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ABSTRACT

Surface defect inspection methods have proven effective in addressing casting quality
control tasks. However, traditional inspection methods often struggle to achieve high-
precision detection of surface defects in castings with similar characteristics and minor
scales. The study introduces DES-YOLO, a novel real-time method for detecting
castings’ surface defects. In the DES-YOLO model, we incorporate the DSC-Darknet
backbone network and global attention mechanism (GAM) module to enhance the
identification of defect target features. These additions are essential for overcoming the
challenge posed by the high similarity among defect characteristics, such as shrinkage
holes and slag holes, which can result in decreased detection accuracy. An enhanced
pyramid pooling module is also introduced to improve feature representation for
small defective parts through multi-layer pooling. We integrate Slim-Neck and SIoU
bounding box regression loss functions for real-time detection in actual production
scenarios. These functions reduce memory overhead and enable real-time detection
of surface defects in castings. Experimental findings demonstrate that the DES-YOLO
model achieves a mean average precision (mAP) of 92.6% on the CSD-DET dataset
and a single-image inference speed of 3.9 milliseconds. The proposed method proves
capable of swiftly and accurately accomplishing real-time detection of surface defects
in castings.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Visual
Analytics, Neural Networks
Keywords Casting, Surface defect detection, Object detection, YOLO, Attention mechanism

INTRODUCTION

Casting is a critical method for manufacturing various heavy-duty and precision
components for mechanical systems. Although there are strict process quality controls
and inspections in the core process links, such as molding, pouring, and shakeout, it is
difficult to fully automate the casting manufacturing process due to real-time monitoring
and detection technology limitations. During the casting process, various surface defects
may manifest (Nadot, Mendez ¢ Ranganathan, 2004; Chen et al., 2021), including fractures
and voids resulting from suboptimal casting practices, anomalies associated with inadequate
temperature control, and abrasions from transportation and handling. The surface
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defects substantially compromise the functionality and longevity of the cast products.
Consequently, detecting and identifying surface flaws in cast materials are vital to reducing
manufacturing costs and enhancing the quality of the final products.

Methods for detecting metal anomalies include artificial visual inspection detection
(Zhang et al., 2020), non-destructive testing (Strecker, 1983; Silva et al., 2023), and image
processing techniques (Pastor-Lopez et al., 2021; Xing & Jia, 2021; Wang, Li ¢ W, 2022;
Nieniewski, 20205 Li et al., 2023b). Image processing substantially reduces labor costs,
minimizing the inconsistencies and influence of subjective evaluations. However, existing
studies primarily focus on metal surface defects (Liu, Zhang & Dong, 2023), with limited
research focusing on applying deep learning to casting surface defect detection. Within
the domain of defect identification, Xiao, Wu ¢» Hu (2020) proposed a two-stage defect
detection method based on the Mask R-CNN network, utilizing the IPCNN model.
However, this approach faces real-time challenges in capturing and detecting small
target defect features. Cheng et al. (2022) introduced the DS-Cascade R-CNN model,
incorporating a spatial attention mechanism and deformable convolution at multiple
scales. Despite these innovations, the two-stage algorithm’s inherent limitations hinder
detection speed.

Single-stage detection frameworks, exemplified by the YOLO series (Redmion ¢ Farhadi,
2018; Wang, Yeh & Liao, 2021; Long et al., 2020; Wang, Bochkovskiy & Liao, 2023), employ
convolutional neural networks (CNNs) to simultaneously estimate the coordinates of target
bounding boxes and classification probabilities. These methodologies significantly enhance
detection speed and reduce the dependency on extensive hardware resources, making it
well-suited for real-time surface defect detection. Li et al. (2023a) employed techniques
like an enhanced channel attention mechanism and multi-spatial pyramid pooling for
automatic defect identification in wire arc additive manufacturing. Parlak ¢ Emel (2023)
utilized the YOLO model approach to study internal defects in high-pressure aluminum
die-casting. Their research showcased effective defect identification through an end-to-end
learning process. Xing ¢ Jia (2021) utilized a convolutional network classification model
(SCN) with a symmetric module and three convolutional branches, achieving impressive
average accuracy rates of 99.61% and 95.84% in identifying surface defects in raw aluminum
castings. However, limited dataset availability impacted generalization ability. Xie et al.
(2023) investigated the FE-YOLO construct, integrating depth-wise separable convolution
alongside an enhanced feature pyramid network for multi-scale object detection, achieving
accuracy enhancements at the expense of escalated model complexity and protracted
convergence. The RDD-YOLO model (Zhao et al., 2023), combining the Res2Net block
and dual feature pyramid networks, addresses these challenges by decoupling the head
for regression and classification tasks. Yuan et al. (2023) developed a method to enhance
low-light images using CLAHE, markedly improving image contrast while avoiding
shifts in chromaticity, thereby significantly enhancing the visibility of details under dim
lighting. Tang, Yu ¢ Wu (2023) introduced the RCID-YOLOV5s defect detection method,
incorporating a specialized small target detection layer. This innovation addresses the
challenge of low detection accuracy for minor defects and enhances the overall accuracy in
identifying defects on railway catenary insulators.
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Computer vision application for casting surface defect detection encounters distinct
challenges, diverging from other industrial defect detection methods. Casting surface
defects blend with the background, exhibit irregular shapes, vary significantly in type and
size, and complicate feature extraction. Additionally, as network depth increases, features of
more minor defects, such as pores, can become obscured, leading to detection difficulties.
The scarcity of dedicated datasets for casting surface defects further constrains the diversity
of defect types available for study, limiting research progress in this area.

