from the stego text until one of the two invisible white spaces indicating

the end of secret bits (\ufe00 or \ufe01) is found.
2. Until the read character is a space (\u0020), do the following:

(a) Count the number of Arabic letters and the number of invisible white spaces.
(b) For each Arabic character, find the corresponding two-bit value DC, as explained

in Table 5.
3. For each word, the value of each Arabic Letter DC is XORed with the value EN of the

corresponding invisible white space, as shown in Table 7, which results in two of the
secret bits S1S0. This is illustrated using the following equation:
S1S0=DC⊕EN (2)

4. If the last read character is the invisible white spaces (\ufe00), which indicates an odd
number of secret bits, ignore the last extracted secret bit.

EXPERIMENTAL RESULTS
The proposed method has been implemented using the Python 3 programming language.
In order to evaluate our proposed steganography method, performance measurements of
steganography techniques should be applied. Steganography techniques are assessed based
on four key criteria: capacity, imperceptibility, robustness, and security. In the following,
the experimental results of the proposed method in terms of these four measurements are
discussed.

Capacity
Capacity refers to the amount of secret data that can be hidden within a cover object
(Alotaibi & Elrefaei, 2018). Various methods have been applied in the literature to measure
the capacity of steganographic techniques (Khan, 2014). In this work, the capacity is

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 18/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 3 Flowchart of the embedding process.
Full-size DOI: 10.7717/peerjcs.2236/fig-3

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 19/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-3
http://dx.doi.org/10.7717/peerj-cs.2236

Algorithm 1: Embedding Process

Input: Secret bits, Cover text

Output: Stego text

1. i= 1
2. CharCount = 0
3. SecretCount = number of secret bits
4. if SecretCount mod 2= 1
5. Append 0 to secret bits \\add a redundant bit if number of secret bits is odd
6. end if
7. while not End of Secret Bits
8. Read next two secret bits S 1S 0

9. Read ith character Text[i] of the cover text
10. T [i]= Unicode(Text[i])
11. while T [i] != space (\u0020)
12. CharCount++ \\count number of characters in each word
13. if T [i] is dotted
14. D [i]= 1
15. else
16. D [i]= 0
17. end if
18. if T [i] is not connected
19. C [i]= 0
20. else
21. C [i]= 1
22. end if
23. DC [i]= D [i] & C [i] \\& is append operation
24. EN = DC [i]⊕ S 1S 0

25. case EN :
26. 00:W [CharCount]= \u061c
27. 01:W [CharCount]= \u200f
28. 10:W [CharCount]= \u200c
29. 11:W [CharCount]= \u034f
30. end case
31. i ++
32. Read Text[i]
33. T[i]= Unicode(Text[i])
34. end while
35. j = i –1
36. for (count = 1 to CharCount ; count ++)
37. insertW [count] at T [j]
38. end for
39. CharCount = 0
40. end while

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 20/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

41. if SecretCount mod 2= 0
42. T [i +1]= \ufe01 \\indicates end of even number of secret bits
43. else
44. T [i +1]= \ufe00 \\indicates end of odd number of secret bits
45. end if
46. for (k = 1 to i +1, k ++)
47. OutputFile[k]= Character(T [k]) \\convert unicode into characters
48. end for
49. while not End of cover text \\copy the remaining characters from cover text to output file
50. Read ith character Text[i] of the cover text
51. OutputFile[k]= Text[i]
52. k++; i++
53. end while

Table 8 An example of the embedding process. The bolding indicatines where invisible white spaces are
inserted.

Cover text
1 Table ¢£ An e¤¥¦§¨© of the embeddinª §«¬­©®®

Cover text لا إله إلا الله محمد رسول الله
Unicode of

the cover

text

\u0644\u0627\u0020 \u0625\u0644\u0647\u0020

\u0625\u0644\u0627\u0020 \u0627\u0644\u0644\u0647\u0020

\u0645\u062d\u0645\u062f\u0020 \u0631\u0633\u0648\u0644\u0020

\u0627\u0644\u0644\u0647

Secret bits 0100011111100011111011

Unicode of

the Stego

text

\u0644\u0627\u061c\u061c\u0020

\u0625\u0644\u0647\u200f\u200c\u200c\u0020

\u0625\u0644\u0627\u200c\u200f\u034f\u0020

\u0627\u0644\u0644\u0647\u034f\u034f\u200c\ufe01\u0020

\u0645\u062d\u0645\u062f\u0020 \u0631\u0633\u0648\u0644\u0020

\u0627\u0644\u0644\u0647

2

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

Unicode of the cover text \u0644\u0627\u0020 \u0625\u0644\u0647\u0020
\u0625\u0644\u0627\u0020
\u0627\u0644\u0644\u0647\u0020
\u0645\u062d\u0645\u062f\u0020
\u0631\u0633\u0648\u0644\u0020
\u0627\u0644\u0644\u0647

Secret bits 0100011111100011111011
Unicode of the Stego text \u0644\u0627\u061c\u061c\u0020

\u0625\u0644\u0647\u200f\u200c\u200c\u0020
\u0625\u0644\u0627\u200c\u200f\u034f\u0020
\u0627\u0644\u0644\u0647\u034f\u034f\u200c\ufe01\u0020
\u0645\u062d\u0645\u062f\u0020
\u0631\u0633\u0648\u0644\u0020
\u0627\u0644\u0644\u0647

calculated using the following equation:

Capacity ratio=
C×S
CH
×100 (3)

where C is the number of characters capable of hiding secret bits, S is the number of secret
bits per character, and CH is the total number of characters in the cover text.

Using this equation, the capacity ratio of the proposed method can be calculated as
follows:

Capacity ratio=
(CH−SP)×S

CH
×100 (4)

where SP is the number of normal spaces in the cover text.
It should be noted that, in order to deal with texts including all kinds of characters,

such as diacritics and connecting characters, the developed algorithm is designed with the

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 21/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 4 Flowchart of the extracting process.
Full-size DOI: 10.7717/peerjcs.2236/fig-4

assumption that any character in the text other than Arabic letters is treated as an undotted
and connected letter.

The experimental results of the proposed method are presented in Table 9. The cover
texts selected for testing are the last 30 Surahs of the Holy Quran, both with and without
diacritics. We used four types of secret messages: all ones, all zeros, alternating ones and
zeros, and random ones and zeros. The table displays the statistics of the 30 Surahs and
the results of hiding the secret messages within them. These results include the maximum
number of secret bits that a cover can hide and the capacity ratio. It should be noted that
all types of secret messages produced the same results, demonstrating that the performance
of the proposed method does not depend on the structure of the secret messages.

Security and imperceptibility
Imperceptibility measures how well the technique preserves the quality and appearance of
the cover object, ensuring that any changes are indiscernible to human observers, while

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 22/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-4
http://dx.doi.org/10.7717/peerj-cs.2236

Algorithm 2: Extracting Process

Input: Stego text

Output: Extracted secret bits

1. i= 1
2. CharCount = 0
3. SpaceCount = 0
4. Read ith character Text[i] of the Stego text
5. T [i]= Unicode(Text[i])
6. while T [i] != (\ufe00 or \ufe01) \\not end of secret bits
7. while T [i] != (\u0020) \\not end of a word
8. case T [i]:
9. \u061c:
10. SpaceCount ++
11. S [SpaceCount]= 00
12. \u200f:
13. SpaceCount ++
14. S [SpaceCount]= 01
15. \u200c:
16. SpaceCount ++
17. S [SpaceCount]= 10
18. \u034f:
19. SpaceCount ++
20. S [SpaceCount]= 11
21. others:
22. CharCount ++
23. if T [i] is dotted
24. D [CharCount]= 1
25. else
26. D [CharCount]= 0
27. end if
28. if T [i] is not connected
29. C [CharCount]= 0
30. else
31. C [CharCount]= 1
32. end if
33. DC [CharCount]= D [CharCount] & C [CharCount]
34. end case
35. i ++
36. Read Text[i]
37. T [i]= Unicode(Text[i])
38. end while
39. if CharCount != SpaceCount

print(‘‘Text may be altered.’’)

