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ABSTRACT
Background. The continuous increase in carbon dioxide (CO2) emissions from fuel
vehicles generates a greenhouse effect in the atmosphere, which has a negative impact
on global warming and climate change and raises serious concerns about environmental
sustainability. Therefore, research on estimating and reducing vehicle CO2 emissions
is crucial in promoting environmental sustainability and reducing greenhouse gas
emissions in the atmosphere.
Methods. This study performed a comparative regression analysis using 18 different
regression algorithms based onmachine learning, ensemble learning, and deep learning
paradigms to evaluate and predict CO2 emissions from fuel vehicles. The performance
of each algorithm was evaluated using metrics including R2, Adjusted R2, root mean
square error (RMSE), and runtime.
Results. The findings revealed that ensemble learning methods have higher prediction
accuracy and lower error rates. Ensemble learning algorithms that included Extreme
Gradient Boosting (XGB), Random Forest, and Light Gradient-Boosting Machine
(LGBM) demonstrated high R2 and low RMSE values. As a result, these ensemble
learning-based algorithms were discovered to be the most effective methods of
predicting CO2 emissions. Although deep learning models with complex structures,
such as the convolutional neural network (CNN), deep neural network (DNN) and
gated recurrent unit (GRU), achieved high R2 values, it was discovered that they take
longer to train and require more computational resources. The methodology and
findings of our research provide a number of important implications for the different
stakeholders striving for environmental sustainability and an ecological world.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Carbon dioxide emissions, Regression models, Prediction model, Machine learning,
Ensemble learning, Deep learning

INTRODUCTION
In the present day, carbon dioxide (CO2) emissions from fossil fuel-powered vehicles are
a serious concern for environmental sustainability. The increasing number of vehicles
on the roads and the growing need for mobility continuously increase the amount of
greenhouse gases released into the atmosphere. In recent years, the global increase in
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population and economic growth has increased the demand for vehicles, leading to an
increase in CO2 emissions (Yoro & Daramola, 2020; Kumar, Nagar & Anand, 2021; Hien &
Kor, 2022; Zhang et al., 2022). Especially in developing countries, the growing use of fuel
vehicles, and the widespread use of gasoline and diesel vehicles in these countries, have
led to an increasing amount of CO2 being emitted into the atmosphere (Suarez-Bertoa
et al., 2020; Cha et al., 2021; Kumar, Nagar & Anand, 2021). This worrying increase in
CO2 emissions brings various environmental problems such as global warming, melting
glaciers, rising sea levels, climate change, and natural disasters (Le Cornec et al., 2020;
Yoro & Daramola, 2020; Kumar, Nagar & Anand, 2021; Zhong et al., 2021; Zhang et al.,
2022). Awareness of these environmental issues has led many countries and industries
to take action. Globally, various regulations and standards are implemented to limit and
reduce vehicle CO2 emissions (Ding et al., 2017; Yoro & Daramola, 2020; Kumar, Nagar &
Anand, 2021; Hien & Kor, 2022; Tripp-Barba et al., 2023). The automotive sector is taking
significant steps towards investing in more environmentally friendly technologies and
promoting zero-emission vehicles (Suarez-Bertoa et al., 2020; Zhang & Fujimori, 2020;
Zhang et al., 2022; Gurcan et al., 2023).

The increasing environmental awareness has led academic research in the context of CO2

emissions to focus more on this environmental issue (Zhong et al., 2021). Especially, the
rapid advancements in software engineering, information systems, and artificial intelligence
technologies have brought new approaches and perspectives to academic research in
this field (Zhong et al., 2021; Gurcan et al., 2022b; Gurcan, 2023). In recent times, a large
number of studies have concentrated on the use of machine learning and deep learning
to forecast CO2 emissions (Ding et al., 2017; Seo et al., 2021; Hien & Kor, 2022; Wang et
al., 2022; Al-Nefaie & Aldhyani, 2023; Natarajan et al., 2023). The approaches of machine
learning, which enable the analysis of large amounts of data and the detection of complex
relationships, have been used in many studies to more accurately predict vehicle CO2

emissions (Cha et al., 2021; Seo et al., 2021; Zhong et al., 2021; Madziel et al., 2022; Tansini,
Pavlovic & Fontaras, 2022; Al-Nefaie & Aldhyani, 2023; Natarajan et al., 2023). A number
of machine learning algorithms have previously been implemented in a number of research
studies to identify factors such as vehicle type, engine characteristics, fuel type, driving
conditions, and their relationships to describe vehicle CO2 emissions (Ding et al., 2017;
Le Cornec et al., 2020;Wang et al., 2022; Al-Nefaie & Aldhyani, 2023; Natarajan et al., 2023;
Tena-Gago et al., 2023).

Cha et al. (2021) conducted an experimental study based on regression analysis to
predict real-world CO2 emissions of light-duty diesel vehicles.Madziel et al. (2022) applied
various machine learning models on data obtained from hybrid electric cars to predict CO2

emissions and found that Gaussian process regression was the most effective approach.
Al-Nefaie & Aldhyani (2023) used a deep learning model to predict CO2 emissions from
traffic vehicles in sustainable and smart environments. They achieved an R2 value of
93.78 with their applied BiLSTM model. Using various machine learning algorithms,
Natarajan et al. (2023) carried out an experimental regression analysis in a recent study
to predict carbon dioxide emissions from light-duty vehicles. They made inferences
about predicting CO2 emissions with reasonable accuracy using the Catboost algorithm.
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Ding et al. (2017) conducted a study to predict China’s fuel combustion CO2 emissions
using a new multivariate model and compared their proposed model with four benchmark
models. Le Cornec et al. (2020) conducted a study focused specifically on predicting NOx
emissions, modeling and analyzing real-time emissions from diesel vehicles using machine
learning. Tansini, Pavlovic & Fontaras (2022) conducted an analysis to measure real-world
CO2 emissions and energy consumption of plug-in hybrid vehicles. As a result, they
proposed a three-dimensional CO2 emissionmodel based on the state of charge and average
journey speed or wheel energy. Seo et al. (2021) used a methodology that combined an
ANN model and a vehicle dynamics model to predict real-world carbon dioxide emissions
from light-duty diesel vehicles. Tena-Gago et al. (2023) presented a new long short-term
memory (LSTM)-based model called UWS-LSTM using traditional and advanced machine
learning (ML) models to predict CO2 emissions from hybrid vehicles. Using a portable
emission measurement system (PEMS), researchers in another study examined the fuel
consumption and exhaust emissions of a hybrid electric vehicle (HEV) in real-world settings
(Wang et al., 2022). Using only the kinematic data of the vehicle, a gradient boosting model
was created in this context to forecast the emissions and operation of the electric motor
(Wang et al., 2022). Using a similar viewpoint, Hien & Kor (2022) developed a variety of
regression models and convolutional neural networks (CNN) to forecast fuel consumption
and carbon dioxide emissions for upcoming car production.

