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ABSTRACT
The article aims to address the challenges of information degradation and distortion
in graphic design, focusing on optimizing the traditional compressed sensing (CS)
model. This optimization involves creating a co-reconstruction group derived from
compressed observations of local image blocks. Following an initial reconstruction of
compressed observations within similar groups, an initially reconstructed image block
co-reconstruction group is obtained, featuring degraded reconstructed images. These
images undergo channel stitching and are input into a global residual network. This
network is composed of a non-local feature adaptive interaction module stacked with
the aim of fusion to enhance local feature reconstruction. Results indicate that the
solution space constraint for reconstructed images is achieved at a low sampling rate.
Moreover, high-frequency information within the images is effectively reconstructed,
improving image reconstruction accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Scientific Computing and
Simulation, Social Computing
Keywords Compressed sensing, CNN, Image reconstruction, Global residuals, Planar design

INTRODUCTION
With the advent of the Internet and self-media, the demand for graphic design has
significantly increased. The design requirements for image quality and clarity have
proportionally escalated, reflecting the evolution of the digital age (Li et al., 2020a).
Artificial intelligence (AI) algorithms can perform edge detection, recognition, matching,
segmentation, and image classification of images, thereby optimizing function and enabling
fuzzy control in the automatic production process of digital images. The integration of
AI in computer graphic design has facilitated the realization of the automatic generation
process of intelligent images (Gavini & Lakshmi, 2022;Nehashree, 2019; Jing et al., 2022). In
computer graphic design, primary attention should be given to the linguistic expression of
information design. Graphic symbols are a uniquemeans of conveying properties of objects,
which is unparalleled by other representations. However, external factors, such as noise
during the acquisition and transmission, may distort graphic images. High-resolution
images contain intricate details crucial for creating professional and visually appealing
designs.When information is degraded, these fine details can be lost, resulting in images that
appear blurry, pixelated, or otherwise of poor quality. This loss of clarity can diminish the
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impact of the design and reduce its effectiveness in communicating the intended message.
Edges and contours are vital elements in defining the shapes and boundaries within an
image. Distortion in these areas can lead to jagged or blurred edges, compromising the
visual integrity of the design. This is particularly problematic in applications requiring
precise and clean lines, such as logos, typography, and detailed illustrations. As a result,
the restoration of large-scale distorted images mandates low-complexity methods that can
accurately reconstruct the images (Lan et al., 2020; Aburukba et al., 2020).

The elemental image matrices utilized in graphic design are stored as pixel points,
resulting in often sparsematrices. The application of the compressed sensing (CS) algorithm
allows for high-dimensional graphic matrices to be projected onto low-dimensional space,
where they can be optimally resolved using matching algorithms. The distorted image
reconstruction can be achieved by reconstructing the original signal matrix, utilizing the
low-dimensional observed signal matrix. CS theory (Shi et al., 2019; Wang et al., 2023; Xu
et al., 2020) demonstrates that a signal sparsely represented on an appropriate transform
base can be recovered with fewer sampled measurements than those required by the
conventional Nyquist sampling theorem.

Within the CS framework, the simultaneous occurrence of sampling and compression
offers significant advantages, including reduced bandwidth requirements for data
transmission and lower memory usage for storing compressed image signals. In the
context of planar design, the image is divided into multiple non-overlapping image blocks,
which are subsequently sampled and independently reconstructed. This approach facilitates
the equitable distribution of perceptual resources across the image, thanks to the uneven
distribution of meaningful information (Shi et al., 2019). However, the use of block-based
CS comes with a drawback known as the ‘‘block effect’’, which can potentially diminish
the quality of image reconstruction.

CS utilizes signal sparsity in the transform domain to perform simultaneous signal
sampling and compression. Signal reconstruction, a key difficulty in CS, involves
effectively recovering information from the obtained compressed observations using
the corresponding reconstruction algorithm. However, the stability of the reconstruction
process, accuracy of the reconstructed signal, and improvement of reconstruction accuracy
are essential components of the CS reconstruction problem that require in-depth study
(Li et al., 2020b; Sun et al., 2020). In traditional CS reconstruction problems, hundreds of
iterations are utilized to optimize the reconstructed signal continuously. However, this
approach can result in information loss accumulation, increased computational complexity,
and hardware device overload, thus hindering the widespread use of CS techniques in image
reconstruction problems (Stanković, Orović & Stanković, 2014).