A novel method has been developed to address the challenge of detecting surface defects
in castings, with its effectiveness validated through the establishment of a well-balanced
casting surface defect dataset (CSD-DET):

1. The introduction of the DSC-Darknet feature extraction network features a lightweight
DSC layer and DBC-Block to construct the backbone network. Additionally, the GAM
attention module is integrated to enhance feature discernment, improve extraction
efficiency, and reduce computational demands.

2. We integrate the enhanced pyramid pool module to address the issue of losing features
for small target samples, effectively expanding the feature receptive field.

3. A fusion of slim-neck architecture, combining GSConv and VoV-GSCSP, is utilized
to refine the DES-YOLO model for lightweight and expedited real-time detection of casting
surface anomalies.

4. The SIoU bounding box regression loss function is adopted, incorporating an area
ratio penalty and vector angle to bolster model robustness and accelerate convergence in
the optimization phase.

MATERIALS & METHODS

This section introduces the critical components of the proposed DES-YOLO model,
designed for the swift detection of casting surface defects. These components include the
DSC-Darknet backbone, an enhanced pyramid pool module (EPPM), and a slim-neck
architecture, as depicted in Fig. 1.

DSC-Darknet backbone network

The CSP-Darknet53 backbone network is designed to leverage its residual structure to
move convolutional layers across the original image, facilitating the fusion of various fine-
grained image features. Our investigations have indicated that applying CSP-Darknet53 to
detecting defects on casting surfaces does not markedly elevate detection precision; instead,
it results in heightened computational load and extended training durations. We propose
the DSC-Darknet feature extraction network to improve the accuracy of casting surface
defect inspection models.

In the DSC-Darknet backbone network, traditional convolution layers are replaced with
DSC convolutional layers, comprising Distributed Shift Convolution (DSConv (Gennari,
Fawcett ¢ Prisacariu, 2019)), batch normalization (BN), and the CELU activation function.
DSConv, functioning as a plug-and-play convolution, employs a variable quantization
kernel (VQK) and dual distribution shifts to substitute standard convolution layers in
CNNs seamlessly. The VQK is engineered to store integer values of variable bit-length,
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Figure 1 DES-YOLO structure diagram.
Full-size G DOI: 10.7717/peerjcs.2224/fig-1

thus minimizing floating-point calculations, reducing error accumulation, and lowering
computational overhead. The distribution shift mechanism is segmented into the kernel
shifter (KDS) and the channel distribution shifter (CDS). KDS adjusts the depth value
of the VQK for each segment, while CDS consolidates channel values per segment. This
structure enables the kernel-based and channel-based distribution shifters to replicate the
outputs of the original convolution, which accelerates network convergence and enhances
the model’s generalization capabilities.

The DBC-Block design, illustrated in Fig. 2B, incorporates DConv and partitions the
feature map into two divided into two independent branches. The primary pathway
transmits features directly to the Conv layer, while the auxiliary path aggregates high-
frequency features through the Conv and DSConv layers. Two independent branches
implement feature aggregation at different scales using the Conv layer. This structure
of the DBC-Block effectively addresses potential issues of gradient vanishing associated
with increased network depth and simplifies the overall complexity of the DSC-Darknet
backbone network.

DSC-Darknet generates feature information across five scales via a cascading feature
transfer. As a high feature layer, P5 features rich semantic and contextual information but
will lose the characteristic information of small defective targets. To address this, a global
attention mechanism (GAM attention; Liu, 2021) is introduced following the P5 layer. This
mechanism is designed to refine the detection of small targets by reducing background
noise and evenly distributing feature data within the spatial domain. The GAM attention
mechanism consists of two submodules: channel attention and spatial attention, illustrated
in Fig. 3. The channel attention component employs a multilayer perceptron (MLP)
to redistribute feature information and underscore interdimensional relationships. The
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Figure 2 The primary components comprising DSC-Darknet. (A) The VQK and two distributed shifts
that ultimately render the result equivalent to the initial tensor, thus forming DSConv. (B) The architec-
ture for DBC-Block aggregation.
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Figure 3 The GAM attention mechanism includes two submodules: channel attention and spatial at-
tention.
Full-size Gal DOI: 10.7717/peerjcs.2224/fig-3

spatial attention submodule employs two convolutional layers aligned with channel data
to enhance spatial details and focus on more minor target features.