The estimation of vehicle CO2 emissions using machine learning can provide valuable
insights into reducing the impacts of such environmental issues (Zhong et al., 2021; Hien
& Kor, 2022; Tansini, Pavlovic & Fontaras, 2022; Gurcan, 2023). More accurate emission
predictions contribute to the development of environmental-friendly policies and strategies,
leading to a reduction in greenhouse gas emissions (Suarez-Bertoa et al., 2020; Yoro &
Daramola, 2020; Kumar, Nagar & Anand, 2021). Estimating CO2 emissions with machine
learning helps in developing strategies to increase vehicle energy efficiency and reduce fuel
consumption (Mardani et al., 2020; Zhang et al., 2022). The accuracy of these predictions
enhances the effectiveness of policies and strategies implemented across various sectors,
facilitating steps towards a more sustainable future (Chicco, Warrens & Jurman, 2021;
Zhong et al., 2021). While significant efforts have been made to improve the predictive
performance of proposed models for estimating CO2 emissions, there is still room to
create alternative models in an interpretable manner, enhance prediction performance,
and overcome limitations (Cha et al., 2021; Seo et al., 2021; Zhong et al., 2021; Madziel et
al., 2022; Tansini, Pavlovic & Fontaras, 2022; Al-Nefaie & Aldhyani, 2023; Natarajan et al.,
2023). The aim of these studies is to provide scientifically based policy recommendations
to reduce vehicle CO2 emissions and support the transition to a more sustainable
transportation system (Ding et al., 2017; Le Cornec et al., 2020; Le Cornec et al., 2020; Cha
et al., 2021; Al-Nefaie & Aldhyani, 2023; Tena-Gago et al., 2023). Such research is crucial
for reducing environmental impacts, increasing energy efficiency, and combating climate
change (Suarez-Bertoa et al., 2020; Kumar, Nagar & Anand, 2021; Zhong et al., 2021).

Considering this background, this article aims to address these shortcomings and aims
to establish a robust model based on artificial intelligence technology capable of predicting
CO2 emissions from fuel vehicles. To achieve this goal, a wide range of supervised regression
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algorithms and feature selection methods with different characteristics are included in the
experimental analysis of this study. In this context, a large-scale forecasting analysis was
conducted using 18 different regression algorithms from ensemble learning (EL), ML, and
deep learning (DL) models. The performance metrics of each algorithm, including R2,
Adjusted R2, root mean square error (RMSE), and runtime, were computed to evaluate
the regression models. In conclusion, the research questions guiding this study can be
summarized as follows:

RQ1. How effectively can different machine learning, ensemble learning, and deep learning
algorithms predict the CO2 emissions of fuel vehicles?

RQ2. Which supervised methods and learning paradigms provide the highest prediction
accuracy and lowest error rates while balancing computational complexity, training
time, and overall performance?
The remainder of this article is organized as follows. The ‘‘Materials and Methods’’

section describes the methodology of the study in detail. The ‘‘Experimental Results
and Discussions’’ section presents the experimental results of the study and provides a
comprehensive discussion. Finally, ‘‘Conclusions’’ summarizes key findings and future
work.

MATERIALS AND METHODS
Data collection, preparation, and description
The dataset utilized in this analysis came from the ‘‘Fuel consumption rating’’ databases
continued by the Canadian government. These databases contain assessments of fuel
consumption and measured CO2 emissions for a sample of 7,385 fuel-powered light
commercial vehicles inCanada. This dataset is available via both theCanadian government’s
official link (Government of Canada, 2024) and the Kaggle open data source (Podder,
2020). The data set includes measurements for seven years, from 2014 to 2020, totaling
12 features for 7,384 fuel vehicle records. The dataset’s initial form has 12 columns,
known as attributes, which include five object columns, three integer columns, and
four float columns. The dataset contains data for 2,053 different car models from 42
different automobile brands. Variables or attributes were reorganized and transformed
into a more meaningful structure before being analyzed. First, missing values in the
dataset were checked, and no missing values were discovered. Since there was only
one vehicle using natural gas fuel in the data set, this record was eliminated. The
dataset was checked for duplicate data, revealing 6,281 unique and 1,103 duplicate
records. Subsequently, categorical variables of object type were restructured, and sub-
categorization of these variables was performed. More precisely, the Transmission variable
is divided into five subcategories: ‘‘Transmission_Manual’’, ‘‘Transmission_CVT’’,
‘‘Transmission_Automatic_Selective’’, ‘‘Transmission_Automatic’’, and ‘‘Transmis-
sion_Automated_Manual’’. The Fuel Type variable is divided into four subcategories:
‘‘Fuel_Type_Diesel’’, ‘‘Fuel_Type_Ethanol’’, ‘‘Fuel_Type_Premium_Gasoline’’, and
‘‘Fuel_Type_Regular_Gasoline’’. Make types from 42 different automobile brands
are divided into five subcategories: ‘‘Make_Type_Brand_High_Performance’’,
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Table 1 Variables and types in the dataset.

ID Variable Data Type

X1 Engine_Size float64
X2 Cylinders float64
X3 Fuel_Consumption_City float64
X4 Fuel_Consumption_Hwy float64
X5 Fuel_Consumption_Comb float64
X6 Fuel_Consumption_Comb_MPG float64
X7 Fuel_Type_Diesel uint8
X8 Fuel_Type_Ethanol uint8
X9 Fuel_Type_Premium_Gasoline uint8
X10 Fuel_Type_Regular_Gasoline uint8
X11 Transmission_Automated Manual uint8
X12 Transmission_Automatic uint8
X13 Transmission_Automatic_Selective uint8
X14 Transmission_CVT uint8
X15 Transmission_Manual uint8
X16 Make_Type_Brand_High_Performance uint8
X17 Make_Type_Brand_Luxury uint8
X18 Make_Type_Brand_Mainstream uint8
X19 Make_Type_Brand_Premium uint8
X20 Make_Type_Brand_Premium_Plus uint8
X21 Vehicle_Class_Type_Compact uint8
X22 Vehicle_Class_Type_SUV uint8
X23 Vehicle_Class_Type_Sedan uint8
X24 Vehicle_Class_Type_Truck uint8
Y CO2_Emissions float64

‘‘Make_Type_Brand_Luxury’’, ‘‘Make_Type_Brand_Mainstream’’,
‘‘Make_Type_Brand_Premium’’, and ‘‘Make_Type_Brand_Premium_Plus’’. As a final
point, 16 different vehicle classes were categorized into four subcategories: ‘‘Vehi-
cle_Class_Type_Truck’’, ‘‘Vehicle_Class_Type_Sedan’’, ‘‘Vehicle_Class_Type_SUV’’,
and ‘‘Vehicle_Class_Type_Compact’’. As a result of the dataset improvements, the total
number of variables increased from 12 to 25. One of these variables represents dependent
variables, while the other 24 represent independent variables. Table 1 displays the IDs,
variable names, and data types for these variables.