Furthermore, as an undefined underdetermined problem, CS information
reconstruction can cause instability and uncertainty during signal reconstruction.
Insufficient CS sampling information can result in blurred and information issues of
loss in the reconstructed image (Huang & Wang, 2015). Since the emergence of deep
learning techniques, the field of image information has rapidly developed, and combining
deep learning techniques with reconstructive vision tasks such as image restoration and
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image super-resolution has shown significant potential. Consequently, applying deep
learning techniques to CS image reconstruction problems is becoming a mainstream trend.

Given the limited structural information containedwithin an image and the prevalence of
repetitive and similar features within these structures, it becomes necessary to employ non-
local similar features to provide more effective information for local image reconstruction.
This approach is particularly useful when local image reconstruction information is
insufficient. (1) This article proposes a novel image reconstruction model that utilizes
a non-local feature fusion network. A collaborative image block reconstruction group
is introduced in the initial image reconstruction stage. (2) The model employs full
convolutional residual blocks to avoid deepening the network structure, which can lead to
the loss of image features in the forward channel and impede network convergence.

The article begins by summarizing the current state of research on image CS and
introducing the structure and general framework of the designed model. The application
of the residual network in CS image reconstruction is also explored. Finally, a series of
experimental comparisons are conducted to demonstrate the effectiveness of the proposed
network.

RELATED WORKS
Compared to the intricate modeling and optimization process of CS reformulation, deep
learning can approximate arbitrarily complex functions using deep nonlinear network
structures. This approach can learn autonomously from big data to fit a network model
to the problem, resulting in more efficient reconstruction than traditional algorithms
(Zhou et al., 2020). Combining CS and neural network nonlinear reconstruction can
solve the problems inherent in traditional CS theory using deep learning models (Luo,
Liang & Ren, 2022). Deep neural networks (DNNs) have demonstrated their superiority
over other solutions and have been widely used in many computer vision tasks in
recent years (Darestani, Liu & Heckel, 2022; Bian, Cao & Mao, 2022; Chai et al., 2022).
Several deep neural network-based image CS methods have been proposed, with
ReconNet, a convolutional neural network developed by Kulkarni et al. (2016), one of
the early examples. Yao et al. (2019) later proposed DR2-Net, which improved the image
reconstruction quality compared to ReconNet by utilizing a residual network (He et al.,
2016) structure based on the ReconNet network. Zhang & Ghanem (2018) developed
ISTA-Net, a new structured deep network inspired by the traditional iterative shrinkage
thresholding algorithm, which maintains good mathematical interpretability in deep
networks.

Additionally, Zhou, Liu & Shen (2023) proposed an optimization-inspired attentional
neural network for deep CS, which implements the fusion of approximate message-passing
algorithms with neural networks and introduces the attentional network structure. Kumar
et al. (2020) proposed CSNet, an end-to-end network framework that uses a convolutional
layer to model the sampling matrix and convolutional networks for CS recovery. The
network performs joint optimization of sampling and reconstruction parameters and
obtains good reconstruction results. To effectively preserve the texture details of images,
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Sun et al. (2020) proposed a dual-path attention network for CS image reconstruction,
which employs structure path, texture path, and texture attention modules to reconstruct
the image structure and texture components. The network-based CS method offers joint
training of sampling and recovery phases and is non-iterative, significantly reducing the
time complexity compared to optimization-based approaches.