Enhanced pyramid pool module

Utilizing multiscale feature extracts within the DSC-Darknet framework may lead to
reduced contextual information and the loss of fine-grained features across various
subregions. The enhanced pyramid pooling module (EPPM) is integrated into the last
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layer feature map to address this challenge. The EPPM is composed of the multilevel
pyramid pooling model (MPPM) (Zhao et al., 2016) and the enhancement module (EM)
(Yu et al., 2022). The model polymeric prior global contextual information enhances the
flexibility of the feature extraction network and improves its ability to detect small targets.

The MPPM module addresses the loss of spatial information attributable to average
pooling by using (2 x 2,3 x 3,5 x 5, 6 x 6) four-dimensional pooling branch to
segment the feature map into distinct subregions, as depicted in Fig. 4A. To preserve global
contextual details, the MPPM conducts convolution operations that reduce the contextual
dimensions to a quarter of their original size following multilevel pooling. Each branch
feature value is processed through the ReLU activation function to enhance the model’s
nonlinearity. The MPPM module utilizes bilinear up-sampling to return low-level features
to their original dimensions to aggregate features without adding computational overhead.
Ultimately, The MPPM module utilizes a cascading technique to integrate global contextual
information with the multidimensional features of the local context, thereby enhancing
the generation of robust global features, as detailed in Eq. (1). The input feature Fjp,
generates four pooled features Fp,iing With different dimensions after average pooling
and 1 x 1 convolution operations with different bin values are set. The MPPM module
integrates multiscale features by up-sampling and concatenation operations on branches,
and achieves channel dimensionality reduction by 1 x 1 convolution operations to generate
multiscale features Fapar.

Fpooling_i = C((P(Finput))) (1)
Fyppv = C(U(Fpoolingfl) + U(Fpooling,Z) + U(Fpoolingj) + U(Fpooling}))

U(X) represents a bilinear interpolation up-sampling operation applied to the feature
map. C(X) denotes a convolution operation with a kernel size of 1 and a step size of 1,
while P(X) stands for the average pooling of the feature map. The utilization of the average
pooling preserves finer details in the image information, effectively addressing the challenge
of increased variance in estimation values resulting from restricted neighborhood sizes.

Wang et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2224 6/22


https://peerj.com
https://doi.org/10.7717/peerjcs.2224/fig-4
http://dx.doi.org/10.7717/peerj-cs.2224

PeerJ Computer Science

The EM module incorporates convolution branches that feature varying expansion
rates, residual links, and stratified weighting to expand the feature receptive field and
address challenges such as reducing detail in small target features, gradient instability, and
signal attenuation during the training phase. The multi-scale features of the MPPM part
are passed through a convolutional layer with a kernel size of 1 to reduce the number of
feature channels by half.

The multi-expansion rate convolution branch within the EM is designed to augment
the semantic expressiveness of the receptive field without altering its size. This branch
is structured with a three-branch structure, utilizing 3 x 3 convolutions and dilation
convolutions with expansion coefficients of 1, 2, and 3. This arrangement conserves
computing resources and diminishes the risk of overfitting through a weight-sharing
strategy among the branches. Subsequently, the channel dimension of the feature map is
enriched by a 1 x 1 convolutional layer, which ensures the restoration of the enhanced
feature channels to the original image’s dimensions while concurrently preserving detailed
feature information, as delineated in Eq. (2). Where the symbol “+” stands for branch
aggregation. The enhancement feature Fgy fuses the multiscale feature Fyppys and its cubic
convolutional features by residual concatenation. And by applying 1 x 1 convolution and
pooling operation on the multi-branch enhancement features, the channel dimension is
unified, which in turn enhances the feature representation of defective sites.

The EM is instrumental in broadening the receptive field, reducing overfitting, and
optimizing the representational capacity of samples across various scales.

Fen i = Fyvppv + C(Di(C(Fyvppm )
Feppave = P(C(Fppym, Fen 1, Fen_2, FEN 3)).

