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ABSTRACT
Phrase search encryption enables users to retrieve encrypted data containing a
sequence of consecutive keywords without decrypting, which plays an important role
in cloud Internet of Things (IoT) systems. However, due to the sequential
relationship between keywords in the phrase, phrase search and verification are more
difficult than multi-keyword search. Furthermore, verification evidence is generated
by the server in existing schemes, and cloud servers are generally considered
untrustworthy, so the verification is unreliable. To address this, we propose an
efficient phrase search scheme that supports reliable verification of search results,
where blockchain is introduced to generate verification evidence and perform
verification of the results. The immutable nature of blockchain guarantees the
credibility of evidence and verification. During the verification, we use a multiset
hash function to generate aggregated evidence, reducing storage and blockchain
transaction costs. In addition, we design a novel composite index and discrimination
algorithm based on homomorphic encryption, with which we can quickly identify
phrases and improve search efficiency. Finally, we conducted security analysis and
detailed experiments on our scheme, which proved that the scheme is secure and
efficient.

Subjects Algorithms and Analysis of Algorithms, Security and Privacy, Internet of Things,
Blockchain
Keywords Phrase search, Blockchain, Verification, Efficient

INTRODUCTION
Currently, the Internet of Things (IoT) has developed rapidly and is widely used in
agriculture, industry, medicine and other fields, helping to improve crop production,
manufacturing efficiency, and protect patients’ health. Every day, hundreds of millions of
IoT devices around the world generate massive amounts of data, which is stored on the
local or cloud. Compared to local storage, cloud storage can not only reduce local storage
and management costs, achieve efficient data processing and analysis, but also help to
achieve data sharing between different users, so it has been widely researched and applied.

Although cloud storage brings many conveniences to users, it also poses security and
privacy risks. Cloud servers are generally considered untrustworthy, the unauthorized
inside user may attempt to access sensitive information (e.g., patient’s disease name, blood
pressure, etc.), and some hackers may also illegally access data, which will lead to data
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destruction and privacy leaks. In this case, IoT devices generally encrypt data first, and
then outsource the ciphertext to the cloud to protect the integrity and privacy of the data.

For data outsourced to the cloud, when users need to access it, they perform retrieval on
ciphertext. To achieve keyword retrieval on encrypted data and maintain the balance
between search efficiency and security, Song, Wagner & Perrig (2000) proposed the
concept of searchable encryption (SE), according to the number of keywords queried, SE is
divided into two categories: single keyword search and multi-keyword search. Phrase
search is an important technology of searchable encryption, which can search for a series of
conjunction keywords in sentences or documents (Tang et al., 2012; Anand et al., 2014).
Designing an efficient phrase search solution is very challenging, existing single keyword
(Curtmola et al., 2006; Stefanov, Papamanthou & Shi, 2014) or multi-keyword encryption
search schemes (Cash et al., 2013; Poon & Miri, 2015) cannot be directly applied to phrase
search because they cannot determine the location of keywords. For example, in the
electronic medical system, certain diseases are expressed by phrases, such as “myocardial
infarction”. When searching for this phrase with a multi-keyword encrypted search
scheme, the cloud server may return search results that contain both “myocardium” and
“infarction”, but they may not appear as a phrase. Obviously, the search results contain a
lot of invalid files.

Another challenge for phrase search is the verification of search results. Since data is
outsourced on the cloud, external or internal attacks on cloud server may compromise the
integrity or confidentiality of the data. In addition, data may be lost or damaged during
data transmission. Therefore, it is necessary to verify the results of phrase search.

Although there are some studies (Kissel & Wang, 2013; Ge et al., 2021) addressing the
problem of phrase search result verification, unfortunately, these verification schemes lack
reliability. The reason is that in the existing solution, the server calculates search results
and uses methods such as RSA accumulators to generate verification evidence. These
search results and verification evidence may be forged by the cloud server (for example, the
server may store only a part of the file and search index for financial gain, in which case the
search results and verification evidence are incomplete). In addition, data users may forge
verification results for cost savings, which may also result in the unreliability of verification
results. In recent studies, some researchers have adopted blockchain technology. These
schemes guarantee the reliability of verification based on the immutable property of the
blockchain and have obtained ideal experimental results. But, these schemes mainly focus
on the encrypted search of single keyword and cannot be applied to phrase search.

To address these problems, we design a blockchain-based phrase search scheme
supporting reliable verification over encrypted cloud-IoT data, our main contributions are
as follows:

1) We propose an efficient phrase search scheme over encrypted cloud-IoT data. In our
scheme, a composite index containing keyword position and a distance discrimination
algorithm based on homomorphic encryption are proposed, which can not only reduce the
complexity of phrase recognition, but also achieve efficient phrase search and result
verification.
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2)We propose a method that enables reliable verification of phrase search results. In our
scheme, the verification evidence calculation and verification process of phrase search are
both executed by the blockchain, breaking the pattern of the server generating both search
results and verification evidence, so the reliability of phrase search is ensured.
Furthermore, we use a multiset hash function to calculate cumulative evidence, which
significantly reduces the overhead of the blockchain.

3) We conducted a security analysis of the scheme and conducted detailed experiments.
The results demonstrate that our construction is secure and enjoys good search efficiency.

The article is structured as follows: “Related Work” introduces the current research
progress related to phrase search and verification; “Problem Formulation” describes the
system model, threat model, algorithm definitions, and security definitions; “Methods”
provides a detailed description of the phrase search and verification algorithms used in our
scheme; and finally, “Security Analysis” and “Results” respectively analyze the security and
experimental results of the proposed solution.

RELATED WORK
Searchable symmetric encryption (SSE) was first proposed by Song, Wagner & Perrig
(2000) in 2000, which provides users with a new way to perform retrieval on encrypted
data. However, this scheme uses full-text matching, and the search time is linear. To
improve the search efficiency, Anand et al. (2014) proposed an efficient searchable
encryption scheme with the inverted index, achieving a subcaptionlinear search. Following
this direction, a great many schemes have been proposed to support dynamic update
(Kamara, Papamanthou & Roeder, 2012; Stefanov, Papamanthou & Shi, 2014; Liu et al.,
2021), multi-client query (Sun, Zuo & Liu, 2022; Du et al., 2020) and privacy protection
(Liu et al., 2014; Song et al., 2021). But these schemes are mainly focusing on a single
keyword, and the cloud returns some irrelevant files. To further improve the search
efficiency and accuracy, SSE schemes supporting multi-keyword search are proposed, such
as boolean query (Cash et al., 2013) and conjunctive queries (Lai et al., 2018). Compared
with single keyword query, multi-keyword search improves search accuracy and reduces
the communication and storage overhead.