The blocking effect refers to the visual artifacts that arise when adjacent image blocks are
treated independently during reconstruction. Since each block is processed individually,
discontinuities and inconsistencies can appear at the boundaries where the blocks meet
without considering the context of neighboring blocks. These artifacts disrupt the overall
visual coherence and fidelity of the reconstructed image. Despite this drawback, several
techniques have been developed to mitigate the block effect in block-based CS. One
common approach involves employing overlapping blocks during the sampling and
reconstruction stages. By allowing adjacent blocks to overlap, the context and correlations
between neighboring blocks are considered, reducing the occurrence of visible artifacts at
block boundaries. Furthermore, advanced algorithms and optimization techniques have
been devised to improve the accuracy and quality of image reconstruction in block-based
CS. These methods aim to enhance the representation of image features within each block
and ensure smooth transitions between adjacent blocks.

In summary, block-based CS offers benefits such as equitable resource distribution
and efficient compression, but the block effect remains a challenge that can impact image
reconstruction quality. Nevertheless, ongoing research and advancements in overlapping
block techniques and optimization algorithms continue to address this issue, paving the
way for improved block-based CS approaches with higher fidelity and visual coherence in
reconstructed images.

Current image compression-aware reconstruction techniques utilize the compressed
sensory observations’ sampling method to distinguish and construct different
reconstruction methods, achieving high accuracy and effective restoration of image
information. However, these methods do not utilize the image structure a priori
information to guide the design of the deep network framework, which can achieve
optimal constraints on the image solution space and effectively refine the image structure’s
sparse a priori information to achieve accurate reconstruction of images.

METHODS
Graphic design work is predominantly accomplished with the aid of specialized software
(Adobe Photoshop, Adobe Illustrator, CorelDRAW, Affinity Designer, Sketch that enables
the completion of complex two-dimensional spatial design and arrangement, encompassing
color and saturation adjustments to achieve the desired effect. It is crucial to note that
the designed work must be aesthetically pleasing to appeal to a wider audience. As an art
form, graphic design encompasses various artistic elements, and it must effectively convey
the design theme while serving as a tool for publicity and inspiration. The indispensable
support of computer technology enables efficient graphic design and image processing, but
noise and information loss inevitably occur, resulting in image distortion. To rectify these
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Figure 1 CS signal reconstructionmodel flow.
Full-size DOI: 10.7717/peerjcs.2227/fig-1

issues, the CS method can be employed to denoise and reconstruct distorted images. The
CS algorithm projects the high-dimensional graphic matrix into a low-dimensional space
and optimizes it by matching the optimal algorithm. This process reconstructs the original
signal matrix using the low-dimensional observed signal matrix and ultimately achieves
the desired reconstruction of the distorted image, as illustrated in Fig. 1.

The optimal approximation of the sparse graphical matrix is achieved by matching the
prior sequence with the observation matrix, ultimately resulting in image reconstruction
and noise reduction.

Overall design
Drawing inspiration from non-local mean value theory and leveraging deep learning
technology, the author proposes an image CS reconstruction method based on non-local
feature fusion network. The model is depicted in Fig. 2. To enhance the reconstruction
of image block information, this article adopts an adaptive fusion of non-local a priori
information using the image non-local mean theory, thereby enabling a cooperative
representation of image information. The image structure information is constructed by
designing a two-stage reconstruction network that progressively refines the image from
coarse to fine.

During the enhancement reconstruction stage, the image non-local similarity prior
plays a crucial role in providing complementary information to reconstruct individual
image block features, thereby fully utilizing the internal structural features of the image.
To this end, a non-local feature adaptive interaction module is designed, comprising two
non-local feature fusion convolutions, a channel correlation discriminator module, and a
spatial correlation discriminator module. This adaptive weighted fusion of non-local image
features enables the suppression of mismatching information.

Collaborative reconfiguration group construction
The original image is first segmented into B× B blocks of non-overlapping size
xi,i= 1,2,...,N and then the blocks are transformed into B2

×1 dimensional column
vector, and use Gaussian random sampling matrix φ to obtain the compressed sampling
values. yi, whose observation matrix is 8 , then the signal measurement model can be
expressed as Eq. (1).

yi=8xi . (1)
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Figure 2 Model structure.
Full-size DOI: 10.7717/peerjcs.2227/fig-2

When the observation matrix and the measurement results are known, the original
graph matrix can be recovered using a one-dimensional parametric definition.

x =min ‖ x‖1 (2)

s.t. yi=8xi.