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 23/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

else
for j = 1 to SpaceCount ; j ++

40. S 1S 0 = DC [j]⊕ S [j]
41. Insert S 1 S0to OutputFile
42. end for

CharCount = 0
43. SpaceCount = 0
44. i ++
45. Read Text[i]
46. T[i]= Unicode(Text[i])

end if
47. end while
48. if T [i]= \ufe00 \\odd number of secret bits
49. Delete last bit from OutputFile
50. end if

security assesses the difficulty of unauthorized parties detecting or extracting the hidden
message without knowledge of the embedding method or key, ensuring the confidentiality
and integrity of the hidden data (Alotaibi & Elrefaei, 2018). Security and imperceptibility
are closely related as the aim of both is to make it difficult to detect the presence of hidden
data within the cover text.

For imperceptibility, the proposed method does not add any extra visible characters
beyond those originally present in the cover text, thus achieving a very high imperceptibility
with 100% imperceptibility ratio.

For security evaluation, the security ratio is computed using the following equation
(Al-Nofaie, Gutub & Al-Ghamdi, 2021):

Security ratio=
Amount after discount
Original character

×100 (5)

where the amount after discount is calculated using the following equations:

Discount value=
Original characters×Excess characters

100
(6)

Amount after discount=Original characters-Discount value (7)

To evaluate the performance of the proposed method, we conducted a number of
experiments using the last third Surah of the Holy Quran, Surah ‘Al-Ikhlas’, as the cover
text. The results are summarized in Table 10 and illustrated in Fig. 5. In these experiments,
different sizes of secret messages were hidden in the cover text, both with and without
diacritics. As depicted in the figure, the security of the proposed method increases as the
number of secret bits decreases, which shows that there is a tradeoff between capacity and
security, as proved in Zhang & Li (2004).

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 24/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 9 Capacity ratio of the proposed method. The bolded values are the capacity and security ratios, which are the important results shown in the tables.

surah
number
in Quran

surah
name

Number of
letters

Number of
diacritics

Number of
spaces

Number of
words

Results without diacritics Results with diacritics

Total number
of characters

maximum # of
secret bits

Capacity
ratio

Total number of
characters

maximum # of
secret bits

Capacity
ratio

1 114 An-Nas 80 65 19 20 99 160 162% 164 290 177%

2 113 Al-Falaq 73 67 22 23 95 146 154% 162 280 173%

3 112 Al-Ikhlas 47 42 14 15 61 94 154% 103 178 173%

4 111 Al-Masad 81 68 22 23 103 162 157% 171 298 174%

5 110 An-Nasr 80 68 18 19 98 160 163% 166 296 178%

6 109 Al-Kafirun 99 78 26 27 125 198 158% 203 354 174%

7 108 Al-Kawthar 43 41 9 10 52 86 165% 93 168 181%

8 107 Al-Ma‘un 114 95 24 25 138 228 165% 233 418 179%

9 106 Quraysh 77 64 16 17 93 154 166% 157 282 180%

10 105 Al-Fil 97 87 22 23 119 194 163% 206 368 179%

11 104 Al-Humazah 134 122 32 33 166 268 161% 288 512 178%

12 103 Al-‘Asr 73 56 13 14 86 146 170% 142 258 182%

13 102 At-Takathur 123 112 27 28 150 246 164% 262 470 179%

14 101 Al-Qari‘ah 160 126 35 36 195 320 164% 321 572 178%

15 100 Al-‘Adiyat 169 145 39 40 208 338 163% 353 628 178%

16 99 Az-Zalzalah 158 138 35 36 193 316 164% 331 592 179%

17 98 Al-Bayyinah 404 334 93 94 497 808 163% 831 1,476 178%

18 97 Al-Qadr 115 102 29 30 144 230 160% 246 434 176%

19 96 Al-‘Alaq 288 252 71 72 359 576 160% 611 1,080 177%

20 95 At-Tin 162 128 33 34 195 324 166% 323 580 180%

21 94 Ash-Sharh 102 94 26 27 128 204 159% 222 392 177%

22 93 Ad-Duhaa 165 141 39 40 204 330 162% 345 612 177%

23 92 Al-Layl 314 272 70 71 384 628 164% 656 1,172 179%

24 91 Ash-Shams 253 201 53 54 306 506 165% 507 908 179%

25 90 Al-Balad 342 287 81 82 423 684 162% 710 1,258 177%

26 89 Al-Fajr 586 494 138 139 724 1,172 162% 1,218 2,160 177%

27 88 Al-Ghashiyah 382 327 91 92 473 764 162% 800 1,418 177%

28 87 Al-’A’la 296 251 71 72 367 592 161% 618 1,094 177%

29 86 At-Tariq 254 214 60 61 314 508 162% 528 936 177%

30 85 Al-Buruj 469 374 108 109 577 938 163% 951 1,686 177%

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

25/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 10 Security ratio of the proposed method. The bolded values are the capacity and security ratios, which are the important results shown in
the tables.

Results without diacritics Results with diacritics

of
secret
bits

Excess
characters

Discount
value

Amount
after
discount

Security
ratio

of
secret
bits

Excess
characters

Discount
value

Amount
after
discount

Security
ratio

94 50 30.5 30.5 50% 178 92 94.76 8.24 8%
47 25 15.25 45.8 75% 89 46 47.38 55.62 54%
24 13 7.93 53.1 87% 44 23 23.69 79.31 77%
12 7 4.27 56.7 93% 2 12 12.36 90.64 88%

Figure 5 Security ratio of the proposed method.
Full-size DOI: 10.7717/peerjcs.2236/fig-5

Robustness
Robustness measures the ability of hidden data to remain intact during transmission and
to endure various attacks or modifications to the cover object, while still enabling reliable
extraction of the hidden message. The key aspects of robustness include resistance to
changes during transmission, resilience against attacks or modifications, and the reliable
extraction of hidden data.

For the first aspect, and since the proposed method is intended for communication
in mega events, it is crucial to test it across various platforms and software to verify that
the stego file retains all hidden data without loss and that all secret bits can be extracted
accurately. To prove this, three main tests were conducted on a sample cover text:
1. The first test involved running the algorithm and opening the output stego file using

different software applications such as MS Word and Windows Notepad. The stego
text was then employed to extract the secret message.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 26/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-5
http://dx.doi.org/10.7717/peerj-cs.2236

2. The second test consisted of sending the stego text via email using various email
platforms such as Gmail and Outlook. The received message was then used to extract
the secret bits.

3. The third test entailed sending the stego text viaWhatsApp and subsequently extracting
the secret bits from the sent message.
In all the aforementioned tests, the integrity of the stego texts was confirmed, and the

proposed method successfully extracted the correct message.
To evaluate the proposed method against possible attacks, which involve deliberate

modifications or interventions to disrupt, remove, or manipulate the hidden information
within a stego-object (Alotaibi & Elrefaei, 2018), the following experiments were conducted:
1. Localized insertion: where some noise is inserted in one location of the stego text.
2. Dispersed insertion: where some noise is inserted in different locations of the stego

text.
In these tests, adding noise in the form of characters, words, or sentences without adding

white spaces was detected in the extraction process. This is because each character should
correspond to a white space.
3. Localized deletion: where a random text is deleted from one location of the stego text.
4. Dispersed deletion: where random texts are deleted from different locations of the

stego text.
These tests include deleting characters, words, or entire sentences from the stego text.