Data preprocessing and feature engineering
Data preprocessing involves the cleaning, transforming, and preparing of the dataset
before providing it to a regression model (Gurcan et al., 2022a; Al-Nefaie & Aldhyani, 2023;
Gurcan, 2023). It is an essential process for determining the variables in the regressionmodel
and enhancing the accuracy and performance of regression analysis. Categorical variables
cannot be used directly in regression models. Therefore, categorical variables must be
converted into numerical data. In this context, categorical variables of the object type have
been transformed (Raschka & Mirjalili, 2017). The process of transformation may include
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one-hot encoding, label encoding, or the embedded representation of categorical variables
(Scikit-learn, 2024). For this dataset, the encoding model ‘‘One Hot Encoding’’, which
represents categorical variables as binary, was used. Many regression analysis algorithms
are sensitive to scale differences between features, so feature scaling or normalization is
important (Raschka & Mirjalili, 2017; Géron, 2019). As a result, the experimental dataset
was processed using the Min-Max feature scaling technique.

Following that, the feature selection stage was initiated. Feature selection in regression
analysis reduces model complexity, improves generalizability, and increases performance
(Chicco, Warrens & Jurman, 2021; Al-Nefaie & Aldhyani, 2023; Natarajan et al., 2023).
During regression analysis, feature selection ensures that the dependent and independent
variables are correctly identified. The dependent variable is the one you want to predict
or explain, and the independent variables are those that describe it and have the potential
to influence it. In this study, the dependent variable is CO2 emissions. There are several
feature selection techniques available for identifying independent variables (Scikit-learn,
2024).

In the present analysis, the feature selection process started with a correlation analysis.
Correlation analysis was used to determine pairwise relationships between all variables. The
dataset was then subjected to feature selection methods such as Chi-square to recognize the
impact of independent variables on the dependent variable. This approach made it easier to
identify the independent variables that had the greatest impact on the regressionmodels that
would be constructed (Géron, 2019; Scikit-learn, 2024). In addition, backward elimination
and forward selection methods were used to determine the variables that best describe the
model (Raschka & Mirjalili, 2017; Scikit-learn, 2024). As a result of the methods imple-
mented during the feature selection phase, five variables with the least impact (‘‘Transmis-
sion_Automated Manual’’, ‘‘Fuel_Type_Diesel’’, ‘‘Make_Type_Brand_Premium_Plus’’,
‘‘Vehicle_Class_Type_Sedan’’, and ‘‘Make_Type_Brand_Premium’’) were removed from
the independent variables. The aforementioned approach of feature selection reduces the
model’s complexity, shortens training time, improves model generalization, and prevents
overfitting (Hien & Kor, 2022; Natarajan et al., 2023). Following the feature selection
phase, 19 independent variables that best described the regression model and its dependent
variable were identified.

The dataset was then split into training and testing sets. The dataset for machine
learning-based regression models is divided into two parts: training and testing. The
training set trains the model, and the testing set evaluates its performance. This splitting
process is critical for evaluating the model’s generalization ability. As a result, for this
analysis, 80% of the data was used for training and 20% for testing (Scikit-learn, 2024).

Regression model adaptation and implementation
A machine learning-based multivariate regression model is a technique for analyzing the
impact of one or more independent variables on the dependent variable. A multivariate
regressionmodel is a fundamental statistical method and a component of machine learning
(Le Cornec et al., 2020; Natarajan et al., 2023). Unsupervised learning algorithms use
unlabeled data to identify patterns, relationships, or groups (Gurcan et al., 2022a; Gurcan,
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Dalveren & Derawi, 2022). Clustering, dimensionality reduction, semantic mapping, and
topic modeling are some of the techniques used (Zhong et al., 2021; Gurcan et al., 2023).
Regression algorithms use labeled data to create a model that associates an output variable
with one or more input variables. These models predict the numerical value of a specific
output variable. Regression models are classified as supervised learning because they use
labeled data (Huang et al., 2020; Uras et al., 2020). This means that the model can produce
more accurate and consistent results (Le Cornec et al., 2020; Mardani et al., 2020; Cha et
al., 2021).

A multivariate regression model is used to explain the effect of several independent
variables on the dependent variable. As an instance, it can be used to predict the price of
a house by using various house characteristics such as size, age, location, and number of
rooms as independent variables and the house’s price as the dependent variable (Chicco,
Warrens & Jurman, 2021; Scikit-learn, 2024). Machine learning-based multiple regression
models, unlike traditional regression techniques, can handle larger and more complex
datasets. Furthermore, by leveraging the various benefits of machine learning algorithms,
they can develop more flexible and generalizable models (Raschka & Mirjalili, 2017; Géron,
2019).

This experimental analysis uses machine learning-based multivariate regression models
to predict a vehicle’s CO2 emissions (g/km) based on fuel consumption and other
descriptive features. In this case, a multivariate linear regression (MLR) model based
on the ordinary least squares (OLS) method was applied to the experimental dataset to
determine the effect of each independent variable on CO2 emissions (Statsmodels, 2024).
Each variable’s significance for CO2 emissions has been evaluated using this method.

In order to perform a comparative analysis of regression algorithms with various
learning models, the dataset was subsequently subjected to regression models established
with 18 different algorithms (three linear and 15 nonlinear) (Raschka & Mirjalili, 2017;
Nelli, 2023; Scikit-learn, 2024). Six of these algorithms rely on ensemble learning, six on
traditional machine learning, and six on deep learning techniques (Tramontana et al.,
2016; Raschka & Mirjalili, 2017; Géron, 2019; Huang et al., 2020; Scikit-learn, 2024). The
present investigation employed Python-based data science and machine learning libraries,
which include Numpy, Seaborn, Matplotlib, Scikit-Learn, Statsmodel, Keras, TensorFlow,
and Pandas, to execute data preprocessing, feature engineering, and regression analysis
procedures. For the implementation of regression models and their hyper parameter
settings, the documentation of Scikit-Learn, TensorFlow, and Keras libraries can be used.
Additionally, the source codes we provide as supplementary files can serve as a guide
for researchers. (Raschka & Mirjalili, 2017; Géron, 2019; Nelli, 2023; Scikit-learn, 2024;
Statsmodels, 2024). We now describe the 18 regression models that were implemented to
this analysis in three subsections.