Phrase search is a special case of multi-keyword search, it requires a sequential
relationship between multiple keywords. Anand et al. (2014) first defined the model of
phrase search and its security definition, but it is impractical in real scenarios since the
client and the server require two rounds of interaction to complete a phrase query. Poon &
Miri (2015) proposed a low storage phrase search scheme using bloom filter and symmetric
encryption, and further proposed a fast phrase search scheme based on n-gram filters in
2019 (Poon & Miri, 2019). Li et al. (2015) implemented phrase search based on relative
position, and realizes lightweight transactions and storage during the retrieval process. Ge
et al. (2021) proposed an intelligent fuzzy phrase search scheme over encrypted network
data for IoT, which dentifies phrases through binary matrices and look-up tables, and uses
a fuzzy keyword set to resolve spelling errors in phrase searches. Shen et al. (2019)
proposed a phrase search scheme that protects user privacy, which uses homomorphic
encryption and bilinear mapping to achieve phrase identification.
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Verifiable search: As we all know, servers in SSE are not completely trusted and may
return incorrect search results due to external or internal attacks, so verifiable search is
necessary. The concept of verifiable searchable symmetric encryption (VSSE) was first
proposed by Qi & Gong (2012) in 2012, since then, a series of VSSE schemes are proposed
(Liu et al., 2016; Miao et al., 2021; Chen et al., 2021;Wu et al., 2023). Unfortunately, these
schemes are valid for a single keyword but do not support multiple keywords.Wan&Deng
(2018) used homomorphic MAC to design a scheme that can verify the search results of
multiple keywords. Li et al. (2021) used RSA accumulators to verify multi-keyword search
results and uses bitmaps to improve search efficiency. There are similar multi-keyword
verifiable ciphertext retrieval schemes (Liu et al., 2021; Liang et al., 2020, 2021). Kissel &
Wang (2013) utilized a validation tag to build a verifiable phrase search scheme over
encrypted data, but they failed to verify the integrity of the file. For more complex phrase
searches, Ge et al. (2021) used the MAC function and look-up tables to implement phrase
search result verification. Although this construction can verify the phrase search, it adopts
a two-phase query strategy, which means the user needs to interact with the server twice in
a phrase search and generate a large number of trapdoors.

Verifiable search based on blockchain: In the above verifiable schemes, the server sends
the search results and verification evidence to the user, and the user calculates the search
results and compares them with the received evidence to complete the verification. But this
approach has some disadvantages. First, the results and evidence are unreliable due to the
server is untrusted. Second,this approach cannot solve the problem of fair verification
between server and user. To address this problem, blockchain is introduced into verifiable
search. Currently, some verifiable search solutions based on blockchain have been
proposed (Hu et al., 2018; Li et al., 2019; Guo, Zhang & Jia, 2020), but these solutions
mainly focus on single keyword search, while there are almost no reliable and fair
verification solutions for multi-keyword search scenarios. The same is true for phrase
searches, which are more complex than multi-keyword searches.

PROBLEM FORMULATION
In this section, we formally define the efficient and reliable phrase search scheme over
encrypted cloud-IoT data. We present the system model, threat model and security
definition. We denote a composite index as a secure index, a searched phrase as a query and
an encrypted query as a trapdoor. The notations and symbols used in our system are shown
in Table 1.

System model
Four entities are included in our system: IoT device, data user, cloud server, and
blockchain. The system model is shown in Fig. 1. IoT device as the data owner collects data
and stores them in the form of files F ¼ fF1; F2; . . . FMg. The IoT device extracts all the
keywordsW ¼ fw1;w2; . . .wNg inF and adopts the bitmap to build composite indexI.
The IoT device encrypts all the files in F to ciphertexts C ¼ fC1;C2; . . .CMg by
symmetric encryption, and calculates the hash value hashi of each ciphertext in C through
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sha256, which will be added to the checklist L. At last, (I, C) and (I, L) are sent to the
cloud server and the blockchain, respectively.

The data user obtains the system public parameters � through the authorization of the
IoT device, generates a search trapdoor through these public parameters and the phrases to
be queried ew. The trapdoor will be sent to the server and blockchain for encrypted search
and result verification, respectively. The data user receives the search results R and
verification result proof from the blockchain, and accepts R if proof ¼ 1, otherwise
rejects R.

Table 1 Notations and symbols.

Notation Definition

idi The identifier of the file Fi

M The number of files

N The number of keywords

Lð�Þ A bit-length of �
j � j Number of elements in set �
SLiw1
jjAj Get the first |A| bits of SLiw1

SLiw1
j�ðjAj�jBjÞ Get the last ðjAj � jBjÞ bits of SLiw1ew The query phrase

R A set of ciphertext satisfying phrase search

proof Verification result, 1: valid, 0: invalid

|| Concatenation symbol, ajjb denotes the concatenation of message a and b.

ri;j Number of positions of keyword wi in file Fj

Figure 1 System model. Image credit: component source from https://www.iconfont.cn/.
Full-size DOI: 10.7717/peerj-cs.2235/fig-1
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The cloud server stores the index I and ciphertexts C sent by the IoT device, and
performs a search over encrypted data using the trapdoor sent by the data user to generate
the search result R and aggregate evidence w. At last, the cloud server sends w to the
blockchain for verification, and sends R to the user.

The blockchain verifies aggregate evidence w returned by the server and generates
proof . To achieve reliable verification, the blockchain performs a phrase search in parallel
with the cloud server to generate the verification standard value w0. The blockchain
compares w0 with the aggregated evidence w returned by server, calculates the verification
evidence proof , and sends it to the user. In particular, during the verification, multi-set
hash functions are used to verify the aggregate hash results of the ciphertext, while the
ciphertext is off-chain, thereby reducing blockchain storage and computing overhead.

Threat model
In our system, IoT devices and blockchains are completely trusted, IoT devices can collect
data honestly, and generate secure indexes and checklists. The blockchain performs fair
verification of search results, and the verification result is reliable and unforgeable.