In most cases, this deletion was detected during the extraction process. The cases that were
not detected occurred when a whole word or sentence was deleted from the middle of the
text. This is because deleting a whole word or sentence removes both characters and white
spaces. However, the word or sentence to be deleted must be chosen carefully to keep the
remaining text meaningful, which makes this type of attack more difficult.
5. Copying and pasting: where the stego text was copied and pasted in another program

or file.
6. Formatting: where the style of stego text was changed, such as: font style, text size,

coloring, highlighting and any other effects.
In these tests, the secret bits were extracted correctly because copying and pasting of the

stego text will not remove the invisible characters even if pasted in different software, and
formatting the stego text has no effect on the invisible characters.
7. Retyping: where the stego text was retyped.
8. Printing: where the stego text was scanned and read through OCR software and then

printed.
Because invisible characters are lost when the stego text is retyped or scanned or read

through OCR and reprinted, the proposed method is not robust against these types of
attacks.

Table 11 summarizes the robustness of the proposed method against these types of
attacks.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 27/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 11 Analysis of the robustness of the proposed method against possible attacks.

Robustness attack Robust?

Localized insertion (character, word, sentence)
√

Dispersed insertion (characters, words, sentences)
√

Localized deletion of a character
√

Localized deletion of a word from the middle of the stego
text

×

Localized deletion of a word from the end of the stego text
√

Localized deletion of a sentence from the middle of the
stego text

×

Localized deletion of a sentence from the end of the stego
text

√

Dispersed deletion of a character
√

Dispersed deletion of words from the middle of the stego
text

×

Dispersed deletion of words from the end of the stego text
√

Dispersed deletion of sentences from the middle of the
stego text

×

Dispersed deletion of sentences from the end of the stego
text

√

Copying and pasting
√

Formatting
√

Retyping ×

Printing ×

DISCUSSION AND COMPARISON
In this section, comparisons of the performance of the proposed method with related
work are discussed. The related methods shown in Table 4 are selected, which all use
Unicode in their methodologies. The comparison is discussed in the main measurements
of steganography: capacity, security, and robustness.

Capacity
Using Eq. (3) given in ‘Capacity’, the maximum capacity ratio of the related works has been
calculated for the last 30 Surahs of the Holy Quran, and the results are shown in Tables 12
and 13. The tables show the capacity ratio when the 30 cover texts include diacritics and
when they are free of diacritics, respectively. The capacity ratio and its average in the two
cases are illustrated in Figs. 6 and 7.

As depicted in the figures, our method outperforms all prior approaches across all cover
texts when diacritics are included in the cover texts with an average capacity ratio of 178%.
The main feature of our proposed method that gives this superior capacity ratio is that,
in our method, two secret bits are hidden in each character and that all characters except
the normal spaces are utilized for hiding secret bits. In some of the other methods only
one bit per character is hidden at most, while in some others, the hidden data depends on
the number of spaces, which is always less than the number of characters. Furthermore,
diacritics are not utilized in hiding secret bits in most of the previous approaches.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 28/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 12 Capacity comparison when cover texts include diacritics. The bold values show the average of capacity (with and without diacritics).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Proposed

1 6% 12% 23% 46% 31% 60% 46% 49% 54% 12% 49% 60% 49% 100% 29% 177%
2 7% 14% 27% 54% 33% 59% 54% 45% 60% 14% 45% 59% 45% 100% 25% 173%
3 7% 14% 27% 54% 36% 59% 54% 46% 63% 15% 46% 59% 46% 100% 23% 173%
4 6% 13% 26% 51% 37% 60% 51% 47% 63% 13% 47% 60% 47% 100% 23% 174%
5 5% 11% 22% 43% 32% 59% 43% 48% 54% 11% 48% 59% 48% 100% 27% 178%
6 6% 13% 26% 51% 33% 62% 51% 49% 59% 13% 49% 62% 49% 100% 27% 174%
7 5% 10% 19% 39% 31% 56% 39% 46% 51% 11% 46% 56% 46% 100% 24% 181%
8 5% 10% 21% 41% 33% 59% 41% 49% 54% 11% 49% 59% 49% 100% 25% 179%
9 5% 10% 20% 41% 32% 59% 41% 49% 53% 11% 49% 59% 49% 100% 25% 180%
10 5% 11% 21% 43% 38% 58% 43% 47% 59% 11% 47% 58% 47% 100% 20% 179%
11 6% 11% 22% 44% 33% 58% 44% 47% 55% 11% 47% 58% 47% 100% 24% 178%
12 5% 9% 18% 37% 31% 61% 37% 51% 49% 10% 51% 61% 51% 100% 28% 182%
13 5% 10% 21% 41% 37% 57% 41% 47% 57% 11% 47% 57% 47% 100% 19% 179%
14 5% 11% 22% 44% 34% 61% 44% 50% 55% 11% 50% 61% 50% 100% 27% 178%
15 6% 11% 22% 44% 35% 59% 44% 48% 58% 11% 48% 59% 48% 100% 23% 178%
16 5% 11% 21% 42% 31% 58% 42% 48% 52% 11% 48% 58% 48% 100% 27% 179%
17 6% 11% 22% 45% 35% 60% 45% 49% 58% 11% 49% 60% 49% 100% 24% 178%
18 6% 12% 24% 47% 34% 59% 47% 47% 57% 12% 47% 59% 47% 100% 24% 176%
19 6% 12% 23% 46% 32% 59% 46% 47% 55% 12% 47% 59% 47% 100% 25% 177%
20 5% 10% 20% 41% 35% 60% 41% 50% 56% 11% 50% 60% 50% 100% 24% 180%
21 6% 12% 23% 47% 31% 58% 47% 46% 55% 12% 46% 58% 46% 100% 27% 177%
22 6% 11% 23% 45% 33% 59% 45% 48% 56% 12% 48% 59% 48% 100% 24% 177%
23 5% 11% 21% 43% 33% 59% 43% 48% 54% 11% 48% 59% 48% 100% 24% 179%
24 5% 10% 21% 42% 34% 60% 42% 50% 55% 11% 50% 60% 50% 100% 26% 179%
25 6% 11% 23% 46% 35% 60% 46% 48% 58% 12% 48% 60% 48% 100% 24% 177%
26 6% 11% 23% 45% 33% 59% 45% 48% 56% 11% 48% 59% 48% 100% 25% 177%
27 6% 11% 23% 46% 35% 59% 46% 48% 58% 12% 48% 59% 48% 100% 23% 177%
28 6% 11% 23% 46% 34% 59% 46% 48% 57% 12% 48% 59% 48% 100% 24% 177%
29 6% 11% 23% 45% 33% 59% 45% 48% 55% 12% 48% 59% 48% 100% 26% 177%
30 6% 11% 23% 45% 34% 61% 45% 49% 57% 11% 49% 61% 49% 100% 26% 177%
Average 6% 11% 22% 45% 34% 59% 45% 48% 56% 12% 48% 59% 48% 100% 25% 178%

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

29/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 13 Capacity comparison when cover texts are free of diacritics. The bold values show the average of capacity (with and without diacritics).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Proposed