(2)

Slim-neck fusing GSConv and VoV-GSCSP

Extensive computation in casting surface defect detection results in prolonged training
time, posing challenges for practical implementation. The DES-YOLO adoption of a slim
convolutional architecture known as GSConv (Li et al., 2022) is proposed to mitigate this.
GSConv combines multiple convolutional operations, including standard convolution
(Conv), depth-wise separable convolution (DSConv), and a Shuffle mechanism, as
illustrated in Fig. 5A. This architecture reorganizes the input feature channels using Conv
to facilitate the computation of features in multiple groups. It replaces the standard Conv
of each group with DSConv and enhances inter-group feature integration by shuffling
channel features. With a convolution kernel dimension of K1xK2, input feature map
channels of Ci, output feature map channels of Co, and an output image dimension of
Wo x Ho. Traditional convolution has a single computation of K; x K, x C; x C, x W, x H,,
while DSConv convolution is divided into two parts: channel-by-channel convolution and
point-by-point convolution. Channel-by-channel convolution uses only one convolution
kernel per channel and has K; x K; x C; x W,, x H, parameters, while point-by-point
convolution uses 1 x 1 standard convolution of features and has C; x C, x W, x H,
parameters.The computational load of GSConv is significantly reduced in comparison to

Wang et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2224 7122


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2224

PeerJ Computer Science

it

C1 channels

IxI ‘

SConv | Ll Clor |

L

1x1 Conv ‘ ‘ 1x1 conv ‘

EGS bottleneck Concat

(a)GSConv (b)GS bottleneck (c)VoV-GSCSP

Figure 5 Slim-neck structure. (A) The GSConv structure, (B) the GS bottleneck that comprises VoV-
GSCSP, (C) the VoV-GSCSP module, which uses the residual idea. The combination of these three mod-
ules creates the slim-neck structure.

Full-size &l DOI: 10.7717/peerjcs.2224/fig-5

traditional Conv, as demonstrated in Eq. (3).
PDSCO,W_KlszxCixWOxH0+CixC0xW0xHo_ 1 + 1
Pconr K x Ky x Cj x Cy x W, x H,, T C, KixK,

(3)

The VoV-GSCSP module, inspired by the ELAN architecture in YOLOvV7, employs
an unilayered aggregation strategy, as depicted in Figs. 5B and 5C. The VoV-GSCSP
module uses dual GSConv to replace the traditional convolution operation. It uses the
residual structure to sequentially splice shallow features with strong multi-scale positioning
capabilities and deep features with strong multi-scale semantic expression capabilities into
features that fuse multi-layer information. Vectors avoid the problems of information
loss and gradient disappearance and reduce the complexity of calculation and network
structure.

Casting surface defect dataset -CSD DET
According to the Chinese national standard GB/T5611, casting surface defects are primarily
classified into three categories: hole defects, incomplete defects, and surface defects,
with each category further divided into seven subcategories. Hole defects arise from
bubbles formed during casting when gas fails to escape during solidification. These are
subdivided into blowholes, shrinkage cavities, and slag holes, distinguished by their
visual characteristics. Insufficient metal liquid pouring or mechanical collision falls under
incomplete defects. Surface defects, referring to general appearance issues in castings, are
typically categorized into hollows and scratches, each resulting from varied manufacturing
anomalies.

This study collected images of surface hole defects in textile machine parts, furnace
castings from a hardware foundry in Xuancheng City, Anhui Province, and automobile
cylinder block castings produced by an automobile industry company in Wuhu City.
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Blowholes Shrinkage Slag hole Fractures Misrun Hollows Scratches

Figure 6 Comparison of surface defect types and data enhancement results of CSD-DET datasets. The
initial row shows the original dataset; the second row illustrates the CSD-DET dataset.
Full-size Gal DOI: 10.7717/peerjcs.2224/fig-6

A Hikvision industrial camera was used to capture these images, allowing for the
simulation of diverse production environments through adjustments to the camera
aperture and background images. The camera features a maximum frame rate of 44.7 fps,
an eight mm focal length lens, and an aperture range of F2.4 to F16. Images were captured
at a resolution of 1,280 pixels x 1,280 pixels, with a shooting interval of 0.2 s. During
data acquisition, special consideration was given to the defect samples’ scale, angle, and
viewpoint diversity to adapt to variations in target defects under different distances and
sizes, aiming to improve the model’s accuracy in defect detection and recognition. After
a rigorous filtering process, 5,390 images of casting surface defects were obtained, each
containing at least one defect—analysis of the collected images with 15% featuring multiple
defects of varying sizes and uneven distribution. Multiple rounds of manual review were
conducted to address the challenge of accurately labeling defect locations and categories in
the dataset to ensure labeling accuracy and consistency. Additionally, the reliability of the
labeling results was verified through random sampling and repeated labeling of selected
data.