Correspondingly, cloud servers and users are considered untrustworthy. The cloud
server may only store part of the index and ciphertext for saving storage resources. At the
same time, it may perform searches dishonestly in order to save computation costs. In
addition, there may be other software/hardware malfunctions in the system. All the above
reasons will make the file and the verification evidence returned by the server incomplete
or incorrect. As for data users, it may falsify verification results for financial gain and is
therefore not trustworthy.

Algorithm definitions
Our scheme consists of six polynomial algorithmsQ ¼ fKeyGen; IndexBuild;TokenGen; Search;Verify;Decg:

1) K  KeyGenð1kÞ, this algorithm inputs a secure parameter k, and outputs the key set
K ¼ ðK1;K2;K3;K4;KI ;KZ;KX; pk; skÞ.

2) ðI;T;BÞ  IndexBuildðF;W;KÞ, this algorithm takes the set of files F, the set of
keywords W, the key set K as input, and outputs the secure index I, the encrypted
database T, the checklist B.

3) TKi;Q  TokenGenðew;K3; pkÞ, this algorithm takes a query phrase ew, a secret key K3

and a public key pk as input, and outputs the search trapdoor TKi;Q.
4) ðw;RÞ  SearchðI;T;TKi;QÞ, this algorithm takes the secure indexI, the encrypted

database T and the search trapdoor TKi;Q as input, and outputs the aggregate evidence w
and search results R.

5) proof  VerifyðI;w;B;TKi;QÞ, this algorithm takes the secure index I, aggregate
evidence w, the checklist B, the search trapdoor TKi;Q as input, and outputs the verification
evidence proof .

6) F  DecðK2;CÞ, this algorithm takes the symmetric key K2 and the encrypted file C
as input, and outputs the plaintext F.
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Leakage function
The goal of searchable encryption is to leak as little information as possible about the
keywords and files during ciphertext retrieval. Similar toWu et al. (2023), the leak function
is defined as L ¼ fLIndexBuild;LSearch;LVerifyg. According to the common definition,
query history Hist ¼ fðDBi; qiÞgni¼0, which stores a series of query requests and
corresponding database snapshots. The search pattern spðwÞ ¼ fijfor each qi that contains
w inHistg, which records each query request. The proof history phðwÞ ¼ fði; proofiÞ
jfor each ði; indi;wÞ in Histg. Then, we can define the leakage function
LIndexBuild ¼ ðphðwÞÞ, LSearch ¼ ðspðwÞ; phðwÞÞ and LVerify ¼ ðphðwÞÞ.

Security definitions
Definition 1 (Verifiability). In an efficient and verifiable phrase search scheme, if the

probability that the forged result generated by any probabilistic polynomial time (PPT)
adversary passes the Verify algorithm is infinitesimal, the scheme satisfies verifiability.

Definition 2 (CKA2-security). For the verifiable phase search scheme
Q

=
{KeyGen; IndexBuild;TokenGen; Search;Verify;Dec}, there is a leakage function
L ¼ fLIndexBuild;LSearch;LVerifyg, an adversaryA and an idealized simulatorS, as well

as two games RealAðkÞ and IdealA;SðkÞ, satisfying:
RealAðkÞ: The challenger generates system key K ¼ fK1;K2;K3g and index (I, T, B) by

executing algorithm KeyGenð1kÞ and algorithm IndexBuildðF;W;KÞ,(I, T, B) are
transmitted to the adversary A. A proceeds to formulate a sequence of adaptive queries
Q ¼ fq1; q2; . . . ; qtg, with the challenger generating search tokens for each query, and
receives the results of executing algorithms Search and Verify. Finally, A produces a bit b
as the output of this experiment.

IdealA;SðkÞ: The simulator S takes (F, W) generated by the adversary A as input and

outputs index (I, T, B) by executing algorithm LIndexBuild. Then, for a series of adaptive
queries Q ¼ fq1; q2; . . . ; qtg generated by the adversary A, S generates search results by
executing algorithmsLSearch and LVerify, A receives those results and produces a bit b as
the output of this experiment.

If there is a simulator S such that for any PPT adversary A:

j Pr½RealAðkÞ ¼ 1� � Pr½IdealA;SðkÞ� ¼� neglðkÞ;
then

Q
is L–secure against adaptive chosen-keyword attack (CKA2), where negl is an

negligible function and k is the security parameter.

Preliminaries
Bitmaps employ binary strings to represent information sets, commonly utilized for
storing file identifiers in encrypted searches, thus efficiently reducing storage requirements.
In our model, each keyword wi corresponds to a bitmap, and the bitmap is a string
composed of a series of 0 or 1, each 0 or 1 denotes a file. If the i� th document contains wi,
the value of the string at position i is set to 1, otherwise 0. For instance, with four files (F1,
F2, F3, F4) and two keywords (w1, w2) in the system, depicted in Fig. 2, w1 is found in F1
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and F3, while w2 exists in F2 and F3. The bitmaps for w1 and w2 are 1010 and 0110,
respectively. To search for files containing both w1 and w2, an “AND” operation on these
two bitmaps is performed, yielding 1010 ^ 0110 ¼ 0010, indicating that F3 contains both
w1 and w2.

Homomorphic encryption represents an encryption technique capable of transforming
a ciphertext into another without altering the decryption key. In this study, we employ the
prevalent Paillier additive homomorphic encryption to compute the distance between
keywords within phrases. In essence, its functionality can be outlined as follows:

1) Key Generation: Let p and q denote two large primes such that
gcdðpq; ðp� 1Þ � ðq� 1ÞÞ ¼ 1. Define n ¼ pq and k ¼ lcmðp� 1; q� 1Þ. Choose a
random integer g from Z�n2 satisfying gcdðLðgk mod n2Þ; nÞ ¼ 1, where LðxÞ ¼ ðx � 1Þ=n
and Z�n2 ¼ f1; 2; . . . ; n2 � 1g. Then, the public key ðn; gÞ and the private key k are
obtained.

2) Encryption: Given a message m, it can be encrypted into its ciphertext c as follows:

c ¼ Eðm; rÞ ¼ gmrn mod n2 (1)

where r is randomly selected from r 2 Zn.
3) Decryption: For the ciphertext c, it can be decrypted into its plaintext m as follows:

m ¼ Dðc; kÞ ¼ Lðck mod n2Þ
Lðgk mod n2Þ mod n (2)

This algorithm exhibits additive homomorphism. Given two messages a and b along
with their corresponding ciphertexts EðaÞ and EðbÞ, we can obtain the ciphertext of
ðaþ bÞ via EðaÞ � EðbÞ, i.e., Eðaþ bÞ ¼ EðaÞ � EðbÞ. This property can be leveraged to
compute the distance between keywords in a phrase, aiding in determining their positional
relationship.