1 10% 19% 38% 77% 52% 100% 77% 81% 90% 20% 81% 100% 81% 166% 48% 162%
2 12% 23% 46% 93% 57% 100% 93% 77% 103% 24% 77% 100% 77% 171% 43% 154%
3 11% 23% 46% 92% 61% 100% 92% 77% 107% 25% 77% 100% 77% 169% 39% 154%
4 11% 21% 43% 85% 61% 100% 85% 79% 104% 22% 79% 100% 79% 166% 39% 157%
5 9% 18% 37% 73% 54% 100% 73% 82% 91% 19% 82% 100% 82% 169% 46% 163%
6 10% 21% 42% 83% 54% 100% 83% 79% 95% 22% 79% 100% 79% 162% 43% 158%
7 9% 17% 35% 69% 56% 100% 69% 83% 90% 19% 83% 100% 83% 179% 42% 165%
8 9% 17% 35% 70% 57% 100% 70% 83% 91% 18% 83% 100% 83% 169% 42% 165%
9 9% 17% 34% 69% 55% 100% 69% 83% 89% 18% 83% 100% 83% 169% 42% 166%
10 9% 18% 37% 74% 66% 100% 74% 82% 103% 19% 82% 100% 82% 173% 34% 163%
11 10% 19% 39% 77% 57% 100% 77% 81% 96% 20% 81% 100% 81% 173% 41% 161%
12 8% 15% 30% 60% 51% 100% 60% 85% 81% 16% 85% 100% 85% 165% 47% 170%
13 9% 18% 36% 72% 64% 100% 72% 82% 100% 19% 82% 100% 82% 175% 34% 164%
14 9% 18% 36% 72% 55% 100% 72% 82% 91% 18% 82% 100% 82% 165% 45% 164%
15 9% 19% 38% 75% 60% 100% 75% 81% 98% 19% 81% 100% 81% 170% 39% 163%
16 9% 18% 36% 73% 52% 100% 73% 82% 89% 19% 82% 100% 82% 172% 46% 164%
17 9% 19% 37% 75% 59% 100% 75% 81% 96% 19% 81% 100% 81% 167% 40% 163%
18 10% 20% 40% 81% 58% 100% 81% 80% 98% 21% 80% 100% 80% 171% 41% 160%
19 10% 20% 40% 79% 55% 100% 79% 80% 94% 20% 80% 100% 80% 170% 43% 160%
20 8% 17% 34% 68% 58% 100% 68% 83% 92% 17% 83% 100% 83% 166% 40% 166%
21 10% 20% 41% 81% 54% 100% 81% 80% 95% 21% 80% 100% 80% 173% 46% 159%
22 10% 19% 38% 76% 56% 100% 76% 81% 94% 20% 81% 100% 81% 169% 41% 162%
23 9% 18% 36% 73% 56% 100% 73% 82% 93% 18% 82% 100% 82% 171% 41% 164%
24 9% 17% 35% 69% 56% 100% 69% 83% 91% 18% 83% 100% 83% 166% 43% 165%
25 10% 19% 38% 77% 58% 100% 77% 81% 97% 19% 81% 100% 81% 168% 41% 162%
26 10% 19% 38% 76% 56% 100% 76% 81% 94% 19% 81% 100% 81% 168% 42% 162%
27 10% 19% 38% 77% 60% 100% 77% 81% 98% 19% 81% 100% 81% 169% 38% 162%
28 10% 19% 39% 77% 57% 100% 77% 81% 95% 20% 81% 100% 81% 168% 41% 161%
29 10% 19% 38% 76% 55% 100% 76% 81% 93% 19% 81% 100% 81% 168% 44% 162%
30 9% 19% 37% 75% 56% 100% 75% 81% 94% 19% 81% 100% 81% 165% 43% 163%
Average 9% 19% 38% 76% 57% 100% 76% 81% 95% 20% 81% 100% 81% 169% 42% 162%

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

30/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 14 Security and imperceptibility comparison. The bolded texts show the average of security and imperceptibility.

method M4 M5 M6 M7 M8 M9 Proposed

imperceptibility ratio 54% 8% 2% 100% 100% 8% 100%Exp1
Security ratio 44% 44% -12% -68% 44% 44% 72%
imperceptibility ratio 100% 100% 51% 100% 100% 100% 100%Exp2
Security ratio 100% 100% 44% 100% 100% 100% 72%
imperceptibility ratio 77% 54% 28% 100% 100% 54% 100%Exp3
Security ratio 72% 72% 16% 52% 72% 72% 72%
imperceptibility ratio 74% 48% 25% 100% 100% 48% 100%Exp4
Security ratio 68% 68% 12% 34% 68% 68% 72%
imperceptibility ratio 82% 62% 31% 100% 100% 62% 100%Exp5
Security ratio 77% 77% 21% 44% 77% 77% 72%

average imperceptibility ratio 77% 54% 27% 100% 100% 54% 100%
average security ratio 72% 72% 16% 32% 72% 72% 72%

For the case when the cover texts are free of diacritics, only M14 has slightly better
capacity ratio than our method. The main reason for this is that M14 utilizes normal spaces
to hide secret bits, while our method does not.

Security and imperceptibility
As shown in Table 4, one of themain drawbacks of themethods based on the use of different
Unicode forms is that they suffer from incorrect connectivity between some letters, even
though they tried to avoid that. For instance, the example given in Alanazi, Khan & Gutub
(2022) shows that the sentence ‘‘

588 For the case when the cover texts are free of diacritics, only M14 has slightly better capacity

589 ratio than our method. The main reason for this is that M14 utilizes normal spaces to hide secret

590 bits, while our method does not.

591

592

593 6.2. Security and imperceptibility
594

595 As shown in Table 4, one of the main drawbacks of the methods based on the use of different

596 Unicode forms is that they suffer from incorrect connectivity between some letters, even though

597 they tried to avoid that. For instance, the example given in (Alanazi, Khan, & Gutub, 2022)

598 shows that the sentence � � has changed to �     �, after hiding the

599 secret message. It is clear that the letter � � does not connect correctly to the previous letter.

600 Another example is given in (Obeidat, 2017), where also the letter � � does not connect correctly

601 to the previous letter. This degrades the imperceptibility of these methods. Therefore, in this

602 section, these methods, which are M10 to M15, are excluded from the comparison. In addition,

603 the approaches that have very low capacity have also been excluded from the comparison,

604 because the secret message will be very small if these approaches are included. These

605 approaches are the ones that hide secret messages word by word, which are M1 to M3.

606

607 To evaluate the performance of the proposed method against the other related approaches in

608 terms of security and imperceptibility, we conducted five experiments using five different secret

609 messages: all ones (Exp1), all zeros (Exp2), alternating ones and zeros (Exp3), random ones and

610 zeros with more ones than zeros (Exp4), and random ones and zeros with more zeros than ones

611 (Exp5). The cover text selected is the last third Surah of the Holy Quran, Surah 'Al-�Ikhlas'. The

612 number of bits in the secret messages is the maximum that could be hidden among all methods,

613 which is 56 bits. The results of these experiments are shown in Table 14 and depicted in Figure

614 8.

615 As illustrated in the figure, the proposed method, along with M7 and M8, achieves the highest

616 imperceptibility ratio of 100%.

617 Regarding security, as discussed in Section 5.2, the proposed method maintains the same security

618 ratio regardless of the secret bits. In contrast, the security of other approaches varies based on the

619 structure of the secret bits. As illustrated in the figure, the proposed method exhibits a

620 commendable level of security, with a 72% security ratio on average, outperforming M6 and M7,

621 and achieving equal average security with the other approaches, namely, M4, M5, M8, and M9.

622

623 6.3. Robustness
624

625 The robustness against the possible attacks discussed in Section 5.3 has been analyzed for the

626 related works in comparison with our proposed method. This analysis is shown in Table 15. The

627 analysis shows that all methods are not robust against the retyping attack, because the inserted

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ has changed to ‘‘

588 For the case when the cover texts are free of diacritics, only M14 has slightly better capacity

589 ratio than our method. The main reason for this is that M14 utilizes normal spaces to hide secret

590 bits, while our method does not.

591

592

593 6.2. Security and imperceptibility
594

595 As shown in Table 4, one of the main drawbacks of the methods based on the use of different

596 Unicode forms is that they suffer from incorrect connectivity between some letters, even though

597 they tried to avoid that. For instance, the example given in (Alanazi, Khan, & Gutub, 2022)

598 shows that the sentence � � has changed to �     �, after hiding the

599 secret message. It is clear that the letter � � does not connect correctly to the previous letter.