Ensemble learning-based regression models
Ensemble learning is a machine learning technique that combines multiple learning
algorithms to produce a more robust and generalized model (Madziel et al., 2022;Wang et
al., 2022; Natarajan et al., 2023). The fundamental principle of ensemble learning is based
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on the idea that a collection of weak models can combine to form a stronger model. Each
weak model learns a specific feature or subset of the data. The predictions of these weak
models are then combined to create a more robust and generalized prediction (Raschka &
Mirjalili, 2017; Géron, 2019; Scikit-learn, 2024).

The six ensemble learning algorithms employed in this analysis are described as follows:

• XGB: This ensemble learning model uses the Extreme Gradient Boosting (XGBoost)
algorithm to perform regression analysis. XGBoost is based on the gradient boosting
method and is well-known for its high performance, scalability, and generalization
capabilities. XGBoost uses multiple decision trees to build a powerful predictive model.
Each tree is trained to correct the errors of previous trees, resulting in increasingly
accurate predictions. As a result, XGB typically outperforms other regression models in
terms of prediction accuracy.
• RandomForest: This is a regression model used in the field of machine learning. This
model makes use of the ensemble learning technique, which builds a potent predictor
by combining several decision trees. RandomForest is an ensemble model consisting of
a series of decision trees, each trained on a different subset. Regression problems are
solved by each tree by teaching it the relationship between independent and dependent
variables.
• LGBM:This is a regressionmodel used as part of the LightGBM library. The abbreviation
‘‘LGBM’’ stands for ‘‘Light Gradient Boosting Machine’’. LightGBM is an open-source
gradient boosting framework developed byMicrosoft, designed to provide fast and high-
performance machine learning on large-scale datasets. An ensemble learning method
called gradient boosting has been employed in this model. With gradient boosting, a
weak predictor (usually a decision tree) is combined to produce a strong predictor.
• HistGradientBoosting: This is an ensemble learning-based regression model,
abbreviated as ‘‘Histogram-Based Gradient Boosting’’. This model applies the gradient
boosting method using a histogram-based approach. HistGradientBoosting is designed
to provide high speed and low memory usage when working with large-scale datasets. In
this model, histograms of the dataset’s features are used to construct decision trees. This
captures the distribution of the dataset more effectively and allows for faster training
times.
• GradientBoosting: It makes use of the gradient boosting method, an ensemble learning
strategy that builds strong predictors by combining weak learners, usually decision trees.
The fundamental principle of GradientBoosting involves sequentially training a series
of weak predictors (such as decision trees), with each predictor trained to correct the
errors of its predecessor. The GradientBoosting uses decision trees by default.
• AdaBoost: It stands for ‘‘Adaptive Boosting’’ in short. AdaBoost is an ensemble learning
method that builds a strong predictor by combining weak learners, typically decision
trees. The adaptive boosting (AdaBoost) algorithm, which entails training weak learners
successively, is implemented by the model. Each learner is trained to correct the errors
of its predecessor. AdaBoost defaults to using decision trees as weak learners, although
different base estimator options are available.
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Deep learning-based regression models
Deep learning can be a powerful tool for modeling complex relationships and achieving
high accuracy in regression problems. Depending on the complexity of the regression
problem and the characteristics of the dataset, an appropriate deep learning model is
chosen. This may include models such as multi-layer perceptrons (MLP), deep neural
networks (DNN), or CNN (Seo et al., 2021; Hien & Kor, 2022; Tena-Gago et al., 2023).
The selected model is then trained on the training dataset. Weights are updated using
the backpropagation algorithm, improving the model’s performance. This step typically
requires large datasets and high computational power (Le Cornec et al., 2020; Al-Nefaie
& Aldhyani, 2023). Therefore, the complexity of the model and the cost of the training
process should be considered (Raschka & Mirjalili, 2017; Géron, 2019; Scikit-learn, 2024).
The six deep learning algorithms utilized in this study are detailed below:

• CNN: This regression model uses convolutional neural networks architecture,
commonly used for image data. CNNs are commonly utilized in the fields of image
detection and processing. However, with proper feature engineering, they can also
be used on numerical data. CNN outperforms classic regression models in handling
complicated and high-dimensional data.
• DNN: It is a regression model based on deep neural networks. DNNs are a type of
artificial neural network that has more than one hidden layer between its input and
output. Because of their depth and nonlinear changes applied at each layer, these
networks can capture intricate patterns and relationships within the data. DNN is
especially useful for jobs that need big and high-dimensional datasets, where standard
regression models may fail to deliver similar results.
• GRU: GRU is a regression model built with gated recurrent units (GRUs), a sort
of recurrent neural network architecture. GRUs are intended to handle sequential and
time-series data by retaining a hidden state that stores information from prior time steps.
GRUs, unlike typical RNNs, have gating mechanisms that assist alleviate the vanishing
gradient problem, making them better suited for learning long-term dependencies in
data.
• RNN: RNN is a regression model that employs recurrent neural networks, a form of
neural network architecture designed to handle sequential data. RNNs process sequences
by keeping a hidden state that is updated at every time step, allowing the network to detect
temporal dependencies and patterns in the input. This makes RNN ideal for regression
problems involving time-series data, where the order and timing of observations are
critical.
• LSTM: This regression model employs long short-term memory (LSTM) networks,
a type of RNN designed to handle long-term dependencies in sequential data. The
unique architecture of LSTM networks, which includes memory cells, input gates,
output gates, and forget gates, addresses issues like the vanishing gradient problem that
commonly plagues RNNs. LSTM networks can preserve and update memories over
lengthy sequences, making them ideal for time-series regression tasks with temporal
correlations.
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• MLP: It is a deep learning-based model utilized to solve regression problems using
multilayer perceptrons (MLP). This model generally performs well on datasets with
complex and nonlinear relationships. MLP is the regression version of artificial neural
networks and predicts output values based on input data. The training of theMLPmodel
is performed using the backpropagation algorithm. This algorithm starts with the error
at the model’s output and then utilizes the chain rule of derivatives to update the weights
inside the network backward.