An analysis of category distribution within the dataset was conducted to address
the imbalance in data samples caused by the low occurrence rates of shrinkage and
hollow defects, and the sample numbers were balanced using random coefficients data
enhancement techniques. These augmentation methods, including random luminance
contrast adjustment, grid distortion, and affine transformations, were utilized to reduce
data imbalance, as illustrated in Fig. 6. After applying these data enhancement techniques,
the casting surface defect dataset, now encompassing 6,000 images with 8,854 defect
markers, was designated as CSD-DET, as detailed in Table 1. Domain experts in casting
were then engaged to evaluate the practical utility of the CSD-DET dataset for detecting
surface defects in castings.

RESULTS

Loss functions
During the training of the DES-YOLO model, defect prediction frames are continuously
generated. This study leverages the comparison between these prediction frames and
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Table 1 Dataset of casting surface defects.

Category Original CSD-DET/ Label Number of
image/images images labels/instances
blowholes 401 408 Bh 1,884
shrinkage 901 1,053 Sh 1,195
slag hole 842 915 Sl 1,516
fractures 850 903 Fr 1,348
misrun 1,002 1,009 Mr 1,250
hollows 634 1,002 Ho 1,101
scratches 660 710 Sc 1,260

ground truth (GT) frames to evaluate the model’s ability to detect and accurately predict
real defects. To achieve this, the SIOU loss function is utilized to optimize model parameters
and enhance prediction accuracy by minimizing the loss. The SIOU loss function is
employed, incorporating components such as confidence loss, coordinate regression loss,
and target confidence loss, as detailed in Eq. (4). Here, Lossdassification denotes the category
confidence loss, which is used to determine whether the anchor frame is correctly classified.
LosSiocalization denotes the coordinate regression loss, which is used to measure the error
between the prediction frame and the real frame. Lossonfidence denotes the target confidence
loss, which evaluates whether the prediction frame contains the target or not. A is used as a
super parameter to balance the effect of different loss functions on the backpropagation of
model parameters by weighting coefficients,Throughout the model optimization process,
with manual adjustments made multiple times and set to A1 =0.1, A2 =0.005,and A3 =0.1
to meet the performance optimization requirements. The calculation of target and class
confidence losses employs Binary Cross Entropy with Logits Loss (BCE With Logits Loss)
combined with the sigmoid function.

Lossan = A1L055classiﬁcation + A2LosSiocalization + )‘3L055wnﬁdence (4)

The YOLO model typically employs the Complete Intersection over Union (CloU) as
the coordinate regression loss function. This function facilitates prediction and refinement
by evaluating distances and overlap areas between the predicted bounding boxes and the
ground truth (GT) boxes. While the CloU loss function aids in model optimization, it
lacks consideration of the directional relationship between predicted boxes and GT boxes,
resulting in the slow convergence speed of the model.

The DES-YOLO study employs the SIoU (Zhora, 2022) loss function, incorporating
an area proportionality penalty term and a vector angle between projective regression. It
comprises angle cost, distance cost, shape cost, and IoU cost, as depicted in Eq. (5). Where
A represents the angular and distance loss coefficient and 2 represents the shape loss
coefficient, IoU represents the shape loss coefficient.

Losssiou =1—IoU-i—AT+sz (5)

To ensure smooth and controllable model convergence, an exponential decay function
is employed to calculate the shape distance loss between predicted and actual frames,
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incorporating angular loss coefficients. The distance loss function A is associated with
the minimum outer rectangle of the two bounding boxes, as defined in Eq. (6). Where
A denotes the angular loss coefficient, this coefficient is calculated by determining the
minimum angles o and 8 between the connecting line from the center point of the
predicted bounding box to the actual bounding box and the x and y axes. The angular
loss coefficient guides the predicted bounding box towards the direction of the axis of
the nearest target box when the center point is not aligned with any of these axes (A
#2). The A loss is constrained to 0 when the center point of the predicted frame aligns
with either the x-axis or y-axis, specifically when (A =2). ( C,tc, bf}t,) represents the center
coordinates of the ground truth (GT) box, and (b, b.,) represents the center coordinates
of the predicted box. Additionally, ¢,, and ¢, indicate the width and height of the minimum
bounding rectangles for both the GT and predicted boxes, as illustrated in Fig. 7B. Equation
A Through the improved distance calculation formula, the angle o between the real frame
and the center point of the prediction frame is determined, and the angle loss value is
estimated using the multiplier angle formula.

max(b‘gt,bcy) —min(b‘gfc,bcx) I1

)——)

A =1-—2xsin2(arcsin( 1

t

(B8 — ey )? + (b — by )2
b’g}c*bcx _ b‘s}f,—b,:y 2
A= Z(l_e(A—zm):2_6<A—2><T>2_6(A 25D

t=x,y

(6)
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In the shape loss function, the value of 6 determines the unique Shape cost for each
data point, as indicated in Eq. (7). The value of 8 affects the gradient update step for the
model’s prediction box shape loss, and setting 6 to 3 accelerates model training during the
experimental manual parameter tuning process. The shape loss coefficients accumulate
prediction errors across coordinates using an exponential decay model.