Multiset Hash Function (Li et al., 2023): Multiset hash is a cryptographic tool that maps
multiple sets of any finite size to a fixed hash length. Furthermore, multiset hash is also
updateable: when the elements in the set change, the hash value only updates the current
value without recalculating all.

Our scheme uses the most efficient multi-set hash function: MSet-XOR-Hash,
containing three polynomial algorithms (H, þH, �H). Given a multiset M, the MSet-
XOR-Hash can be expressed as follows:

Figure 2 Bitmap. Full-size DOI: 10.7717/peerj-cs.2235/fig-2
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Hðr;MÞ ¼ Hkð0; rÞ 	 	
m2M

Hkð1;mÞ;
Hðr;M [ fxgÞ � HHðr;MÞ þ HHðr; fxgÞ

� HHðr;MÞ 	Hkð1; xÞ;
Hðr;M nfxgÞ � HHðr;MÞ � HHðr; fxgÞ

� HHðr;MÞ 	Hkð1; xÞ

8>>>><
>>>>:

METHODS
We present the construction of the efficient and reliable phrase search scheme over
encrypted cloud-IoT data in this section.

Composite index containing files and locations
In phrase search, a phrase is composed of multiple keywords according to a certain
positional relationship, which is also the difference between phrase search and multi-
keyword search. To perform a phrase search, the cloud server not only needs to search for
all keywords contained in the phrase, but also needs to determine whether the order
between keywords is correct.

To identify the position relationship between keywords in phrases, we designed a
composite index containing files and locations, the structure of the composite index is
shown in Fig. 3.

The composite index adopts inverted index structure to ensure high efficiency of search,
but, it’s different from the general inverted index in that each keyword not only
corresponds to the ID of a series of files, but also appends all the locations where the
keyword appears in the file. For example, in Fig. 3, suppose there are three keywords
(“heart”, “attack”, “medic”) and five corresponding files (F1, F2, F3, F4, F5), for simplicity,
encryptions are not shown. The positions of keyword “heart” in files F1, F2, F3 are (1, 8, 3),
(1, 2, 4) and (2, 3, 5) respectively, the positions of keyword “attack” in files F1, F2, F4 are (2,
5, 7), (3, 7, 9) and (1, 2, 5). When the cloud server searches the phrase “heart attack”, it
finds that the location of keyword “heart” in F1 is (1, 8, 3) through the composite index,
then it finds the location of keyword “attack” in F1 is (2, 5, 7). Using the encrypted distance
discrimination algorithm, the cloud server computes the position of “attack” in file F1 is 1
larger than that of “heart” by Eð2Þ ¼ Eð1Þ � Eð1Þ. Similarly, the cloud server computes that
“attack” is after “heart” in F2 through Eð3Þ ¼ Eð2Þ � Eð1Þ. After searching the location of
all keywords in the composite index, the server calculates that F1 and F2 contain the phrase
“heart attack”.

Encrypted distance discrimination algorithm-EDDA
The sequence of keywords in a phrase can be expressed by a sentinel and the
distance between each remaining keyword and the sentinel. For example, in a
phrase containing three keywords (w1, w2, w3), the position of w1, w2, w3 are 1, 2, 3, we
choose w1 as the sentinel. The distance between w2 and w1 is 1, and the distance between
w3 and w1 is 2. Suppose that positions of (w1, w2, w3) are (pos1, pos2, pos3), if we can
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calculate pos2 ¼ pos1 þ 1 and pos3 ¼ pos1 þ 2, we can recognize that (w1, w2, w3) is a
phrase.

In our scheme, the positions of keywords stored in the composite index are encrypted,
and the server should be able to recognize phrases without the decryption key. Therefore,
we utilize the paillier homomorphic encryption to construct the distance discrimination
algorithm to determine the location relationship between keywords,the details are as
follows:

EðdÞ is the distance after paillier homomorphic encryption, and SLiwj
denotes the

encrypted location of the keyword wj in file idi, the definition of SLiwj
is as follows:

SLiwj
¼ pðidiÞ þ Eðposiwj

Þ (3)

E represents paillier homomorphic encryption function and p represents hash function,

posiwj
is the original location of the keyword wj in file idi. In addition, keyword wj may

appears in multiple locations in the same file, in this case, Eðposiwj
Þ represents a series of

positions.
In distance discrimination algorithm, SLiw1

jjpj 	 SLiw2
jjpj is used to determine whether

w1 and w2 belong to the same file, if so, vali ¼¼ 0. Eðposiw1
Þ  SLiwj

j�ðjSLiwj j�jpjÞ is used to

calculate encrypted location of keyword wj, and Eðposiw2
Þ ¼¼ Eðposiw1

Þ þ EðdÞ is used to
determine whether the keyword w2 is located in the d position after w1. When the user
executes the phrase search request, he can designate the first word (i.e., w1) in the phrase as
the sentry, then calculate the distance d between the remaining words and the sentry one
by one, encrypt d, and finally generate a search token and send it to the server for search.

Details of our construction
Like most searchable encryption schemes, we adopt an inverted index structure to
construct the secure index. In the inverted index, we use a bitmap to store the identifier of

Figure 3 Example of the composite index structure. Full-size DOI: 10.7717/peerj-cs.2235/fig-3
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the file. Let H : f0; 1g� ! f0; 1gm; F : f0; 1g� ! f0; 1gn be secure pseudo-random
functions (PRFs).

KeyGenð1kÞ. The IoT device uses the secret parameters k to generate the key set

K ¼ fK1;K2;K3;K4;KI ;KZ;KX; pk; skg, where K1;K2;K3;K4;KI ;KZ;KX $ f0; 1gk,
ðpk; skÞ  Paillier:KeyGenð1kÞ. K1 is used to encrypt the identifier of files, K2 is the secret
key of symmetric encryption, K3 is the key for PRF F, ðpk; skÞ is the public key and the
private key of paillier encryption.

IndexBuildðF;W;KÞ. Given a set of files F, a set of keywords W, and the key set K,
the IoT device generates the secure indexI, the encrypted database T, the checklist B, the
details are shown in Algorithm 2.