600 Another example is given in (Obeidat, 2017), where also the letter � � does not connect correctly

601 to the previous letter. This degrades the imperceptibility of these methods. Therefore, in this

602 section, these methods, which are M10 to M15, are excluded from the comparison. In addition,

603 the approaches that have very low capacity have also been excluded from the comparison,

604 because the secret message will be very small if these approaches are included. These

605 approaches are the ones that hide secret messages word by word, which are M1 to M3.

606

607 To evaluate the performance of the proposed method against the other related approaches in

608 terms of security and imperceptibility, we conducted five experiments using five different secret

609 messages: all ones (Exp1), all zeros (Exp2), alternating ones and zeros (Exp3), random ones and

610 zeros with more ones than zeros (Exp4), and random ones and zeros with more zeros than ones

611 (Exp5). The cover text selected is the last third Surah of the Holy Quran, Surah 'Al-�Ikhlas'. The

612 number of bits in the secret messages is the maximum that could be hidden among all methods,

613 which is 56 bits. The results of these experiments are shown in Table 14 and depicted in Figure

614 8.

615 As illustrated in the figure, the proposed method, along with M7 and M8, achieves the highest

616 imperceptibility ratio of 100%.

617 Regarding security, as discussed in Section 5.2, the proposed method maintains the same security

618 ratio regardless of the secret bits. In contrast, the security of other approaches varies based on the

619 structure of the secret bits. As illustrated in the figure, the proposed method exhibits a

620 commendable level of security, with a 72% security ratio on average, outperforming M6 and M7,

621 and achieving equal average security with the other approaches, namely, M4, M5, M8, and M9.

622

623 6.3. Robustness
624

625 The robustness against the possible attacks discussed in Section 5.3 has been analyzed for the

626 related works in comparison with our proposed method. This analysis is shown in Table 15. The

627 analysis shows that all methods are not robust against the retyping attack, because the inserted

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ after

hiding the secret message. It is clear that the letter ‘‘

588 For the case when the cover texts are free of diacritics, only M14 has slightly better capacity

589 ratio than our method. The main reason for this is that M14 utilizes normal spaces to hide secret

590 bits, while our method does not.

591

592

593 6.2. Security and imperceptibility
594

595 As shown in Table 4, one of the main drawbacks of the methods based on the use of different

596 Unicode forms is that they suffer from incorrect connectivity between some letters, even though

597 they tried to avoid that. For instance, the example given in (Alanazi, Khan, & Gutub, 2022)

598 shows that the sentence � � has changed to �     �, after hiding the

599 secret message. It is clear that the letter � � does not connect correctly to the previous letter.

600 Another example is given in (Obeidat, 2017), where also the letter � � does not connect correctly

601 to the previous letter. This degrades the imperceptibility of these methods. Therefore, in this

602 section, these methods, which are M10 to M15, are excluded from the comparison. In addition,

603 the approaches that have very low capacity have also been excluded from the comparison,

604 because the secret message will be very small if these approaches are included. These

605 approaches are the ones that hide secret messages word by word, which are M1 to M3.

606

607 To evaluate the performance of the proposed method against the other related approaches in

608 terms of security and imperceptibility, we conducted five experiments using five different secret

609 messages: all ones (Exp1), all zeros (Exp2), alternating ones and zeros (Exp3), random ones and

610 zeros with more ones than zeros (Exp4), and random ones and zeros with more zeros than ones

611 (Exp5). The cover text selected is the last third Surah of the Holy Quran, Surah 'Al-�Ikhlas'. The

612 number of bits in the secret messages is the maximum that could be hidden among all methods,

613 which is 56 bits. The results of these experiments are shown in Table 14 and depicted in Figure

614 8.

615 As illustrated in the figure, the proposed method, along with M7 and M8, achieves the highest

616 imperceptibility ratio of 100%.

617 Regarding security, as discussed in Section 5.2, the proposed method maintains the same security

618 ratio regardless of the secret bits. In contrast, the security of other approaches varies based on the

619 structure of the secret bits. As illustrated in the figure, the proposed method exhibits a

620 commendable level of security, with a 72% security ratio on average, outperforming M6 and M7,

621 and achieving equal average security with the other approaches, namely, M4, M5, M8, and M9.

622

623 6.3. Robustness
624

625 The robustness against the possible attacks discussed in Section 5.3 has been analyzed for the

626 related works in comparison with our proposed method. This analysis is shown in Table 15. The

627 analysis shows that all methods are not robust against the retyping attack, because the inserted

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ does not connect correctly to the
previous letter. Another example is given in Obeidat (2017), where also the letter ‘‘

588 For the case when the cover texts are free of diacritics, only M14 has slightly better capacity

589 ratio than our method. The main reason for this is that M14 utilizes normal spaces to hide secret

590 bits, while our method does not.

591

592

593 6.2. Security and imperceptibility
594

595 As shown in Table 4, one of the main drawbacks of the methods based on the use of different

596 Unicode forms is that they suffer from incorrect connectivity between some letters, even though

597 they tried to avoid that. For instance, the example given in (Alanazi, Khan, & Gutub, 2022)

598 shows that the sentence � � has changed to �     �, after hiding the

599 secret message. It is clear that the letter � � does not connect correctly to the previous letter.

600 Another example is given in (Obeidat, 2017), where also the letter � � does not connect correctly

601 to the previous letter. This degrades the imperceptibility of these methods. Therefore, in this

602 section, these methods, which are M10 to M15, are excluded from the comparison. In addition,

603 the approaches that have very low capacity have also been excluded from the comparison,

604 because the secret message will be very small if these approaches are included. These

605 approaches are the ones that hide secret messages word by word, which are M1 to M3.

606

607 To evaluate the performance of the proposed method against the other related approaches in

608 terms of security and imperceptibility, we conducted five experiments using five different secret

609 messages: all ones (Exp1), all zeros (Exp2), alternating ones and zeros (Exp3), random ones and

610 zeros with more ones than zeros (Exp4), and random ones and zeros with more zeros than ones

611 (Exp5). The cover text selected is the last third Surah of the Holy Quran, Surah 'Al-�Ikhlas'. The

612 number of bits in the secret messages is the maximum that could be hidden among all methods,

613 which is 56 bits. The results of these experiments are shown in Table 14 and depicted in Figure

614 8.

615 As illustrated in the figure, the proposed method, along with M7 and M8, achieves the highest

616 imperceptibility ratio of 100%.

617 Regarding security, as discussed in Section 5.2, the proposed method maintains the same security

618 ratio regardless of the secret bits. In contrast, the security of other approaches varies based on the

619 structure of the secret bits. As illustrated in the figure, the proposed method exhibits a

620 commendable level of security, with a 72% security ratio on average, outperforming M6 and M7,

621 and achieving equal average security with the other approaches, namely, M4, M5, M8, and M9.

622

623 6.3. Robustness
624

625 The robustness against the possible attacks discussed in Section 5.3 has been analyzed for the

626 related works in comparison with our proposed method. This analysis is shown in Table 15. The

627 analysis shows that all methods are not robust against the retyping attack, because the inserted

PeerJ Comput. Sci. reviewing PDF | (CS-2024:02:96997:1:0:NEW 13 Jun 2024)

Manuscript to be reviewedComputer Science

’’ does
not connect correctly to the previous letter. This degrades the imperceptibility of these
methods. Therefore, in this section, these methods, which are M10 to M15, are excluded
from the comparison. In addition, the approaches that have very low capacity have also
been excluded from the comparison, because the secret message will be very small if these
approaches are included. These approaches are the ones that hide secret messages word by
word, which are M1 to M3.