Q= Z(1-e—Wf)9. (7)
t=w,h

The width and height of the predicted and ground truth boxes are denoted by x
and y, respectively, with the distance between their center points represented as d and
the convergence speed as c. As depicted in Fig. 7A, the prediction frame shifts in the
X-axis direction, progressively nearing the GT frame. The overlap of CloU after the first
convergence is denoted as dc, and after the second convergence, it becomes 2dc. In contrast
to CIoU’s linear movement along the x-axis, SIoU steers the prediction frame toward the
line connecting the center points of the predicted and ground truth frames. During this
process, SIoU dynamically modifies the bounding box’s dimensions to align with those of
the ground truth box. Figure 7B illustrates the overlap degree between the two boxes after
the two convergences.

The overlap degree for SIoU after the initial convergence is calculated as )%C; , and it

2
x42x 1;2 after the second convergence. Compared to CloU, the overlap degree

after movements guided by SIoU is significantly higher. This efficiency in diagonally

increases to

directing the predicted bounding box’s center point toward the real bounding box’s center
point facilitates faster model convergence during optimization.

Experiment environment and evaluation index
Experiment environment

The DES-YOLO model proposed in this research was trained and evaluated under
controlled laboratory conditions. The experimental setup included hardware consisting
of an Intel® Core™ i9-13900KS CPU at 3.20 GHz, an NVIDIA GeForce RTX 4090 GPU
with 24 GB of memory, and software configuration conducted on Python 3.9 and PyTorch
2.0.0using the Anaconda3 deep learning development toolkit.

For consistency across tests, all images were standardized to a resolution of 1,280 pixels
x 1,280 pixels. The CSD-DET dataset was divided into training, testing, and validation
sets in an 8:1:1 ratio. The training process utilized stochastic gradient descent (SGD) as the
optimizer, with a weight decay parameter set to 0.0005. The initial warm-up momentum
was established at 0.8, the learning rate was initiated at 0.01, and the training was conducted
over 300 epochs with a batch size of 8.

Evaluation index

This study employs evaluation metrics such as precision (P), recall (R), F1 score, target
detection accuracy, and mean average precision (mAP) to assess the effectiveness of
casting surface defect detection. Precision represents the proportion of correct predictions
relative to the total number of predictions, while recall measures the proportion of correct
predictions relative to the actual number of predicted objects. Target detection accuracy
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indicates the percentage of correctly identified defect samples relative to the total sample
count. The F1 score measures the model’s overall performance by precision and recall. mAP
calculates the areas’ average under the precision—recall (P-R) curve across all categories,
offering a comprehensive assessment of the model’s overall accuracy. The IoU threshold
for calculating mAP is set to 0.5 and 0.5:0.95, as shown in Eq. (12).

.. TP
Precision= ——. (8)
TP +FP
TP
Precall = ——. 9)
TP +FEN
TP+ TN
Accuracy = . (10)
TP+ FEN + TN + FP
Precision x Recall
F1—score=2x — . (11)
Precision + Recall
1 (!
mAP = —Z/ P;(R)dR;. (12)
nizJo

To evaluate the real-time performance of the casting surface defect detection model,
the Infer Time metric is utilized to gauge the inference speed, which reflects the rate at
which the model processes images per second. A lower Infer Time value indicates a faster
processing speed, as detailed in Eq. (13).

the_total_number_of _images (13)

Infer_Time =
nfer_Time Total_model_check_time

Ablation experiments
This section details ablation experiments conducted to evaluate the effectiveness of
individual modules within the DES-YOLO model for casting surface defect detection.
The results are presented in Table 2, where the “v"”symbol denotes the inclusion of
specific modules in the experiment. F1-score as an aggregate function of precision and
recall. In the process of gradually introducing each module in the ablation experiment, the
Fl1-score increased from 88.1 to 89.0, which proves that each module in the DES-YOLO
model minimizes background misrecognition and enhances the accuracy of the correct
identification of defective targets. The implementation of the DSC-Darknet referred
to as Al, shows a detection accuracy that surpasses YOLOv7-tiny by 2.3% and 1.5%,
underscoring the enhanced feature extraction capabilities of the DSC-Darknet backbone
network.

Additionally, the inclusion of the GAM Attention and EPPM modules significantly boosts
detection accuracy. While the slim-neck module enhances accuracy at the IoU threshold 0.5,
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Table 2 Ablation experiments.