Take B size 16, convert the image block to a B2 dimensional column vectors, using the
observation matrix φ for sampling.

The cosine similarity metric effectively captures the internal structural changes of an
image while minimizing the impact of uneven illumination on the construction of similar
blocks when measuring the similarity of two image blocks. Therefore, in this article,
the cosine similarity of the compressed observations of the two blocks is computed to
assess the similarity of their observations. By comparing the similarity of the compressed
observations of a single image block with those of all other image blocks, the author
ranks the obtained cosine similarity values from the largest to the smallest, selecting the
compressed observations with greater similarity to form a cooperative reconstruction
group Yi.

The linear mapping network F was used to upgrade the dimension of the cooperative
reconstruction group Yi to obtain the initial reconstruction image block of the cooperative
reconstruction group Zi, as shown in Eq. (3).

Zi= F1(W1,Yi),i∈ [1,N ] (3)

where F1 represents the fully connected layer. W1 is the weight of the fully connected layer,
which is obtained from the network training. F uses the fully connected network layer F1
to upgrade the dimension and convert the compressed observed value in the collaborative
reconstruction group Yi, and obtains the initial reconstructed image block collaborative
reconstruction group with the size of B×B.

The channel stitching technique is used to fuse the non-local similar features of the
image. The initial reconstruction block co-reconstruction group Zi contained in the
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initial reconstruction estimates of the image blocks zi and its initial estimate of non-local
similar features zi,1,zi,2,...,zi,5. The joint channel stitching is performed to obtain the
co-reconstructed features with fused non-local similar features Zc, whose equation is
shown in Eq. (4).

Zc = concat
(
zi,zi,1,...,zi,5

)
(4)

where concat means channel splicing.
Unlike traditional convolutional operations focusing on local neighborhoods, this

module aggregates information from all positions, enriching the feature representations
with a global context. It operates through non-local operations that compute responses
at each position as a weighted sum of features from all other positions, with weights
determined adaptively based on feature similarity. This process involves generating an
attention map highlighting the significance of different feature positions, guiding the
aggregation of features to focus on the most relevant parts of the input.

First, the reconstruction network uses a fully connected layer to increase the dimension
of the input measurements and reconstruct them into smaller feature images. Then, a sub-
pixel convolution module composed of a sub-pixel convolution layer, a 3×3 convolution
layer, and a batch normalization layer is used to improve the image discrimination rate
gradually, and the calculation process is shown in Eq. (5).

IHR= f L
(
I LR
)
=PS

(
WL∗f L−1

(
I LR
)
+bL

)
(5)

where I LR is the low-resolution image, that is, the smaller feature map. IHR is the
reconstructed high-resolution image, which is the final reconstructed image. f L is the
output image of layer L, and the calculation process of PS function is shown in Eq. (6).

PS(T )x,y,c =Tbx/ycby/rc,c ·r ·mod(y,r)+c ·mod(x,y) (6)

where PS operation can transform the low-resolution image with size H×W ×C · r2 into
the high-resolution image with size rH× rW ×C by periodic transformation.

The reconstruction process of the reconstructed image x̃ (Eq. 7) shows where R is the
depth reconstruction network.

x̃ =R
(
f L(y)

)
=PS

(
f L−1(y)

)
. (7)

Enhanced reconstruction based on global residual module
The concept of residual networks proves to be highly applicable in the image reconstruction
phase, and this study introduces a novel approach by proposing a fully convolutional
residual block. During the network training process, a crucial mechanism is employed
wherein input image features are directly connected across layers to the output. This
connectivity preserves the convolution-extracted image features and prevents their loss
in the forward channel as the network architecture deepens. This approach accelerates
the convergence of the network by maintaining the integrity of essential image features
throughout the reconstruction process.
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Simultaneously, the loss function is crucial in optimizing the image reconstruction
effect. By comparing the residual information of the input image with each generated
image during training, the loss function progressively minimizes the disparity between
them. This iterative refinement process allows the network to continuously improve its
ability to reconstruct images accurately, ultimately enhancing the overall quality of the
reconstructed images.