To evaluate the performance of the proposed method against the other related
approaches in terms of security and imperceptibility, we conducted five experiments
using five different secret messages: all ones (Exp1), all zeros (Exp2), alternating ones and
zeros (Exp3), random ones and zeros with more ones than zeros (Exp4), and random ones
and zeros with more zeros than ones (Exp5). The cover text selected is the last third Surah
of the Holy Quran, Surah ‘Al-Ikhlas’. The number of bits in the secret messages is the
maximum that could be hidden among all methods, which is 56 bits. The results of these
experiments are shown in Table 14 and depicted in Fig. 8.

As illustrated in the figure, the proposed method, along with M7 and M8, achieves the
highest imperceptibility ratio of 100%.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 31/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 6 Capacity comparison with related work when cover texts include diacritics.
Full-size DOI: 10.7717/peerjcs.2236/fig-6

Figure 7 Capacity comparison with related work when cover texts are free of diacritics.
Full-size DOI: 10.7717/peerjcs.2236/fig-7

Regarding security, as discussed in ‘Security and imperceptibility’, the proposed method
maintains the same security ratio regardless of the secret bits. In contrast, the security of
other approaches varies based on the structure of the secret bits. As illustrated in the figure,
the proposed method exhibits a commendable level of security, with a 72% security ratio
on average, outperformingM6 andM7, and achieving equal average security with the other
approaches, namely, M4, M5, M8, and M9.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 32/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-6
https://doi.org/10.7717/peerjcs.2236/fig-7
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 8 Security and imperceptibility comparison.
Full-size DOI: 10.7717/peerjcs.2236/fig-8

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 33/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-8
http://dx.doi.org/10.7717/peerj-cs.2236

Robustness
The robustness against the possible attacks discussed in ‘Robustness’ has been analyzed
for the related works in comparison with our proposed method. This analysis is shown in
Table 15. The analysis shows that all methods are not robust against the retyping attack,
because the inserted extra characters may not be retyped. In addition, all methods are
not robust against deletion of words and sentences, because the extra characters used to
hide secret bits will be lost. For the deletion of a character, it can only be detected by the
proposed method, along with M4 and M7, whereas the other approaches are not robust
against such an attack. This is because M4 andM7 hide secret bits by inserting white spaces
after a word, regardless of the characters of that word, while the hiding of bits in the other
approaches depends on the characters of the text, so deleting a character will change the
secret message. For our approach, deleting a character without the corresponding white
space will be detected in the extracting process.

Furthermore, only M1 and M9 are robust against printing attacks because they rely on
visible characters for hiding secret bits, while the others utilize invisible characters that will
be lost when the stego text is printed. On the other hand, all methods are robust against
copying and pasting and formatting, because the inserted extra characters are not affected
or lost when the text is copied or formatted.

For the insertion attacks, only M4, M7, M10, and the proposed method are robust
against insertion of a character. For M4 and M7, adding a character will not affect the
inserted white spaces, so the secret message does not change. For M10, if the character
added is of the same code, that will not affect the secret message, and if it is different, then
that will be detected. In our prosed method, inserting a character without a corresponding
white space will be detected in the extracting process. For all other approaches, adding a
character will affect the secret message.

However, the only method that is robust against insertion of words or sentences is our
method, because these added words or sentences will not correspond to white spaces,
and that will be detected. For the other approaches, adding a whole word is not detected
because it will be treated as having secret bits.

In addition, only our proposed approach is robust against insertion or deletion of words
or sentences at the end of the stego text, because the ending white space will not be available,
which will be detected in the extraction process.

To give this comparison a value, we use the following equation to evaluate the robustness
of a method:

Robustness=
number of tests demonstrating the method’s robustness

total number of tests
. (8)

Using this equation, Fig. 9 illustrates the robustness of the proposed method compared
to related approaches. The figure clearly shows that the proposed method is better than all
other methods in robustness, with a robustness of 70% against possible attacks.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 34/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Table 15 Robustness comparison.

Attack M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Proposed

character x x x
√

x x
√

x x
√

x x x x x
√

word x x x x x x x x x x x x x x x
√

Localized insertion
sentence x x x x x x x x x x x x x x x

√

character x x x
√

x x
√

x x
√

x x x x x
√

word x x x x x x x x x x x x x x x
√Dispersed insertion

sentence x x x x x x x x x x x x x x x
√

character x x x
√

x x
√

x x x x x x x x
√

word (middle) x x x x x x x x x x x x x x x x
sentence (middle) x x x x x x x x x x x x x x x x
word (end) x x x x x x x x x x x x x x x

√
Localized deletion

sentence (end) x x x x x x x x x x x x x x x
√

character x x x
√

x x
√

x x x x x x x x
√

word (middle) x x x x x x x x x x x x x x x x
sentence (middle) x x x x x x x x x x x x x x x x
word (end) x x x x x x x x x x x x x x x

√

Dispersed deletion

sentence (end) x x x x x x x x x x x x x x x
√

Copying and pasting
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Formatting
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Retyping x x x x x x x x x x x x x x x x
Printing

√
x x x x x x x

√
x x x x x x x

K
han

(2024),PeerJ
C

om
put.Sci.,D

O
I10.7717/peerj-cs.2236

35/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236

Figure 9 Robustness comparison.
Full-size DOI: 10.7717/peerjcs.2236/fig-9

CONCLUSION
This article introduces a novel approach to secure communication during mega events
using Arabic text steganography with invisible Unicode characters. In the proposedmethod
each Arabic letter can hide two secret bits based on the two characteristics of that letter:
whether it is dotted or not, and whether it is connected or not.

Themethod offers several advantages: it enables the transmission of small secretmessages
within Arabic text, making it more compact compared to audio or video covers. Moreover,
it’s adaptable to social media platforms, which are prevalent communication channels
during mega events. Additionally, the stego text can be sent via email or WhatsApp while
preserving the embedded messages’ integrity. Given the widespread use of Arabic in
communication, particularly during mega events like Hajj and Umrah, this method holds
significant relevance.

The proposed method demonstrates superior performance across key steganography
metrics. It surpasses previous methods with an average capacity ratio of 178% because it
hides two secret bits in all characters of the cover texts, except for normal spaces, whereas
the other approaches hide one bit per character at most, and some of them hide less than
that. In addition, the proposed method achieves a perfect imperceptibility ratio of 100%
because it does not add any visible characters. Furthermore, it exhibits commendable levels
of robustness, as it can detect 70% of possible attacks.

Although the proposed method achieved a good level of security of an average of 72%
security ratio, with a comparable performance to other related approaches, this aspect
is one of its main limitations because the size of the stego text is larger than the cover
text. However, since there is a tradeoff between security and capacity, this limitation is
acceptable, especially given the perfect imperceptibility of the proposed method.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 36/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2236/fig-9
http://dx.doi.org/10.7717/peerj-cs.2236

As a future direction, steganographic techniques with even higher degrees of security
and resilience may be developed by utilizing the remarkable imperceptibility and high
capacity of the proposed method.

ADDITIONAL INFORMATION AND DECLARATIONS
Funding
The authors received no funding for this work. Umm Al-Qura University supported this
research through a paid sabbatical leave year (2023 –2024) by the University Rector decree
No. (4502002286). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
Umm Al-Qura University.
University Rector decree: 4502002286.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Esam Ali Khan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Python code of the algorithm developed is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2236#supplemental-information.

REFERENCES
AabedMA, Awaideh SM, Elshafei A-RM, Gutub AA. 2007. Arabic diacritics based

steganography. In: Proceedimgs of the 2007 IEEE International Conference on Signal
Processing and Communications (ICSPC 2007). Piscataway: IEEE, 756–759.