Machine learning-based regression models
Machine learning offers many methods and algorithms with different backgrounds to solve
regression problems (Mardani et al., 2020; Cha et al., 2021;Hien & Kor, 2022). Conducting
regression analysis using machine learning involves a series of steps, including selecting
the appropriate algorithm and parameters, preparing the dataset, and training the model
(Tramontana et al., 2016; Raschka & Mirjalili, 2017; Géron, 2019; Scikit-learn, 2024). In
this experimental analysis, a total of six different algorithms based on both linear and
non-linear models of traditional machine learning were utilized (Scikit-learn, 2024), and
they are listed as follows:

• DecisionTree: It is a decision tree-based regression model used to solve regression
problems. Decision trees partition the dataset based on simple decision rules over
feature values to make regression predictions. The DecisionTree model applies decision
rules at the nodes of the tree based on the values of features in the dataset, thereby
making predictions for the dependent variable.
• Ridge: Ridge regression is based on the least squares method, but it adds a regularization
term to reduce overfitting. This regularization term limits the magnitude of the model
coefficients, thereby controlling overfitting. In Ridge regression, a lambda (λ) parameter
is used to control overfitting.
• LinearRegression: This model expresses the relationship between the dependent
variable and independent variables through a linear equation. The model calculates the
predicted value of the dependent variable as a linear combination of the independent
variables. The LinearRegression model estimates model parameters (coefficients) using
the method of least squares. It finds the most suitable parameters by minimizing the
mean squared error between the actual and predicted values.
• KNeighbors: A regression model for K-nearest neighbors regression. This model uses
the average of neighboring points to predict the value of an instance. KNeighbors is based
on the KNN (K-nearest neighbors) algorithm, which calculates an instance’s predicted
value using the nearest k neighbors. The nearest neighbors are usually determined using
Euclidean distance or another similarity metric.
• Lasso: Lasso stands for Least Absolute Shrinkage and Selection Operator. Lasso
regression is a linear modeling method used for regression analysis. Lasso is
a generalization of Ridge regression (Tikhonov regularization). Lasso uses L1
regularization to control the complexity of the model. L1 regularization is employed to
shrink the model coefficients towards zero, thereby eliminating unnecessary features and
simplifying the model. This allows the model to be more interpretable and generalizable.
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• SVR: Support vector regression (SVR) is a regression method that uses support vector
machines (SVM)principles and is especially useful formodeling non-linear relationships.
Its primary goal is to fit a region around the data points within a hyperplane, allowing
the regression model to select the hyperplane that is closest to the data. Typically, this
hyperplane includes some of the data points while increasing the margin.

Performance evaluation of regression models
Awide range of metrics are commonly used to assess the performance of regressionmodels.
These metrics assess the model’s ability to predict actual values and its overall success from
various perspectives. However, because each problem and dataset is unique, careful analysis
is required to choose the most appropriate performance metrics and evaluate the model.
Performance evaluation assesses the model’s predictive power (Le Cornec et al., 2020; Hien
& Kor, 2022). As a result, evaluating regression model performance is an important step in
data analysis and model development. The runtime, RMSE, R2, and Adjusted R2 metrics
were used in this study to assess the performance of the regression models (Chicco, Warrens
& Jurman, 2021; Al-Nefaie & Aldhyani, 2023; Natarajan et al., 2023). The runtime is the
time it takes to apply each regression model to the experimental dataset. The RMSE metric
is commonly used to assess the performance of regression models. RMSE is defined as
the square root of the average of the squared differences between actual values and model
predictions. Equation (1) provides a mathematical expression for RMSE (Scikit-learn,
2024). Here, n represents the number of samples in the dataset, yj denotes the actual target
values, ŷj represents the model’s predictions. RMSE involves computing the square root of
the average of the squared differences between the predicted and actual values, which gives
more weight to larger differences or errors, making RMSE more sensitive to outliers.

RMSE =

√√√√1
n

n∑
j=1

(yj− ŷj)2. (1)

R2 is a statistical measure used to evaluate how well a regression model fits the actual
dataset. R2 measures how well independent variables explain the dependent variable. R2

values range from 0 to 1, with higher values indicating that the model better explains
the dataset’s variability. Equation (2) provides the mathematical representation of R2

(Scikit-learn, 2024). Here, n represents the number of samples in the dataset, yj represents
the actual target values, ŷj represents the model’s predictions, and y j represents the mean
of the actual target values. SSr is the sum of squared residuals (i.e., sum of squared errors),
and SSt is the total sum of squares (i.e., sum of squared deviations from the mean).

R2
= 1−

SSr
SSt
= 1−

(∑n
j=1(yj− ŷj)

2∑n
j=1(yj−y j)2

)
. (2)

Adjusted R2 is a modified version of R2 and provides a more accurate performance
measurement by considering the complexity of regression models and overfitting
tendencies. R2 typically increases with the addition of each independent variable in the
model, which may lead to overfitting. Adjusted R2 addresses this issue and provides a more

Gurcan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2234 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2234


robust performancemeasurement by considering the complexity of themodel. Equation (3)
is used to calculate Adjusted R2 (Scikit-learn, 2024). In this case, n represents the number
of samples in the dataset, and k represents the number of independent variables in the
model. Adjusted R2 may have a lower value than standard R2, indicating that it considers
the model’s complexity and minimizes overfitting.

AdjustedR2
= 1−

[(
n−1

n−k−1

)(
1−R2)]. (3)

In the present study, R2 and Adjusted R2 were utilized concurrently to balance the overall
accuracy and explanatory nature of themodel with its complexity and generalization ability.
From this perspective, the R2 score was used to evaluate the overall performance, and the
Adjusted R2 score was used to minimize the risk of overfitting and to better understand
the model’s generalization capabilities. This approach allows for identifying not only the
models with the highest R2 scores but also the most balanced and generalizable models. In
this analysis, both metrics were calculated, but the R2 score was primarily used to evaluate
the performance of the regression models.

EXPERIMENTAL RESULTS AND DISCUSSIONS
Correlation analysis and feature selection
In this section, we present the results of our analysis, beginning with the results of our
correlation analysis to better understand the relationship between variables and how this
relationship can be used for analysis or prediction. Correlation analysis is a statistical
technique for determining the relationship between two variables. This analysis aids in
determining the direction (positive, negative, or none), strength, and type (linear or
non-linear) of the relationship between variables. Table 2 displays the results of our
correlation analysis, which reveal the direction and strength of the relationship between
the 24 independent variables and the dependent variable. The variables in the table
are listed in descending order of correlation score. According to the table, the first six
variables with numerical values have a high impact on CO2 emissions. While the variable
‘‘Fuel_Consumption_Comb_MPG’’ has a strong inverse relationship with the dependent
variable, the other top five variables show a strong and positive relationship in the same
direction. On the other hand, categorical variables have been shown to have a much
smaller effect on the dependent variable. Table A1, provided as a supplementary file,
provides a correlation matrix table showing the relationships between all variables. Using
the outcomes from this table, it’s possible to analyze the strength and direction of the
relationships between all variables.

In continuation of the analysis, the dataset was subjected to Chi-square (CHI2),
F-regression (FR), and mutual-information-regression (MIR) tests to determine the
importance of independent variables for the target variable and to select the most effective
features. The results from each test model were normalized using min-max scaling to
ensure that each test was normalized. The average of the scores obtained from three
different methods was then computed to produce a score for each independent variable,
which is shown in Table 3. This method allowed us to present a novel approach to feature
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Table 2 Correlation between independent variables and target variable.