By leveraging the power of residual networks, incorporating the novel full convolutional
residual block, and effectively utilizing the loss function, this proposed approach effectively
addresses the challenges associated with image reconstruction. Preserving image features,
accelerated network convergence, and iterative refinement all contribute to achieving
superior image reconstruction results. Since the image obtained in the initial reconstruction
process is degraded compared to the original image, the image blocks are refined and
reconstructed. The obtained cooperative joint reconstruction features are Zc into a global
residual reconstruction network consisting of non-local feature adaptive interaction
modules Flg global residual reconstruction network composed of a stack of non-local
feature adaptive interaction modules Fr. The final output image is obtained by fusing the
features z

′

i as shown in Eq. (8):

z
′

i = zi+Fr (W2,Zc) (8)

where zi is the initial estimate of the image block, W2 is the residual network parameter.
The concept of residual networks is leveraged in the image reconstruction stage, where

a state-of-the-art full convolutional residual block is proposed. During network training,
input image features are directly connected across layers to the output, thereby ensuring
the preservation of features extracted through convolution. This approach efficiently
circumvents the deepening of network structure that can result in the loss of image
features in the forward channel, thus accelerating network convergence. Additionally,
the loss function is utilized to compare the residual information of the input image with
each training-generated image, continually decreasing the differences between them and
ultimately enhancing the image reconstruction effect.

Figure 3 illustrates that the residual block comprises a feedforward network featuring
three convolutional layers, accompanied by a constant jump link. where x denotes the input
feature map, the residual function is denoted by F(x), and the output of the residual block
is denoted by H(x). Therefore, the expression of the residual block is shown in Eq. (9).

H (x)= F(x)+x. (9)

When F(x) tends to zero, which is equivalent to the output of the residual block H(x) and
the input x is extremely close to the input, and the difference is small, i.e.,H(x)= x . This is
called the constant mapping of the residual function; after training the network with many
data sets, the optimal value of F(x). The optimal value of the residual block is obtained as
the output of the residual block H(x). The residual block’s output is acquired after training
the network on many data sets. During the backpropagation stage, the gradients utilized
for training the three convolutional layers within the residual block are saved. Additionally,
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Figure 3 Residual block structure diagram.
Full-size DOI: 10.7717/peerjcs.2227/fig-3

each convolutional layer is succeeded by a PReLU activation function, thereby augmenting
the network model’s non-linear expression.

Loss function
To begin with, these images must be initialized by converting them from RGB space to
YCrCb. Subsequently, the image space is transformed from RGB to image space, with the
luminance channel being selectively chosen. The network is then trained with four distinct
sampling rates: 1%, 4%, 10%, and 25%, correspondingly. Diverging from conventional
approaches in the domain of compression-aware image reconstruction, the proposed
network is jointly trained alongside a complete convolutional residual reconstruction
sub-network, with the loss function defined by Eq. (10):

L(W )=
1
T

T∑
i

∥∥f (xi,W ,K )−xi
∥∥2 (10)

where T denotes the number of channels of the feature map during network training, W
denotes the material weight parameter in the pick-and-place network, K denotes the weight
parameters in the full convolutional residual reconstruction sub-network, and the two parts
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are jointly trained in a unified way to train the whole network by back-propagating the
Euclidean distance between the original image labels and the reconstructed images.

EXPERIMENT AND ANALYSIS
Experimental setup
The experiment employs the 91-images dataset (https://zenodo.org/records/11163729,
10.5281/zenodo.11163729) and the BSD300-train dataset (https://zenodo.org/records/
10667264, 10.5281/zenodo.10667264) as the training dataset. The 1-dimensional column
vector is normalized in the range (0,1) for each dimension to expedite network convergence.
The input to the network is obtained by sampling image blocks cropped from each image
using aGaussian randommatrix, with the luminance components of the image blocks being
extracted as supervised labels during training. The observation matrix employed in this
experiment comprises a Gaussian random matrix that satisfies finite isometric constraints,
with the sampling rates set to {0.01, 0.04, 0.10, 0.25}. The model hyperparameters are
presented in Table 1.