For each file Fi 2F, IoT device encrypts it to the ciphertext Ci with symmetric
encryption EncðK2; FiÞ. The ciphertext Ci is stored in encrypted database T, and the hash
value hashi of Ci is stored in checklist B for verification.

IoT device generates a bitmap Bwj for each keyword wj, Bwj is encrypted by
vB  Bwj 	 H2ðuwj jjstjÞ and vB is stored in the secure index I. Especially, in order to

protect the privacy of files, IoT device uses ‘i  H2ðidijjK1Þ to encrypt the id of files, and
then uses ‘i to generate Bwj . Since the id stored on the server is encrypted, the server
cannot obtain the real id from Bwj , which ensures the privacy of the search pattern.

To identify phrases, the IoT device extracts positions ðpos1; pos2; . . . ; posmÞ of keyword
wj in file Fi, and encrypts them using Paillier:EncðposmÞ:
SLiwj
¼ pðidiÞ þ Eðpos1Þ þ Eðpos2Þ þ . . .þ EðposmÞ

TokenGenðew;K3; pkÞ. Authorized users get shared parameters � ¼ fK3; pkg from the
IoT device. For the phrase ew ¼ fw1;w2;…;wtg to be queried, the trapdoor TKi;Q is
generated as Algorithm 3.

Algorithm 1 Distance discrimination algorithm.

Input: SLiw1
; SLiw2

; EðdÞ
Output: Flag

1: Flag  False

2: vali& ¼ SLiw1
jjpj 	 SLiw2

jjpj
3: if vali ¼¼ 0 then

4: Eðposiw1
Þ  SLiw1

j�ðjSLiw1 j�jpjÞ
5: Eðposiw2

Þ  SLiw2
j�ðjSLiw2 j�jpjÞ

6: if Eðposiw2
Þ ¼¼ Eðposiw1

Þ þ EðdÞ then
7: Flag  True

8: end if

9: end if

10: return Flag
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Assume that the keywords fw1;w2; . . . ;wtg in phrase are arranged in order. The data
user calculates the distance d between the keyword wt and the first keyword w1 and
encrypts it with Paillier:EncðdÞ. At last, twj and Ed are added to the trapdoor TKi;Q and sent
to the cloud server and the blockchain.

SearchðI;T;TKi;QÞ. As shown in Algorithm 4, the cloud server performs an encrypted

search with the secure index I, the encrypted database T and the trapdoor TKi;Q.
After receiving the query request, the server parses the trapdoor

ftw1 ; tw2 ; . . . ; twt ;E1; E2; ::Et�1g  TKi;Q. The server gets the bitmap Bwi of wi from the

Algorithm 2 IndexBuild.

Input: DB;W;K

Output: I;T;B

1: for Fi 2F do

2: ‘i  HðidijjK1Þ;Ci  EncðK2; FiÞ
3: hashi  HðCiÞ;B½‘i�  hashi;T½‘i�  Ci

4: end for

5: for wj 2W do

6: for id 2 DB do

7: uwj  F1ðK3;wjÞ; stj  F2ðK4; idÞ; twj  H2ðuwj jjstjÞ
8: Extract positions ðpos1; pos2;…; posmÞ of keyword wj in file Fi

9: SLiwj
¼ pðidiÞ þ Eðpos1Þ þ Eðpos2Þ þ…þ EðposmÞ

10: vB  ðBwj jjSLiwj
Þ 	 H2ðuwj jjstjÞ;I½twj �  vB;

P½wj� ¼ stj

11: end for

12: end for

13: send ðI; BÞ to blockchain, send ðI;TÞ to cloud server

Algorithm 3 TokenGen.

Input: The query phrase ~w, the key set K

Output: The serach trapdoor TKi;Q

1: Suppose that query phrase ~w ¼fw1;w2;…;wtg
2: for j ¼ 1! t do

3: stj  
P½wj�; uwj  F1ðK3;wjÞ

4: twj  H2ðuwj jjstjÞ
5: if j > 1 then

6: d ¼ j� 1; Ed  Paillier:EncðdÞ
7: end if

8: end for

9: send TKi;Q ¼ ftw1 ; tw2 ;…; twt ; E1; E2;…; Et�1g to blockchain and cloud server
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secure index I through vB  I½twi �;Bwi  vB 	HðtwiÞ. To get the file that contains all
the keywords in the phrase ew, the server performs the operation “AND” on the bitmap of
all keywords as follows:

B ¼ B1 ^B2 ^ . . . ^Bt:

The file corresponding to the element with a value of “1” inB contains all the keywords
in the phrase. The server gets the set of identifiers of these files as IDB ¼ f‘1; ‘2; . . . ; ‘pg
according to B.

Next, the server determines whether the sequence of the keywords in the file ‘i is
consistent with the order of the keywords in the phrase, as described in line 7–line 20 in
Algorithm 3. The server chooses a binary string flag of length ðt � 1Þ, and set all values to
“0”. The server gets all positions Eðposi1Þ; Eðposi2Þ; EðposinÞ of the keyword wj in the file ‘i.
For the position Eðposk01 Þ of the keyword wjðj > 1Þ in file ‘i, the server utilizes the distance

Algorithm 4 Search.

Input: I;T;TKi;Q

Output: Search results R

1: Parse ftw1 ; tw2 ;…; twt ; E1; E2; ::Et�1g  TKi;Q

2: for twj 2 TKj;Q do

3: vB  I½twj �;Bwj jjSLiwj
 vB 	 H2ðtwjÞ

4: end for

5: B ¼ B1 ^B2 ^… ^Bt ; r ¼HðB; f?gÞ
6: Get IDB ¼ f‘1; ‘2;…; ‘pg from B

7: for ‘i 2 IDB do

8: flag ¼ f000…000gt�1; hashi ¼ H1ðt½‘i�Þ;w ¼ wþH Hðr; hashiÞ
9: ðEðpos11Þ; Eðpos12Þ; Eðpos1mÞÞ  SL1w1

10: for d ¼ 2! t do

11: ðEðposi1Þ; Eðposi2Þ; EðposinÞÞ  SLiwj

12: for k ¼ 1! m; k0 ¼ 1! n do

13: if Eðposk01 Þ ¼ Eðposk1Þ � Eðd � 1Þ then
14: Set the position ði� 1Þ of flag to 1

15: break

16: end if

17: end for

18: end for

19: If all positions of flag are 1

20: get Ci  T½‘i�, R R [ Ci

21: end for

22: Server sends {w} to the blockchain for verification, and sends R to the data user
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discrimination algorithm EDDA to determine the distance between keyword wjðj > 1Þ and
the first keyword w1 in the phrase. Like

Eðposk01 Þ ¼ Eðposk1Þ � Eðd � 1Þ (4)

where E represents the Paillier:Enc. If Formula (4) holds, the distance between keywords
w1 and wj is ðd � 1Þ, which is the same as that in the phrase, the server sets the position

ði� 1Þ of flag to “1”. If all positions of flag are “1”, then the file ‘i contains the phrase ew,
and it is added to the search result R. Finally, the aggregation proof w is sent to the
blockchain for reliable verification, and the ciphertext collection of search results R is sent
to the user.