AhmadohME, Gutub AA-A. 2015. Utilization of two diacritics for Arabic text steganog-
raphy to enhance performance. Lecture Notes on Information Theory 3(1):42–47.

AhvanooeyMT, Li Q, Hou J, Rajput AR, Chen Y. 2019.Modern text hiding, text
steganalysis, and applications: a comparative analysis.MDPI Entropy 21(4):1–31
DOI 10.3390/e21040355.

Al-Haidari F, Gutub A, Al-Kahsah K, Hamodi J. 2009. Improving security and capacity
for Arabic text steganography using ‘kashida’ extensions. In: Proceedings of the 7th

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 37/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2236#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2236#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2236#supplemental-information
http://dx.doi.org/10.3390/e21040355
http://dx.doi.org/10.7717/peerj-cs.2236

ACS/IEEE International Conference on Computer Systems and Applications (AICCSA-
2009). Piscataway: IEEE, 396–399.

Al-Khaldy DA, Hassan TH, Abdou AH, Abdelmoaty MA, Salem AE. 2022. The effects
of social networking services on tourists’ intention to visit mega-events during
the Riyadh season: a theory of planned behavior model.MDPI Sustainability
14(21):1–13 DOI 10.3390/su142114481.

Al-Nazer A, Gutub A. 2009. Exploit kashida adding to Arabic e-Text for high capacity
steganography. In: International workshop on frontiers of information assurance &
security (FIAS 2009). Gold Coast, Queensland, Australia, 447–451.

Al-Nofaie SM, Fattani MM, Gutub AA. 2016.Merging two steganography techniques
adjusted to improve Arabic text data security. Journal of Computer Science &
Computational Mathematics 6(3):59–65 DOI 10.20967/jcscm.2016.03.004.

Al-Nofaie S, Gutub A, Al-Ghamdi M. 2021. Enhancing Arabic text steganography for
personal usage utilizing pseudo-spaces. Journal of King Saud University –Computer
and Information Sciences 33:963–974 DOI 10.1016/j.jksuci.2019.06.010.

Al-Nofaie SM, Gutub AA-A. 2020. Utilizing pseudo-spaces to improve Arabic text
steganography for multimedia data communications.Multimedia Tools and
Applications 79:19–67 DOI 10.1007/s11042-019-08025-x.

Al-Oun SM, Alnihoud JQ. 2017. An efficient approach to hide compressed voice data
in Arabic Text using Kashida and La. Journal of Computer Science 13(3):48–54
DOI 10.3844/jcssp.2017.48.54.

Alanazi N, Khan E, Gutub A. 2022. Inclusion of Unicode Standard seamless char-
acters to expand Arabic text steganography for secure individual uses. Journal
of King Saud University –Computer and Information Sciences 34:1343–1356
DOI 10.1016/j.jksuci.2020.04.011.

Alhusban AM, Alnihoud JQ. 2017. A meliorated kashida-based approach for Arabic text
steganography. International Journal of Computer Science & Information Technology
(IJCSIT) 9(2):99–112 DOI 10.5121/ijcsit.2017.9209.

Alotaibi RA, Elrefaei LA. 2016. Utilizing word space with pointed and un-pointed
letters for Arabic text watermarking. In: 18th International conference on Computer
Modelling and Simulation (UKSim-AMSS ’16), 111–116.

Alotaibi RA, Elrefaei LA. 2018. Improved capacity Arabic text watermarking methods
based on open word space. Journal of King Saud University -Computer and Informa-
tion Sciences 30:236–248 DOI 10.1016/j.jksuci.2016.12.007.

Alshahrani HM,Weir G. 2017.Hybrid Arabic text steganography. International Journal
of Computer and Information Technology 6(6):329–338.

BenderW, Gruhl D, Morimoto N, Lu A. 1996. Techniques for data hiding. IBM Systems
Journal 35(3.4):313–336 DOI 10.1147/sj.353.0313.

Bennett K. 2004. Linguistic steganography: survey, analysis, and robustness concerns
for hiding information in text. Center for Education and Research in Information
Assurance and Security. Purdue University Available at https://www.cerias.purdue.
edu/assets/pdf/bibtex_archive/2004-13.pdf .

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 38/41

https://peerj.com
http://dx.doi.org/10.3390/su142114481
http://dx.doi.org/10.20967/jcscm.2016.03.004
http://dx.doi.org/10.1016/j.jksuci.2019.06.010
http://dx.doi.org/10.1007/s11042-019-08025-x
http://dx.doi.org/10.3844/jcssp.2017.48.54
http://dx.doi.org/10.1016/j.jksuci.2020.04.011
http://dx.doi.org/10.5121/ijcsit.2017.9209
http://dx.doi.org/10.1016/j.jksuci.2016.12.007
http://dx.doi.org/10.1147/sj.353.0313
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2004-13.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2004-13.pdf
http://dx.doi.org/10.7717/peerj-cs.2236

BensaadML, Yagoubi M. 2013. Boosting the capacity of diacritics-based methods for
information hiding in Arabic Text. Arabian Journal for Science and Engineering
38:2035–2041 DOI 10.1007/s13369-013-0576-3.

Gutub A. 2024. Emerging Arabic text watermarking utilizing combinations of different
diacritics. Arabian Journal for Science and Engineering 1–16
DOI 10.1007/s13369-023-08629-4.

Gutub A, Al-Haidari F, Al-Kahsah KM, Hamodi JM. 2010a. E-text watermarking: uti-
lizing ‘kashida’ extensions in Arabic language electronic writing. Journal of Emerging
Technologies in Web Intelligence (JETWI) 2(1):48–55 DOI 10.4304/jetwi.2.1.48-55.

Gutub A, Fattani M. 2007. A novel Arabic text steganography method using letter points
and extensions. International Journal of Computer, Electrical, Automation, Control
and Information Engineering 1(3):502–505.

Gutub AA, Ghouti LM, Elarian YS, Awaideh SM, Alvi AK. 2010b. Utilizing diacritic
marks for Arabic Text steganography. Kuwait Journal of Science & Engineering (KJSE)
37(1):89–109.

Gutub AA-A, Al-AlwaniW,Mahfoodh AB. 2010. Improved method of Arabic text
steganography using the extension ‘kashida’ character. Bahria University Journal of
Information & Communication Technology 3(1):68–72.

Gutub AA-A, Al-Nazer AA. 2010.High capacity steganography tool for Arabic Text using
‘Kashida’. The ISC Int’l Journal of Information Security (ISeCure) 2(2):109–120.

Gutub AA-A, Elarian YS, Awaideh SM, Alvi AK. 2008. Arabic text steganography using
multiple diacritics. In: Proceedings of the 5th IEEE International Workshop on Signal
Processing and its Applications (WoSPA 2008). Piscataway: IEEE, 18–20.

Gutub AA-A, Ghouti L, Amin AA, Alkharobi TM, IbrahimMK. 2007. Utilizing exten-
sion character ’kashida’ with pointed letters for Arabic text digital watermarking. In:
International Conference on Security and Cryptography (SECRYPT’07). Barcelona,
Spain, 329–332.

IBM Security. 2023. Cost of a Data Breach Report 2023. IBM Available at https://www.
ibm.com/reports/data-breach.

Invisible Characters. 2022. Invisible characters. Available at https://invisible-characters.
com/.

Jebur SA, Nawar AK, Kadhim LE, Jahefer MM. 2023.Hiding information in digital
images using LSB steganography technique. International Journal of Interactive
Mobile Technologies (iJIM) 17(07):167–178 DOI 10.3991/ijim.v17i07.38737.

Kadhem SM, Ali DW. 2017. Proposed hiding text in text based on RNA for encoding
secret information. Iraqi Journal of Science 58(1C):562–573.