To assess the efficacy of diverse algorithms, grayscale images extracted from the BSD200-
train dataset were utilized for testing, a Jupyter notebook with eight different solutions
for common problems of digital image processing, including object recognition and
binarization using an adaptative threshold. The evaluation metrics were peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM).

The experimental environment utilized in this study is detailed in Table 2.

Analysis of results
Figure 4 visually depicts the mean PSNR values obtained from the test images. Initially,
at a learning rate of 0.001, the PSNR curve shows fluctuations as the epochs progress.
This fluctuation can be attributed to the learning process as the model gradually adapts
to the data. However, the curve exhibits a more consistent pattern as the learning rate
decays. This signifies that the model is converging and reaching a stable state, where further
training iterations have minimal impact on improving the PSNR values. The plateauing
of the curve indicates that the trained model has achieved convergence across the four
distinct sampling rates, demonstrating the effectiveness of the learning rate decay strategy
in facilitating model stability and optimizing reconstruction quality.

To assess the effectiveness of the proposed network, a comprehensive comparison
was made with five representative deep learning-based CS techniques, namely ReconNet,
NL-MRN, ISTA-Net, SCSNet, and GMNet. The evaluation of these algorithms involved
utilizing nine standard grayscale images, which served as the test bed for the analysis. The
resulting performance metrics and findings are graphically represented in Figs. 5 and 6,
providing a clear visual representation of the comparative outcomes achieved by each
technique.

The proposed model demonstrates remarkable performance, surpassing other deep
learning-based techniques, as substantiated by its consistently highest average PSNR and
SSIM values across the four sampling rates. SSIM, being a more sophisticated image
similarity evaluation index, provides deeper insights into the quality of the reconstructed
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Table 1 Hyperparameter settings.

Name Hyperparameter value

Optimizer Adam
Learning rate 0.01
lr_policy Multistep
Batch size 10
Epoch 50
Momentum 0.5
Learning rate change ratio 0.9

Table 2 The experiment environment.

Environment Information

CPU I7-8750HQ
GPUs GTX 1080
Language Python 3.5
Framework Tensor flow and Scikit-learn

Figure 4 Results of PSNR of the model with Epochs under the BSD200 dataset.
Full-size DOI: 10.7717/peerjcs.2227/fig-4
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Figure 5 PSNR under different models and SR.
Full-size DOI: 10.7717/peerjcs.2227/fig-5

Figure 6 SSIM under different models and SR.
Full-size DOI: 10.7717/peerjcs.2227/fig-6
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images. Notably, the network architecture introduced in this study showcases superior
SSIM results compared to the reference algorithms. When SR is 0.01, 0.04, 0.10, 0.25,
the average PSNR is 4.87dB, 5.23dB, 6.12dB, 7.95Db higher than ReconNet. The average
improvement over GMNet is 0.27dB, 0.74dB, 0.64dB and 0.76dB, showing superior
reconstruction performance.

This achievement can be attributed to the novel non-local feature adaptive interaction
module incorporated within the proposed model. By integrating non-local feature
fusion convolution, this module effectively combines non-local information, allowing for
comprehensive and accurate fusion of features. Moreover, it introduces weight adjustments
to highlight critical high-frequency features while diminishing the influence of redundant
low-frequency data. This is accomplished by utilizing the channel correlation discriminant
and spatial correlation discriminant modules, enabling a more refined and discriminating
feature representation.

Furthermore, the proposed model offers a unique advantage by doubly suppressing
features that exhibit in-group matching errors. By identifying and suppressing these
erroneous features, the model significantly enhances image reconstruction accuracy. This
suppression mechanism adds layer of refinement to the reconstruction process, resulting
in improved image quality and fidelity.