VerifyðI;B;TKi;Q;wÞ. The blockchain utilizes TKi;Q for phrase searches to verify the

aggregated evidence w returned by the cloud server, as shown in Algorithm 5. To ensure
the reliable verification of search results, the verification algorithm Verify not only
verifies the integrity of the files, but also verifies whether the server has returned all files
that meet the search requirements.

The blockchain performs the same operations as the server (line 1–line 6), retrieving the
composite index stored on itself with the trapdoor TKi;Q, and calculates the search result

w0. Due to the immutability of data on the blockchain, the composite index stored and
search results calculated by the blockchain are reliable. Blockchain achieves reliable
verification of phrase search results by comparing w0 with the search result w returned by
the server.

For the file ‘i, the blockchain obtains the corresponding hash value hashi by searching
the checklist B and compresses it into the benchmark value w0. By comparing the aggregate
evidence w sent by the server with w0, the blockchain sets the value of proof as follows:

proof ¼ 1; if w ¼ w0;
0; otherwise:

�

By comparing w ¼ w0, the blockchain can determine: 1) whether the server has returned
all files that meet the search requirements; 2) the content of the files has been modified.

Then the verification evidence proof are sent to the data user. The data user judges the
received proof , and accepts the search result R if proof ¼ 1, otherwise rejects R. For the
accepted search result R, the data user uses the symmetric key to decrypt the file in it, to get
the plaintext of the file, and the phrase search process is completed.

Discussion
Ensuring the reliability of verification is an important target of our scheme. In the existing
phrase search scheme, the secure index is stored on the server, and the verification
evidence is generated by the server. Untrusted servers may only store partial indexes and
ciphertexts, resulting in untrustworthy search results and verification evidence. Whereas in
our scheme, blockchain uses search trapdoor to calculate verification evidence, the data
stored on the blockchain is unforgeable, so the search results on the blockchain are reliable.
At the same time, the verification of the results returned by the server is also performed by
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the blockchain, which prevents dishonest data users from falsifying the verification results
and ensures the reliability of the verification results.

SECURITY ANALYSIS
Theorem 1: The proposed efficient and reliable phrase search scheme satisfies

verifiability.
Proof. Let A be a PPT adversary who can produce a forgery RS, which can pass the

verification algorithm Verify. Assuming the correct search result is R, we will prove that
there is no such adversary A who can give a forgery RS satisfying R ¼ RS.

Suppose the compressed hash values corresponding to R and RS are w and wS,
respectively, and we will discuss the following two cases:

Case 1: R ¼ RS and w 6¼ wS. For each ciphertext Cj in R, we have hashj  HðCjÞ;w
¼ wþHHðr; hashjÞ, similarly, we have hashSj  HSðCS

j Þ;wS ¼ wSþHHðr; hashSj Þ
for each ciphertext CS

j in RS. Since the data on the blockchain is unforgeable and R ¼ RS,
we have w ¼ wS, which is contradictory to w 6¼ wS. Therefore this case does not hold.

Case 2: R 6¼ RS and w ¼ wS. This implies thatA can discover a collision for H, which
contradicts the collision resistance property of the hash function. Therefore, this case also
does not hold.

In summary, the unforgeability of blockchain and the collision resistance of hash
function ensures that any PPT adversary A cannot forge search results. So, our scheme
satisfies verifiability.

Theorem 2: If PRF F is pseudo-random, Enc algorithm is secure against chosen plaintext
attack (CPA-secure) and Paillier:Enc is secure against chosen ciphertext attack (CCA-
secure), then our proposed scheme is (LIndexBuild;LSearch;LVerify)-secure against the
adaptive chosen-keyword attack.

Proof. We establish the CKA2 security of our scheme by demonstrating the
indistinguishability of RealAðkÞ and IdealA;SðkÞ. The proof starts with RealAðkÞ and go

Algorithm 5 Verify.

Input: I;B, TKi;Q, ψ

Output: proof

1: w0  f; proof ¼ 0.

2: Using search trapdoors TKi;Q to perform phrase searches same as line 1–line 6 of Algorithm 4.

3: for ‘i 2 IDB do

4: hashi
0  B½‘i�;w0  þHHðr; hashiÞ

5: end for

6: if w ¼ w0 then

7: proof ¼ 1

8: end if

9: The blockchain sends proof to the data user.
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through a series of indistinguishable games to achieve IdealA;SðkÞ, thus proving that A
and IdealA;SðkÞ are indistinguishable.

Game G1: G1 is the same with RealAðkÞ:
j Pr½RealAðkÞ ¼ 1� ¼ Pr½G1 ¼ 1�

Game G2: We replace the output of the pseudorandom function F(F1 and F2) with a
sequence of binary random numbers F̂, the length of F̂ is equal to |F|, and store the binary
sequence in buckets B1 and B2. If the adversary A can distinguish between F and the
random number sequence, then they can distinguish between G1 and G2. Then,

j Pr½G1 ¼ 1� � Pr½G0 ¼ 1� � AdvPRFF1;F2;AðkÞ

Game G3: In G3, the output of the hash function H(H1 and H2) is replaced by a series of
randomly generated binary strings Ĥ, jĤj ¼ jHj. G3 stores Ĥ in buckets HB1 and HB2. If
the adversary A can distinguish between H and Ĥ, then they can distinguish between G2

and G3. Then,

j Pr½G3 ¼ 1� � Pr½G2 ¼ 1� � neglðkÞ

Game G4: In G3, the output of the multi-set hash function is computed based on
ðr; hashiÞ, while in G4, the output of the multi-set hash function consists of a random
binary string made up of a series of 0 or 1. And, the binary string is recorded in a bucket X̂.
From the previous analysis, we can conclude that

j Pr½G4 ¼ 1� � Pr½G3 ¼ 1� � neglðkÞ

IdealA;SðkÞ: IdealA;SðkÞ and G4 are the same, except that IdealA;SðkÞ introduces
simulator S, S executes algorithm LIndexBuild;LSearch;LVerify with the help of
(spðwÞ; phðwÞ) and the adversary A can sniff the algorithm output. The algorithm details
are shown in Algorithms 6–8. The adversary A cannot distinguish between the output of
the random oracle in this game and the actual data, hence

j Pr½IdealA;SðkÞ ¼ 1� � Pr½G4 ¼ 1� � neglðkÞ

From what we have discussed above, the adversary cannot distinguish the result in the
experiment Real and the result in the experiment Ideal. That is:

j Pr½RealAðkÞ ¼ 1� � Pr½IdealA;SðkÞ ¼ 1� � neglðkÞ

Therefore, our proposed scheme satisfies CKA2 security.