Khan E. 2014. Using Arabic poetry system for steganography. Asian Journal of Computer
Science and Information Technology 4(6):55–61.

Malalla S, Shareef FR. 2016a. A new modified fatha method for Arabic text steganogra-
phy hybrid with AES encryption. IOSR Journal of Computer Engineering (IOSR-JCE)
18(5):37–45.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 39/41

https://peerj.com
http://dx.doi.org/10.1007/s13369-013-0576-3
http://dx.doi.org/10.1007/s13369-023-08629-4
http://dx.doi.org/10.4304/jetwi.2.1.48-55
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://invisible-characters.com/
https://invisible-characters.com/
http://dx.doi.org/10.3991/ijim.v17i07.38737
http://dx.doi.org/10.7717/peerj-cs.2236

Malalla S, Shareef FR. 2016b. Improving hiding security of Arabic text steganography
by hybrid AES cryptography and text steganography. International Journal of
Engineering Research and Application 6(6):60–69.

Malalla S, Shareef FR. 2017. A novel approach for Arabic text steganography based
on the bloodgroup text hiding method. Engineering, Technology & Applied Science
Research 7(2):1482–1485 DOI 10.48084/etasr.1090.

MemonMS, Shah A. 2011. A Novel Text Steganography Technique to Arabic Lan-
guage. Pakistan Journal of Engineering Technology & Science 1(2):106–113
DOI 10.22555/pjets.v1i2.167.

Mersal S, Alhazmi S, Alamoudi R, Almuzaini N. 2014. Arabic text steganography
in smartphone. International Journal of Computer and Information Technology
03(02):441–445.

Obeidat AA. 2017. Arabic text steganography using unicode of non-joined to right side
letters. Journal of Computer Science 13(6):184–191 DOI 10.3844/jcssp.2017.184.191.

Odeh A, Alzubi A, Hani QB, Elleithy K. 2012. Steganography by multipoint Arabic
letters. In: Proceedings of the 2012 IEEE Long Island Systems, Applications and
Technology Conference (LISAT), Piscataway: IEEE, 1–7.

Odeh A, Elleithy K, FaezipourM. 2013. Steganography in Arabic text using Kashida
variation algorithm (KVA). In: Proceedings of the 2013 IEEE Long Island Systems,
Applications and Technology Conference (LISAT). Piscataway: IEEE, 1–6.

Poitevin V. 2023. Cybersecurity & Olympic Games: lessons learned ahead of Paris 2024.
Available at https://www.stormshield.com/news/cybersecurity-olympic-games-lessons-
learned-ahead-of-paris-2024/ (accessed on 16 May 2024).

Product Knowledge, R&D. 2022.Unicode best practices guide. R. Product Knowledge.
Available at https://docs.hyland.com/ImageNow/en_US/7.8/Admin/Print/Unicode_
Best_Practices_Guide_7.8.x.pdf (accessed on 7 January 2024).

Roslan NA, Mahmod R, Udzir NI. 2011. Sharp-edges method in Arabic text steganogra-
phy. Journal of Theoretical and Applied Information Technology 33(1):32–41.

Roslan NA, Mahmod R, Udzir NI, Zurkarnain ZA. 2014. Primitive structural method
for high capacity text steganography. Journal of Theoretical and Applied Information
Technology 67(2):373–383.

Shirali-Shahreza M. 2007. A new Persian/Arabic text steganography using ‘La’ word.
In: Proceedings of the International Joint Conference on Computer, Information, and
Systems Sciences, and Engineering (CISSE’07). Bridgeport, USA, 339–342.

Shirali-Shahreza M, Shirali-Shahreza M. 2006. A new approach to Persian/Arabic
text steganography. In: Proceedings of the 5th IEEE/ACIS international conference
on computer and information science and 1st IEEE/ACIS International Workshop
on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-
COMSAR’06). Piscataway: IEEE, 310–315.

Shirali-Shahreza M, Shirali-Shahreza MH. 2008a. An improved version of Persian/Ara-
bic text steganography using La word. In: Proceedings of IEEE 2008 6th national
conference on telecommunication technologies and IEEE 2008 2nd Malaysia conference
on photonics. Piscataway: IEEE, 372–376.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 40/41

https://peerj.com
http://dx.doi.org/10.48084/etasr.1090
http://dx.doi.org/10.22555/pjets.v1i2.167
http://dx.doi.org/10.3844/jcssp.2017.184.191
https://www.stormshield.com/news/cybersecurity-olympic-games-lessons-learned-ahead-of-paris-2024/
https://www.stormshield.com/news/cybersecurity-olympic-games-lessons-learned-ahead-of-paris-2024/
https://docs.hyland.com/ImageNow/en_US/7.8/Admin/Print/Unicode_Best_Practices_Guide_7.8.x.pdf
https://docs.hyland.com/ImageNow/en_US/7.8/Admin/Print/Unicode_Best_Practices_Guide_7.8.x.pdf
http://dx.doi.org/10.7717/peerj-cs.2236

Shirali-Shahreza MH, Shirali-Shahreza M. 2008d. Steganography in Persian and Arabic
unicode texts using pseudo-space and pseudo connection characters. Journal of
Theoretical & Applied Information Technology 4(8):682–687.

Shirali-Shahreza MH, Shirali-Shahreza M. 2010. Arabic/Persian text steganography uti-
lizing similar letters with different codes. Arabian Journal for Science and Engineering
35(18):213–222.

Shirali-Shahreza M, Shirali-Shahreza S. 2008b.High capacity Persian/Arabic text
steganography. Journal of Applied Sciences 8(22):4173–4179
DOI 10.3923/jas.2008.4173.4179.

Shirali-Shahreza M, Shirali-Shahreza S. 2008c. Persian/Arabic unicode text steganogra-
phy. In: Proceedings of the Fourth International Conference on Information Assurance
and Security (ISIAS ’08). Naples, Italy, 62–66.

SOCRadar. 2022. FIFA World Cup 2022 Qatar: dark web & phishing landscape analysis.
Available at https://socradar.io/fifa-world-cup-2022-qatar-dark-web-phishing-
landscape-analysis/ (accessed on 16 May 2024).

Souvik B, Banerjee I, Sanyal G. 2011. A survey of steganography and steganalysis
technique in image, text, audio and video as cover carrier. Journal of Global Research
in Computer Sciences 2(44):1–16.

Taha A, Hammad AS, SelimMS. 2020. A high capacity algorithm for information hiding
in Arabic text. Journal of King Saud University - Computer and Information Sciences
32(6):658–665 DOI 10.1016/j.jksuci.2018.07.007.

Thabit R, Udzir NI, Yasin SM, Asmawi A, Roslan NA, Din R. 2021. A compar-
ative analysis of Arabic text steganography. Applied Sciences 11(6851):1–32
DOI 10.3390/app11156851.

ZhangW, Li S. 2004. Security measurements of steganographic systems. In: Jakobsson
M, Yung M, Zhou J, eds. Applied cryptography and network security. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 194–204 DOI 10.1007/978-3-540-24852-1_14.

Unicode Explorer. 2024. Unicode Explorer. Available at https://unicode-explorer.com/.

Khan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2236 41/41

https://peerj.com
http://dx.doi.org/10.3923/jas.2008.4173.4179
https://socradar.io/fifa-world-cup-2022-qatar-dark-web-phishing-landscape-analysis/
https://socradar.io/fifa-world-cup-2022-qatar-dark-web-phishing-landscape-analysis/
http://dx.doi.org/10.1016/j.jksuci.2018.07.007
http://dx.doi.org/10.3390/app11156851
http://dx.doi.org/10.1007/978-3-540-24852-1_14
https://unicode-explorer.com/
http://dx.doi.org/10.7717/peerj-cs.2236