The proposed model outperforms existing deep learning-based techniques, as evidenced
by its superior average PSNR and SSIM values across various sampling rates. The
introduction of the non-local feature adaptive interaction module, coupled with the
suppression of in-group matching errors, enables the model to achieve exceptional
reconstruction accuracy. These advancements generate high-quality reconstructed images,
solidifying the efficacy of the proposed network architecture for image reconstruction
tasks.

In addition to evaluating the image reconstruction quality of different techniques, it is
equally important to consider comparing their respective reconstruction times. Figure 7
provides insights into the average GPU runtime necessary for reconstructing nine images
across various sampling rates, each with a size of 256 × 256.

It is worth noting that Fig. 7 exclusively focuses on the time consumed by the network
during the image reconstruction process to ensure a fair and accurate comparison. By
analyzing the GPU runtime, the author comprehensively understands the computational
efficiency and speed of the different techniques, allowing the author to assess their suitability
for real-time applications or scenarios with time constraints.

Analyzing Fig. 7, it becomes discernible that ReconNet exhibits a lower computational
complexity than the other techniques. However, its reconstruction performance falls short
regarding both PSNR and visual effects. On the other hand, NL-MRN showcases slightly
improved reconstruction performance, albeit with a marginally longer reconstruction time
compared to ReconNet.

Another noteworthy technique is GMNet, which achieves superior reconstruction
quality while retaining the fastest reconstruction speed among the evaluated methods.
Combining high-quality results and efficient processing makes GMNet a compelling
option for image reconstruction tasks.
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Figure 7 Running time under different models and SR.
Full-size DOI: 10.7717/peerjcs.2227/fig-7

Furthermore, the proposed model is evaluated against SCSNet. Notably, at low sampling
rates, the reconstruction time of SCSNet is nearly on par with that of the proposed model.
However, as the sampling rate increases, the depth of the SCSNet network grows, resulting
in a corresponding increase in reconstruction time.

Comparatively, ISTA-Net exhibits the longest image reconstruction timewhile delivering
average reconstruction quality. In summary, compared to these deep learning-based image
reconstruction methods, the proposed model outperforms the others in terms of image
reconstruction time and overall reconstruction performance. Its superior balance of
efficient processing and high-quality results make it a promising choice for various image
reconstruction applications.

CONCLUSION
Numerous types of graphic design software are available, with the most common
applications being dot matrix images and vector graphics, sharing similarities and
differences. Dot matrix images have a fixed color resolution and may be inadequately
reconstructed due to insufficient feature extraction, resulting in poorly reconstructed
edge contours and detailed textures. This article proposes a non-local feature fusion
network-based image reconstruction method. Experimental results demonstrate that the
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proposedmethod accurately estimates the original image, with clearly visible texture details
compared to previous image CS reconstruction methods. The potential of our proposed
model lies in its ability to effectively reconstruct high-frequency information, which is
critical for maintaining the fidelity of textures and edges in graphic design applications.
High-frequency information is essential for precisely rendering fine details, sharp edges, and
intricate textures, crucial for creating visually appealing and professional-quality designs.
By accurately capturing and reconstructing these high-frequency components, our method
ensures that the final images retain their original clarity and detail, making them highly
valuable for graphic design tasks that demand high precision and quality. Furthermore,
the proposed method’s ability to preserve detailed textures and edge contours significantly
enhances the functionality of widely used graphic design software, such as Photoshop,
for tasks involving image refinement and compositing. Ensuring reasonable shadows,
saturation, and other detailed aspects of an image is critical for creating realistic and
compelling visual content.

Notably, a set of generators and discriminators may produce texture-rich images
from random noise. Moreover, compressed observations containing most of the original
image’s informationmay be reconstructed using generative adversarial networks. Typically,
detected edges are coarse, leading to insufficient reconstruction of the reconstructed image’s
edge information. Hence, improving edge accuracy is essential. Our method addresses this
issue by incorporating advanced feature fusion techniques, resulting in superior edge
reconstruction and overall image quality, making it a robust solution for graphic design
applications.
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