ID Variable Correlation Score

X3 Fuel_Consumption_City 0.920
X5 Fuel_Consumption_Comb 0.918
X6 Fuel_Consumption_Comb_MPG −0.908
X4 Fuel_Consumption_Hwy 0.884
X1 Engine_Size 0.851
X2 Cylinders 0.833
X14 Transmission_CVT −0.329
X24 Vehicle_Class_Type_Truck 0.310
X12 Transmission_Automatic 0.267
X18 Make_Type_Brand_Mainstream −0.264
X10 Fuel_Type_Regular_Gasoline −0.260
X16 Make_Type_Brand_High_Performance 0.234
X9 Fuel_Type_Premium_Gasoline 0.231
X21 Vehicle_Class_Type_Compact −0.219
X15 Transmission_Manual −0.166
X17 Make_Type_Brand_Luxury 0.150
X22 Vehicle_Class_Type_SUV 0.121
X23 Vehicle_Class_Type_Sedan −0.120
X19 Make_Type_Brand_Premium 0.118
X8 Fuel_Type_Ethanol 0.096
X20 Make_Type_Brand_Premium_Plus 0.074
X13 Transmission_Automatic_Selective 0.071
X7 Fuel_Type_Diesel −0.035
X11 Transmission_Automated Manual −0.005
Y CO2_Emissions 1.00

evaluation and selection. As can be seen from the table, the variables related to fuel
consumption rank in the top four and are therefore the most effective. These are followed
by the variables ‘‘Engine_Size’’ and ‘‘Cylinders’’. Less important categorical variables are
located at the bottom of the table and provide important clues about which variables will
be eliminated first from the regression model.

Linear regression using OLS
On this dataset, a multivariate linear regression model was implemented using Ordinary
Least Squares (OLS). The model’s outputs are summarized in Table 4. Part 1 of the output
in Table 4 begins with a list of commonmodel indicators. Df Residuals displays the degrees
of freedom in our model, whereas Df Model shows the number of independent variables.
R2 is the most noteworthy metric generated by this regression model. R2 is the proportion
of the variance of the dependent variable that the independent variables can account for.
The fact that our model explains 99.3% of the variation in the ’CO2_Emissions’ variable
indicates a high level of explanatory power.

In a linear regressionmodel, the F-statistic is used to determine whether a set of variables
is statistically significant in explaining the variance in the dependent variable within the
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Table 3 Scores of feature selection tests.

ID Variable CHI2 FR MIR Mean

X6 Fuel_Consumption_Comb_MPG 1.000 0.851 0.774 0.875
X5 Fuel_Consumption_Comb 0.344 0.978 1.000 0.774
X3 Fuel_Consumption_City 0.452 1.000 0.660 0.704
X4 Fuel_Consumption_Hwy 0.222 0.649 0.512 0.461
X1 Engine_Size 0.229 0.479 0.315 0.341
X2 Cylinders 0.231 0.412 0.194 0.279
X16 Make_Type_Brand_High_Performance 0.185 0.011 0.004 0.067
X14 Transmission_CVT 0.115 0.022 0.020 0.053
X24 Vehicle_Class_Type_Truck 0.081 0.019 0.022 0.041
X17 Make_Type_Brand_Luxury 0.074 0.004 0.007 0.028
X12 Transmission_Automatic 0.044 0.014 0.021 0.026
X18 Make_Type_Brand_Mainstream 0.025 0.014 0.022 0.020
X9 Fuel_Type_Premium_Gasoline 0.023 0.010 0.019 0.018
X10 Fuel_Type_Regular_Gasoline 0.017 0.013 0.023 0.018
X20 Make_Type_Brand_Premium_Plus 0.034 0.001 0.010 0.015
X11 Transmission_Automated Manual 0.038 0.000 0.005 0.014
X8 Fuel_Type_Ethanol 0.028 0.002 0.008 0.013
X15 Transmission_Manual 0.024 0.005 0.011 0.013
X21 Vehicle_Class_Type_Compact 0.020 0.009 0.010 0.013
X22 Vehicle_Class_Type_SUV 0.020 0.003 0.012 0.012
X19 Make_Type_Brand_Premium 0.010 0.003 0.018 0.010
X23 Vehicle_Class_Type_Sedan 0.013 0.003 0.009 0.008
X13 Transmission_Automatic_Selective 0.003 0.001 0.012 0.005
X7 Fuel_Type_Diesel 0.000 0.000 0.000 0.000

linear model. The calculated F-value for this model (4.404e+04) is significantly high,
indicating that the model is statistically significant for these variables. The likelihood
that the provided data will be generated by the regression model is represented by the
log-likelihood. In the process of creating a model, it is employed to compare each variable’s
coefficient values. When comparing the efficacy of models in linear regression, AIC
and BIC are both employed to penalize the models using a penalty system for multiple
variables. Omnibus defines the normality of our residuals’ distribution as a measure using
skewness and kurtosis. A value of 0 indicates perfect normality. An arithmetic test called
Prob(Omnibus) determines the likelihood that residuals will have a normal distribution.
A value of 1 indicates complete normality. In our data, skewness is a metric for symmetry,
where 0 denotes perfect symmetry. Kurtosis quantifies the data’s peak or characterizes the
density surrounding a normal curve’s zero point. There are fewer outliers in the data when
the kurtosis is higher.

Durbin-Watson is a measure of homoscedasticity or the equal distribution of errors in
the data. Varying variance indicates an unequal distribution; for example, as data points
increase, relative errors also increase. An ideal measure for homoscedasticity is expected
to be between 1 and 2. Alternative techniques known as Jarque–Bera (JB) and Prob(JB)
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Table 4 Results of OLS-based regression analysis.

OLS regression results (part 1)
Depended variable: CO2_Emissions R-squared: 0.993 Omnibus: 1790.639

Model: OLS Adj. R-squared: 0.993 Prob(Omnibus): 0.000
Method: Least squares F-statistic: 4.404e+04 Skew: −0.597
No. observations: 5907 Prob (F-statistic): 0.00 Kurtosis: 24.296
Df residuals: 5887 Log-Likelihood: −17769. Durbin-Watson: 2.063
Df model: 19 AIC: 3.558e+04 Jarque–Bera (JB): 111974.406

BIC: 3.571e+04 Prob(JB): 0.000
Cond. No. 990.