RESULTS
In order to objectively evaluate the performance of our scheme, we design a series of
scientific experiments in this section. We conducted a comprehensive analysis of the
experimental results and compared them with the existing phrase search scheme (Kissel &
Wang, 2013) and scheme (Ge et al., 2021). Our experiments are deployed on a local laptop
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Algorithm 6 Simulator 6.

Input: DB;W;K

Output: I;T;B

1: for Fi 2F do

2: ‘i  HB2;Ci  EncðK2; FiÞ
3: hashi  HB1;B½‘i�  hashi;T½‘i�  Ci

4: end for

5: for wj 2W do

6: for id 2 DB do

7: uwj  B1; stj  B2; twj  HB2

8: Extract positions ðpos1; pos2;…; posmÞ of keyword wj in file Fi

9: SLiwj
¼ pðidiÞ þ Eðpos1Þ þ Eðpos2Þ þ…þ EðposmÞ

10: vB �R f0; 1gðlþkÞ;I½twj �  vB;
P½wj� ¼ stj

11: end for

12: end for

13: send ðI; BÞ to blockchain, send ðI;TÞ to cloud server

Algorithm 7 Simulator 7.

Input: I;T;TKi;Q

Output: Search results R

1: Parse phðwÞ as ½ðt1; pf1Þ; ðt2; pf2Þ;…; ðtc; pfcÞ�
2: Parse ftw1 ; tw2 ;…; twt ; E1; E2; ::Et�1g  min spðTKi;QÞ
3: for twj 2 min spðTKi;QÞ do
4: vB �R f0; 1gðlþkÞ; ðBwj jjSLiwj

Þ �R f0; 1gðlþkÞ

5: end for

6: B ¼ B1 ^B2 ^ . . . ^Bt

7: Get IDB ¼ f‘1; ‘2;…; ‘pg from B

8: for ‘i 2 IDB do

9: flag ¼ f000…000gt�1

10: if X̂½i� ¼ ? then

11: X̂½i� �R f0; 1gn

12: else

13: X̂½i�  pfi

14: end if

15: ðEðpos11Þ; Eðpos12Þ; Eðpos1mÞÞ  SL1w1

16: for d ¼ 2! t do

17: ðEðposi1Þ; Eðposi2Þ; EðposinÞÞ  SLiwj

(Continued)
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with a Linux operating system, Intel Core i7-8550 CPU, and 8 GB RAM. Experimental
programs are developed using Python. As for the pseudo-random functions F and the hash
function H in the algorithm, we use HMAC-SHA-256 and SHA-256 respectively to
implement them. Additionally, we symmetrically encrypt files using AES-128, and the
security parameter is set to 128 bits. To evaluate our scheme in practice, we employ the
Enron email dataset (Cukierski, 2015), a real-world dataset comprising over 517 thousand

Algorithm 7 (continued)

18: for k ¼ 1! m; k0 ¼ 1! n do

19: if Eðposk01 Þ ¼ Eðposk1Þ � Eðd � 1Þ then
20: Set the position ði� 1Þ of flag to 1

21: break

22: end if

23: end for

24: end for

25: If all positions of flag are 1

26: get ci  T½‘i�, R R [ ci

27: end for

28: Server sends {X̂} to the blockchain for verification, and sends R to the data user

Algorithm 8 Simulator 8.

Input: I;B, TKi;Q, ψ

Output: proof

1: Parse phðwÞ as ½ðt1; pf1Þ; ðt2; pf2Þ;…; ðtc; pfcÞ�
2: w0  f; proof ¼ 0.

3: Using search trapdoors TKi;Q to perform phrase searches same as line 1–line 6 of Simulator 7.

4: for ‘i 2 IDB do

5: if X̂0½i� ¼ ? then

6: X̂0½i� �R f0; 1gn

7: else

8: X̂½i�  pfi

9: end if

10: hashi
0  B½‘i�;w0  þHHðr; hashiÞ

11: end for

12: if w ¼ w0 then

13: proof ¼ 1

14: end if

15: The blockchain sends proof to the data user.
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documents. Using the Porter Stemmer, we extract more than 1.67 million keywords and
eliminate irrelevant terms such as “of” and “the”.

Evaluation of IndexBuild
In this phase, the IoT device mainly completes the following work: (1) encrypt the files in
the system into ciphertext; (2) generate the secure index for all the keywords; (3) calculate
checklist of the ciphertext for verification.

The performance of the scheme can be evaluated through the execution time of
algorithm IndexBuild, and we evaluate the execution time of IndexBuild in different
numbers of files and keywords respectively. Figure 4A shows the variation pattern between
the execution time of IndexBuild and the number of keywords in a single file, while files
changes from 1,000, 2,000 to 3,000; in contrast, Fig. 4B shows the variation between the
execution time of IndexBuild and the number of files in the system, while keywords in a
single file changes from 10, 30 to 50. Obviously, the execution time of algorithm
IndexBuild is affected by both the number of files and keywords. The more files and
keywords contained in each file, the more time it takes in IndexBuild.

Evaluation of TokenGen
Search trapdoors are generated by users, which contains the permutation value of each
keyword in the query phrase and the encrypted distance for other keywords except the first
one. Figure 5 shows the time it takes to calculate a search trapdoor for different sizes of
search phrases, it’s clear that the time increases with the size of the query phrase. This is
easy to understand, because the more keywords in the phrase, the more distances between
keywords that need to be encrypted, resulting in more trapdoor calculation time.