Module DSC- GAM EPPM Slim- SIoU mAP@. mAP@.
Darknet attention neck 5/% 5:.95/%
YOLOv?7 87.3 65.4
Algorithm1 v 89.6 66.9
Algorithm?2 v v 90.5 67.6
Algorithm3 v v v 91.2 68.2
Algorithm4 v v v v 92.4 67.9
DES-YOLO v v v v v 92.6 68.8

a slight reduction is noted at the 0.5:0.95 IoU threshold. This decrease is attributed to the
slim-neck’s shallow network depth, which, while reducing the computational load, aligns
with practical application demands. Integrating the SIoU metric into the DES-YOLO model
results in a mAP at 0.5 of up to 92.6% and a mAP at 0.5:0.95 of up to 68.8%, confirming
the method’s efficacy in identifying defects on casting surfaces.

While an attention mechanism is not imperative for target detection, experiments
reveal that its application significantly enhances the model’s ability to detect small target
features, achieving accurate surface defect detection in inspection castings. Comparative
analyses with mainstream mechanisms, such as ECA and NAM Attention, demonstrate
the superior detection performance of GAM Attention, even without a substantial increase
in parameter numbers. Although SK Attention exhibits the highest detection accuracy,
its extensive requirement for calculating location information renders it less suitable for
lightweight applications within factory settings. Notably, in the GAM attention experiment,
accuracy rates exceed recall rates, a phenomenon that may be influenced by noise in the
casting defect samples. This observation is corroborated by Fig. 8, which confirms that
GAM attention is the most suitable for the DES-YOLO model.

The primary objective of the casting surface defect detection task is to effectively
differentiate between background elements and characteristic features within the castings.
A saliency heatmap is employed to demonstrate the detection model’s focus on defects
visually. This heatmap uses warmer image tones to represent higher model attention,
indicating a greater probability that the highlighted region harbors defective features.
Figure 9 illustrates how the model’s attention to defective surface areas becomes more
pronounced throughout the iterative training process.

In order to verify that the DES-YOLO model can effectively detect casting surface defects
under different environments and lighting conditions, this study deployed the model in
casting production line conveyor belts, casting storage warehouses, and other production
environments. The test results are shown in Fig. 10, which proves that the DES-YOLO
model has high generalization ability in different environments.

Comparative experiments

To evaluate the improvement of the DES-YOLO model, this study presents a comprehensive
comparison with the mainstream model, as summarized in Table 3. Compared to Faster
R-CNN and RetinaNet, the YOLO series algorithms demonstrate significantly fewer
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Figure 8 Attention mechanism comparison.
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Misrun

Slag hole

Fractures

Figure 9 DES-YOLO saliency heatmap. Rows of misrun, slag hole, and fracture defects, respectively.
Each row in the figure illustrates the gradual integration of DSC-Darknet, MPPM module, slim-neck, and
SIoU bounding box loss functions for detecting the same kind of faults.

Full-size Gl DOI: 10.7717/peerjcs.2224/fig-9

parameters. Despite its higher parameter count, Faster R-CNN, a two-stage algorithm,
attains the highest detection accuracy for scratch category defects at 85.1%. This superior
performance is attributed to its Pyramid Region Network (PRN) characteristics and
two-stage processing, effectively detecting minor target defects. In contrast, YOLOV3
demonstrates the lowest detection accuracy, with mAP’s IoU threshold at 0.5 of only 84.3%
and mAP’s IoU threshold at 0.5:0.95 of 56.6%. The DES-YOLO model achieves a mAP’s
IoU threshold of 92.6%, reflecting a 5.3% improvement over the YOLOv7 model’s 87.3%
accuracy, primarily due to the utilization of DSC-Darknet and the EPPM model. The
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Figure 10 DES-YOLO detection results in multiple scenarios.
Full-size Gal DOI: 10.7717/peerjcs.2224/fig-10

Table 3 Compares the experimental accuracy.

Algorithm Bl/% Sh/% SU% Fr/% Mr/% Ho/% Sc/% mAP@ mAP@
5/%  .5:.95/%
Faster R-CNN 741 883 933 897 90 92.8 851  87.9 60.1
Retina-net 539 880 944 873 875 94.4 80.6  83.7 57.5
YOLOv3 72 939 954 946  90.4 99 443 843 56.6
YOLOV5 76.6 964 973 953 923 99.4 736  90.1 63.5
YOLOR 748 957 974 946 914 98.4 642 881 63.2
PPYOLOE 735 951 979 957 928 99.3 724 895 62.1
YOLOX 794 953 955 93 90.3 98.6 663 89.9 62.4
YOLOv7 748 994 975 938 944 99.2 668 873 65.4
DES-YOLO 853 940 988 98 95 98.6 729 926 68.8

DES-YOLO model excels in detecting four types of defects: blowholes, slag holes, fractures,
and misruns, with visualization results presented in Fig. 11.