OLS regression results (part 2)
Variables Coef Std Err t P > |t | [0.025 0.975]

Intercept 85.9680 1.623 52.984 0.000 82.787 89.149
Engine_Size 0.3979 0.151 2.631 0.009 0.101 0.694
Cylinders 1.0262 0.111 9.228 0.000 0.808 1.244
Fuel_Consumption_City 5.8527 0.828 7.071 0.000 4.230 7.475
Fuel_Consumption_Hwy 4.4844 0.687 6.528 0.000 3.138 5.831
Fuel_Consumption_Comb 9.3286 1.501 6.214 0.000 6.385 12.272
Fuel_Consumption_Comb_MPG −0.8741 0.028 −31.207 0.000 −0.929 −0.819

Fuel_Type_Ethanol −136.7190 0.643 −212.553 0.000 −137.980 −135.458
Fuel_Type_Premium_Gasoline −29.6778 0.486 −61.106 0.000 −30.630 −28.726
Fuel_Type_Regular_Gasoline −29.8430 0.462 −64.533 0.000 −30.750 −28.936
Transmission_Automatic −1.0174 0.289 −3.524 0.000 −1.583 −0.451
Transmission_Automatic_Selective −0.7959 0.254 −3.132 0.002 −1.294 −0.298
Transmission_CVT −1.0391 0.351 −2.960 0.003 −1.727 −0.351
Transmission_Manual −1.0790 0.282 −3.830 0.000 −1.631 −0.527
Make_Type_Brand_High_Performance 3.9416 0.636 6.199 0.000 2.695 5.188
Make_Type_Brand_Luxury 1.7326 0.351 4.941 0.000 1.045 2.420
Make_Type_Brand_Mainstream 0.6721 0.177 3.788 0.000 0.324 1.020
Vehicle_Class_Type_Compact −0.8753 0.172 −5.083 0.000 −1.213 −0.538
Vehicle_Class_Type_SUV 0.6258 0.212 2.955 0.003 0.211 1.041
Vehicle_Class_Type_Truck 1.3381 0.321 4.164 0.000 0.708 1.968

measurements use skewness and kurtosis to measure the same value as Omnibus and
Prob(Omnibus). These values are used to cross-validate the measurements. Condition
number measures the sensitivity of the output of a regression model compared to the
input. Among multicollinearity indicators, a high condition number value is the most
important. The term ‘‘multicollinearity’’ refers to the presence of two or more independent
variables that have a strong correlation with one another and may cause redundancy,
which could inaccurately affect our predicted variable. In the case of multicollinearity, we
can expect much higher fluctuations in the data with small changes. When all variables
are included in the regression model without feature selection, the Cond_No value was
calculated as 1.84e+17. Following the feature selection process, the model constructed with
the remaining variables measured this value as 990.
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The variables and the indicators that describe them are given in Part 2 of Table 4. Upon
setting all variables to zero, our model yields the Intercept. ‘‘b’’ is the constant added to
explain the beginning value of our line in the traditional ‘‘ y =mx+b’’ linear formula. We
have our variables under the Intercept. The first informative column is the coefficient. It
displays themagnitude and direction of each independent variable’s change’s impact on the
dependent variable. To put it another way, it’s the ‘‘m’’ in ‘‘ y =mx+b’’. The dependent
variable will be impacted by a unit change in the independent variable according to the
coefficient’s measure. There is an inverse relationship with the dependent variable if the
coefficient is negative.

The standard error in a side column is an estimate of the coefficient’s standard deviation;
thus, it represents the amount of change in the coefficient as the data varies. The t-statistic
measures the sensitivity of the coefficient. A low standard error when compared to a high
coefficient results in a high t-statistic, indicating that the coefficient is highly significant.
P > jtj is one of the table’s most important statistics. It is used to calculate the p-value,
which is a measure of the likelihood that the coefficient was measured by chance using
our model. As is known, a variable is considered significant when the P value is <0.05.
As seen in the table, since the P value of the t-statistics for all variables is less than 0.05,
we can say that all variables are significant for CO2 emissions. [0.025 and 0.975] are both
measurements of our coefficients within our data’s 95% confidence interval.

Comparison of regression models
In this stage of the analysis, a wide spectrum of machine learning-based regression models
with different characteristics were applied to the experimental dataset. Initially, the data
sets were divided into training and test subsets. This technique was used to evaluate the
performance of machine learning models. While the training dataset was used to train the
18 machine learning-based regression models selected for our research, the test dataset
was used to evaluate the models’ performance. This investigation employs 18 different
regression methods, six of which are based on deep learning techniques, six on ensemble
learning, and six on conventional machine learning. For each algorithm, R2, Adjusted
R2, RMSE, and runtime values were calculated to measure the performance metrics of
each applied model. These values, ranked according to R2, are provided in Table 5. The
findings in the table compare the performance of the 18 regression models in terms of
three learning types. Table 5 categorizes three learning models based on their average R2

and separates the algorithms into these groups. The algorithms in each learning model are
sorted in descending order based on their R2 scores. According to the table, deep learning
(R2
= 9,947.0) is the most successful learning model, and the most effective algorithms in

it are CNN, DNN, GRU, RNN, LSTM, and MLP, respectively, based on the R2 score. The
ensemble learning model (R2

= 9,873.8), which is ranked second, is then listed, along with
the algorithms that comprise it. The final row lists machine learning (R2

= 9,800.0) along
with the algorithms that fall under it.

In order to provide a deeper understanding of the results demonstrated in Table 5, we
generated a visual representation of these results for every metric (see Fig. 1). The top ten
algorithms based on R2 were shown in Fig. 1A, followed by the top ten algorithms based
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Table 5 R2, Adjusted R2, RMSE, and runtimemetrics of the regressionmodels.

Learning type Linearity Model R2 Adj. R2 RMSE Runtime

Nonlinear CNN 0.995672 0.995616 3.878894 30.873016
Nonlinear DNN 0.995548 0.995490 3.933941 20.109925
Nonlinear GRU 0.995514 0.995511 3.949136 24.325117
Nonlinear RNN 0.994915 0.994912 4.204253 20.703259
Nonlinear LSTM 0.993801 0.993721 4.642037 156.227947
Nonlinear MLP 0.992927 0.992830 4.883358 14.745560

Deep
learning

Mean 0.994730 0.994680 4.248603 42.830804
Nonlinear XGB 0.997909 0.997880 2.655423 0.100254
Nonlinear RandomForest 0.996638 0.996592 3.366763 1.834002
Nonlinear LGBM 0.996331 0.996280 3.517346 0.080957
Nonlinear HistGradientBoosting 0.996331 0.996280 3.517382 0.534806
Nonlinear GradientBoosting 0.995221 0.995155 4.014151 0.513874
Nonlinear AdaBoost 0.941655 0.940853 14.025945 0.356160

Ensemble
learning

Mean 0.987348 0.987173 5.182835 0.570009
Nonlinear DecisionTree 0.994136 0.994056 4.446513 0.024940
Linear Ridge 0.992803 0.992704 4.926218 0.010004
Linear LinearRegression 0.992799 0.992700 4.927634 0.015624
Nonlinear KNeighbors 0.987786 0.987619 6.417273 0.041987
Linear Lasso 0.983382 0.983154 7.485444 0.071001
Nonlinear SVR 0.929334 0.928363 15.436015 3.264253