(a) (b)

Figure 4 (A and B) Time of IndexBuild. Full-size DOI: 10.7717/peerj-cs.2235/fig-4
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Evaluation of search
Similarly, we use execution time to evaluate the search efficiency of our scheme. Figure 6A
shows how search time changes with query phrase size when the number of keywords
contained in each file is 10, 30 and 50. Figure 6B shows how search time changes with
query phrase size when the number of files is 1,000, 3,000 and 5,000.

The results of Fig. 6 demonstrate that as the size of the query phrase grows or the
number of documents grows, the search time will increase accordingly, which indicates
that the more keywords in the phrase and the more files in the system, the more time it

Figure 5 Time of trapdoor generation. Full-size DOI: 10.7717/peerj-cs.2235/fig-5

(a) (b)

Figure 6 (A and B) Time of search. Full-size DOI: 10.7717/peerj-cs.2235/fig-6
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takes for the server to perform a phrase search. Furthermore, since we can use trapdoors to
directly locate keywords in the inverted index, the search time is independent of the
number of keywords contained in each file.

Evaluation of verification
The blockchain first performs the similar operations as the server to search files that meet
the search phrase, then gets the corresponding hash value through the checklist B, and
finally calculates the benchmark w0 based on the multi-set hash function. During the
verification, the blockchain draws the verification conclusion by comparing w0 with the
search aggregation evidence w returned by the server. Therefore, the verification time is
related to the number of files that match the query phrase, and the experimental results are
shown in Fig. 7. Clearly, the verification time grows sub-linearly with the number of files
and the size of the phrase.

The gas consumption during the verification process is shown in Fig. 8. During the
verification process, the blockchain performs multiset hash calculations on the hash values
in the checklist that meet that meet the requirements of the phrase search, so the gas
consumption increases with the number of search results. When the number of resulting
files is 5, the gas consumption is 1:6� 105, and when the number of files is 25, the gas
consumption is 6:8� 105, gas consumption grows sublinearly.

Comparison with existing schemes
We choose scheme (Kissel & Wang, 2013) and scheme (Ge et al., 2021) with similar
functions to compare, and the results are shown Table 2, in which VPS and VPS-IoT
denote scheme (Kissel & Wang, 2013) and scheme (Ge et al., 2021), respectively. Both VPS
and VPS-IoT adopt a two-stage search strategy, so it takes two rounds of interaction
between the user and the cloud server to complete a phrase search. Additionally, they

Figure 7 Time of verification. Full-size DOI: 10.7717/peerj-cs.2235/fig-7
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calculate the verification evidence by the server. In this case, if the server is not trustworthy,
the evidence may also be incorrect, which poses a huge threat to the reliability of
verification.

The experimental results are shown in Figs. 9–12. The results in Fig. 9 show that VPS
takes the least time in building the index, while VPS-IoT takes the most. The reason lies in
that VPS lacks verification of file integrity, so the calculation cost is low. Both our scheme
and scheme VPS-IoT can verify the integrity of the file, but the structure of the lookup
table in VPS-IoT is complex, requiring a large number of encryption and MAC operations
on keyword positions, ciphertext, etc., so it needs more time than our scheme. Figure 10
represents that our scheme gains the highest efficiency in trapdoor generation. Both VPS
and VPS-IoT adopt a two-phase query strategy, the data user generates two trapdoors for a
query, while our scheme only needs to generate one trapdoor, obviously, our scheme is
more efficient. Figure 11 shows the comparison of the query efficiency of the three
schemes, the query is performed over 1,000 files and each file contains 20 keywords. The
complexity of the three schemes is almost the same, the search time grows sub-linearly
with the number of keywords in the phrase. As for verification efficiency, we deploy the

Figure 8 Gas consumption for verification. Full-size DOI: 10.7717/peerj-cs.2235/fig-8

Table 2 Compare with existing schemes.

Scheme Index building Trapdoor generation Query Verification Round

VPS OðMNÞ Oðjqj � jFwjÞ OðjFwj � jFjjjqjÞ Oðjqj � jFwjÞ 2

VPS-IoT OðMNÞ þ OðPM
j¼1 NjFjjÞ Oð2jqj þ jFwj þ jqj � jFwjÞ OðjFwj � jFjjjqj þ jqjÞ Oðjqj � jFqjÞ 2

Our Scheme OðMNÞ Oðjqj � jFwjÞ OðjFwj � jFjjjqjÞ OðjFwjÞ 1

Note:
jFjj is the number of keywords contained in the file Fj; wj is a collection of different keywords in the file Fj; jqj is the number of query keywords; jFwj is the number of files
containing query keywords; jFqj is the size of the returned result file.
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three schemes on 50 files, and the experimental results are shown in Fig. 12. Scheme VPS-
IoT performs best among the three schemes, but it cannot verify the integrity of the file.
Our scheme takes less time than scheme VPS when the size of the query phrase becomes
larger, which demonstrates the efficiency of our scheme. Furthermore, the verification is
performed on the blockchain in our scheme, ensuring the reliability of verification.

From what we have discussed above, our scheme has obvious advantages in index
construction, trapdoor generation, and result verification compared with existing schemes,

(a) (b)

Figure 9 (A and B) IndexBuild. Full-size DOI: 10.7717/peerj-cs.2235/fig-9

Figure 10 Trapdoor generation. Full-size DOI: 10.7717/peerj-cs.2235/fig-10
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and the search efficiency is comparable to existing schemes. Furthermore, our scheme
enables reliable and complete verification of search results with the help of blockchain,
preventing the server from generating unreliable verification evidence due to only storing
partial indexes and ciphertexts. At the same time, our scheme can prevent the unfair
verification problem caused by malicious users forging verification results.

Figure 11 Phrase search. Full-size DOI: 10.7717/peerj-cs.2235/fig-11

Figure 12 Verification. Full-size DOI: 10.7717/peerj-cs.2235/fig-12
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DISCUSSION
In this article, we presented a efficient phrase search scheme with reliable verification over
encrypted cloud-IoT data, which tackled the challenges of efficient phrase identification
and reliable result verification. The scheme introduces the blockchain to the verification
which ensures the reliability of the verification evidence and verification process. During
the verification process, we use a multiset hash function to aggregate the on-chain evidence
into a hash value, which significantly reduces the blockchain transaction cost. In addition,
the scheme designs a novel compound Index and distance discrimination algorithm that
can quickly determine the order of keywords and achieve efficient identification of phrases,
which reduces the computational and communication overhead.
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