To assess the DES-YOLO model’s suitability for industrial real-time detection, its
inference speed and computational complexity were analyzed and compared with other
models, as detailed in Table 4. Faster R-CNN and RetinaNet lag behind the YOLO series
regarding inference speed and computational complexity, posing challenges for industrial
real-time detection. Although YOLOV3-tiny offers lower computational complexity, it
does not achieve the inference speed or detection accuracy of the models discussed in this
study.

In comparison, YOLOv5-s, YOLOR-p6, PPYOLOE-s, and YOLOX-s all demonstrate
slower inference speeds, with their GFLOPs exceeding those of our model by 20.4%, 1.5%,
27.0%, and 95.6%, respectively. Notably, the DES-YOLO model achieves an inference speed
of 3.9 ms, 0.5 ms faster than YOLOv7-tiny, while maintaining a computational load of only
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YOLOVS5-S PPYOLOE-s YOLOX-s YOLOV7-tiny DES-YOLO

Figure 11 Comparison of the surface defect detection results of castings from the same model. Each
row shows a different defect type, such as blowholes, slag holes, fractures, and misruns. The final column
of the figure includes magnified details of small, undetected target areas for each defect type.

Full-size Gl DOI: 10.7717/peerjcs.2224/fig-11

Table 4 Computational complexity comparison experiment.

Model Params/M Infer time/ms GFLOPs/10°
Faster R-CNN 41.1 16.9 36.9
RetinaNet 36.2 35.3 30.8
YOLOv3 8.7 5.1 13

YOLOV5 12.3 13.7 16.5
YOLOR 8.4 14.5 13.9
PPYOLOE 36.9 10.6 17.4
YOLOX 8.06 15.2 26.8
YOLOv7 6.3 4.4 13.2
DES-YOLO 7.4 3.9 13.7

13.7 GFLOPs. This efficiency satisfies the stringent requirements for real-time detection
of casting surface defects. Analysis of the loss attenuation curves, as shown in Fig. 12,
reveals that the DES-YOLO model’s confidence loss relative to total loss declines more
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Figure 12 Loss attenuation curve comparison.
Full-size Gal DOI: 10.7717/peerjcs.2224/fig-12

smoothly and rapidly than YOLOv7-tiny, indicating enhanced learning and generalization
capabilities.

The analyses above further corroborate that our proposed DES-YOLO model exhibits
superior robustness in the real-time detection of casting surface defects.

CONCLUSIONS

The DES-YOLO model is designed for real-time detection of casting surface defects,
effectively addressing challenges such as limited datasets, similarity among defective
features, and the complexity of extracting features from small targets. The effectiveness of
this improved method has been validated through experimental validations, with critical
conclusions as follows:

1. DSC-Darknet backbone network: Engineered to enhance the stability of the DES-
YOLO model during feature extraction, this network integrates the DSC layer to reduce
feature computation demands, the DBC block to enrich gradient combinations, and the
GAM Attention module to amplify spatial feature information, facilitating the extraction
of features from small targets.

2. Enhanced pyramid pool module: The EPPM is integrated into the feature extraction
network to expand the receptive field, enhancing the network’s ability to detect target
samples of varying sizes. The EPPM module significantly boosts the accuracy of small-
casting surface defect detection.

3. Slim-neck: By integrating the GSConv and VoV-GSCSP modules, the Slim-neck
configuration effectively simplifies the DES-YOLO model’s structure and reduces the

detection network’s depth. This strategic reduction significantly lowers the computational
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memory overhead, enhancing the model’s efficiency. This module has led to a significant
improvement in the applicability of the DES-YOLO model in industrial scenarios.

4. SIoU bounding box regression loss function: This function, which includes an
area proportion penalty term and vector angle consideration, accentuates the logical
relationship between predicted and actual bounding boxes, thereby enhancing the model’s
fitting stability.

The DES-YOLO model outperforms mainstream target detection algorithms, achieving
mAP 0f92.6% and 68.8% on the CSD-DET dataset for casting surface defect detection, with
a single image detection time of 3.9 ms and a computational complexity of 13.7 GFLOPs.
The experimental results affirm the efficacy of the DES-YOLO model in identifying surface
defects in casting.

Future research will concentrate on the following areas to enhance the DES-YOLO
model’s practical applications and address existing challenges:

1. Practical application development: Efforts will be dedicated to exploring the practical
needs associated with the DES-YOLO model in industrial settings. The research includes
developing a comprehensive casting surface defect detection system that integrates casting
conveyor belts, acquisition cameras, and sophisticated detection systems to streamline and
automate the inspection process.

2. Lighting variation challenges: The research will also address the significant challenge
of accurately extracting defective features in casting images that are affected by variations
in industrial lighting. The research involves improving the model’s robustness in different
lighting conditions.
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