Machine
learning

Mean 0.980040 0.979766 7.273183 0.571302

on RMSE in Fig. 1B, and the top ten algorithms based on runtime in Fig. 1C. According to
Fig. 1A, the top five R2 algorithms are XGB, RandomForest, LGBM, HistGradientBoosting,
and CNN in that order. The primary reason why XGB delivers the best performance for
estimating CO2 emissions from fuel vehicles lies in its foundation as an enhanced version
of the gradient boosting algorithm, which is capable of constructing complex models. This
model incorporates mechanisms to prevent overfitting, such as L1 (Lasso) and L2 (ridge)
regularization, allowing for more generalized and accurate predictions. Furthermore,
XGBoost’s ability to capture nonlinear relationships using decision trees provides a
significant advantage in understanding the intricate and variable-relational structure of
CO2 emissions. The flexibility in hyper parameter tuning and the feature importance
ranking capabilities enable the model to be optimized for higher accuracy predictions.
These combined features make XGB the most effective model for CO2 emission estimation
of fuel vehicles.

Figure 1A also shows that the first four algorithms are ensemble learning-based. The
three most effective algorithms that follow them, CNN, DNN, and GRU, are based on deep
learning. As a result, ensemble models outperform traditional machine learning and deep
learning models on this regression problem. The R2 values of these algorithms are greater
than 0.99, indicating that they are excellent predictors for this regression problem. The
first four ensemble-based algorithms outperform the others in this experiment primarily
because tree-based ensemble learning algorithms do not require preprocessing or feature
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Figure 1 Comparison of the top ten regressionmodels for the R2, RMSE, and runtimemetrics.
Full-size DOI: 10.7717/peerjcs.2234/fig-1

engineering processes like standardization or normalization. Other traditional machine
learning algorithms, particularly linear-based statistical algorithms, require feature scaling
to prevent features with a broad range from outperforming features with a narrow range.
The second reason is that tree-based machine learning models improve the model through
bagging and boosting techniques. Ensemble methods can make better predictions than a
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single model because they combine predictions from multiple models. This leads to more
accurate regression analysis. As a result, ensemble models produce significantly higher R2

values for this regression problem. This indicates that the model-predicted CO2 emissions
values are very close to the actual values.

Figure 1B illustrates the performance of algorithms based on the RMSE metric,
comparing the RMSE values of the top ten algorithms. RMSE, or Root Mean Square
Error, is a commonly used measure to evaluate the performance of regression algorithms.
RMSE is the square root of the average of the squares of the differences between the
actual values and the predicted values of the model. A lower RMSE value indicates better
performance of the model. According to Fig. 1B, the lowest RMSE value is obtained by
the ensemble model ‘‘XGB’’ with a value of 2.655423. The ranking of other algorithms
continues in the same order as Fig. 1A. This is because the higher the R2 value, the smaller
the RMSE value. Therefore, the algorithm XGB with the highest R2 value also has the
smallest RMSE value. Following XGB, the algorithms RandomForest and LGBM rank
respectively.

Figure 1C demonstrates a comparison of the runtime (measured in seconds) of
the various regression techniques used in this study. According to the figure, Ridge,
LinearRegression, and DecisionTree are the regression algorithms with the lowest runtime,
respectively. Considering Fig. 1C and Table 5, we observe that linear models based
on traditional machine learning techniques reached results in significantly shorter times
compared to ensemble learning and deep learningmodels in solving the regression problem
in this analysis. In general, we conclude that traditional machine learning models provided
solutions in a shorter time frame than ensemble learning and deep learning models in
solving the regression problem in this analysis. In particular, deep learning models stand
out as the algorithm with the longest running time (see Table 5). This is attributed to the
fact that deep learning methodology involves more hidden layers and weightings compared
to machine learning and ensemble learning. Additionally, our findings clearly demonstrate
that linear models produce solutions much faster compared to nonlinear models (see
Table 5).

Figure 2 presents a wide-ranging comparison of regression algorithms across three
distinct learning paradigms: machine learning, deep learning, and ensemble learning, in
terms of the metrics R2, RMSE, and runtime. In Fig. 2A, deep learning emerges as the
most effective learning approach based on the average R2 value, while machine learning
exhibits the weakest performance. Regarding the average RMSE value, ensemble learning
algorithms are the most effective, followed by deep learning and machine learning (see
Fig. 2B). Additionally, ensemble learning methods are identified as producing solutions
much faster based on the average runtime measurement (see Fig. 2C). As a result, it is
possible to conclude that regression models with deep learning are not particularly time
efficient. Finally, as demonstrated in Table 5, nonlinear models outperform linear models
in terms of R2 and RMSE metrics while performing worse in terms of run time. In the
context of ensemble learning, nonlinear models are the algorithms that perform the best

Gurcan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2234 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2234


Figure 2 Comparison of three learning models for R2, RMSE, and runtimemetrics.
Full-size DOI: 10.7717/peerjcs.2234/fig-2

predictions. This is followed by nonlinear models that fall under the category of deep
learning.

CONCLUSIONS
In this study, a comprehensive regression analysis comparing 18 different regression
algorithms based on machine learning, ensemble learning, and deep learning paradigms
for predicting CO2 emissions of fuel-powered vehicles was conducted. In this analysis,
the performance of each algorithm was evaluated using metrics such as R2, Adjusted R2,
RMSE, and runtime. According to the results of the analysis, ensemble learning methods
generally exhibited higher prediction accuracy and lower error rates. Particularly, ensemble
algorithms such as XGB, RandomForest, and LGBM stood out with high R2 values and
low RMSE values, identified as the most effective methods for predicting CO2 emissions.
Some successful results were also obtained among deep learning models. In particular,
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deep learning models with complex structures, such as CNN, DNN, and GRU, provided
high R2 values. However, it was observed that the training times of deep learning models
were longer and required more computational resources.

Considering the average R2 value, deep learning emerges as the most effective learning
approach, while ensemble learning andmachine learning exhibit lower performance. These
findings show that regression models based on deep learning and ensemble learning are
more effective methodologies for predicting vehicle CO2 emissions and should be preferred
in such analyses. Additionally, it was found that linear models based on traditional machine
learning achieved results much faster in solving the regression problem in this analysis. On
the other hand, it is important to choose the fittingmethod depending on the characteristics
of the data set and the available resources. Limitations of the study include the dimension
and characteristics of the dataset used, as well as the effects of the scaling and preprocessing
methods employed. Future studies are needed to confirm and generalize these results with
larger datasets and different modeling approaches. This study will guide future research and
help us better understand the impact of regression analysis on predicting CO2 emissions.
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