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ABSTRACT

Collision avoidance is a crucial component of any decentralized multi-agent
navigation system. Currently, most of the existing multi-agent collision-avoidance
methods either do not take into account the kinematic constraints of the agents
(i.e., they assume that an agent might change the direction of movement
instantaneously) or are tailored to specific kinematic motion models (e.g., car-like
robots). In this work, we suggest a novel generalized approach to decentralized
multi-agent collision-avoidance that can be applied to agents with arbitrary affine
kinematic motion models, including but not limited to differential-drive robots,
car-like robots, quadrotors, efc. The suggested approach is based on the seminal
sampling-based model predictive control algorithm, i.e., MPPI, that originally solves
a single-agent problem. We enhance it by introducing safe distributions for the
multi-agent setting that are derived from the Optimal Reciprocal Collision Avoidance
(ORCA) linear constraints, an established approach from the multi-agent navigation
domain. We rigorously show that such distributions can be found by solving a
specific convex optimization problem. We also provide a theoretical justification that
the resultant algorithm guarantees safety, i.e., that at each time step the control
suggested by our algorithm does not lead to a collision. We empirically evaluate the
proposed method in simulation experiments that involve comparison with the state
of the art in different setups. We find that in many cases, the suggested approach
outperforms competitors and allows solving problem instances that the other
methods cannot successfully solve.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Autonomous Systems, Robotics

Keywords Collision avoidance, Kinematic constraints, Decentralized multi-agent systems, Model
predictive path integral, Decentralized multi-agent navigation, Multi-robot systems, Sampling-based
optimzation

INTRODUCTION

Multi-agent navigation is a complex and challenging problem that arises in various
domains such as mobile robotics, video game development, crowd simulation, efc. In many
cases, when communication between agents is limited or not possible, the problem has to
be solved in a decentralized fashion. In this case, collision avoidance is achieved through
the iterative and independent finding of individual control actions by each agent, based
only on local observations. Moreover, in practice, especially in robotics, agents cannot
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change their movement direction (heading) instantaneously and arbitrarily. For example,
consider a moving car-like robot that needs to perform a turning maneuver to change its
heading. These types of constraints are known as kinematic constraints.

However, existing collision-avoidance methods either disregard such constraints (Van
Den Berg et al., 2011a; Zhou et al., 2017), require extensive pre-processing to handle them
(e.g., creating look-up tables Alonso-Mora et al., 2013; Claes et al., 2012; Hennes et al.,
2012), or focus only on specific kinematic motion models (Snape et al., 2011; Van Den Berg
et al., 2011b; Snape et al., 2010, 2014).

Meanwhile, in the single-agent realm, there exists a powerful technique, i.e., Model
Predictive Path Integral (MPPI), that addresses the problem of computing optimal control
via the combination of Model Predictive Control (MPC) and sampling-based optimization.
The distinctive feature of MPPI-based methods is that they can naturally handle arbitrary
nonlinear dynamics and a variety of cost functions. In the context of collision avoidance,
MPPI-based techniques can be employed for both single-agent (Williams et al., 2017;
Buyval et al., 2019) and multi-agent (Streichenberg et al., 2023; Song et al., 2023) setups by
adjusting the cost function or introducing additional constraints. However, these methods
do not provide safety guarantees; they can output controls that may lead to a collision.

In this work, we present a collision avoidance MPPI-based algorithm designed for a
broad class of affine nonlinear systems that focuses on producing safe controls. Safety is
achieved through a specific shift of the parameters of the distribution from which the
controls are sampled. As a result, the probability that the sampled controls are within a safe
subset exceeds a predefined threshold. Figure 1 showcases an illustrative example of a
collision avoidance problem and corresponding solutions that involve sampling in the
velocity domain and utilize either a predefined distribution (Fig. 1B) or a distribution with
safe parameters derived from linear constraints (Fig. 1C). Furthermore, we demonstrate
that computing the safe distribution parameters can be done by solving a Second-Order
Cone Programming (SOCP) problem. By employing these new parameters, sampling
efficiency is improved, and the resulting solution is guaranteed to maintain a desirable level
of safety. Through extensive experimental evaluation, we validate the effectiveness of our
method in successfully achieving goal positions with collision avoidance across various
scenarios, including differential-drive robot dynamics and car-like dynamics. Importantly,
our proposed approach outperforms existing state-of-the-art collision avoidance methods
such as ORCA for differential-drive robots (Snape et al., 2010), B-UAVC (Zhu, Brito ¢
Alonso-Mora, 2022), and learning-based methods (Blumenkamp et al., 2022), particularly
in scenarios involving dense agent configurations, where our approach produces more
efficient solutions.

The remainder of this article is organized as follows: First, we provide a comprehensive
overview of the relevant literature. Subsequently, we formulate the problem statement for
decentralized multi-agent collision avoidance. Furthermore, we present a background on
sampling-based control and optimal reciprocal collision avoidance. The next section
provides a detailed description of the proposed approach, along with a discussion of the
theoretical properties. Following this, we detail the experimental setup and corresponding
results, before drawing conclusions.
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Figure 1 (A) A visualization of an instance of the decentralized multi-agent collision avoidance problem studied in this work. Five disk-shaped
agents are simultaneously moving in the environment toward their goal locations. (B) Brown dots denote controls (i.e., the velocity
components) sampled by the brown agent from a predefined distribution. Numerous samples lie outside a safe zone (depicted in blue)
that is defined via the collision avoidance linear constraints. (C) Green dots correspond to controls sampled from the distribution
constructed by our method. Indeed, all of them fall within the safe zone, which is additionally shrank due to the control limits (orange
lines). Full-size K&] DOT: 10.7717/peerj-cs.2220/fig-1

RELATED WORKS

There is a wide range of methods for solving the multi-agent navigation problem.
Moreover, the formulation of the problem can vary significantly in different cases. The
classical formulation involves each agent aiming to reach a specific location in space,
cooperating with other agents and trying to avoid collisions with them or static/dynamic
obstacles (Stern et al., 2019). However, there are more general statements, for example,
where each agent has a list of goals available, but the goal of a particular agent is not
predefined, and the task is to move every agent to some goal from the list that is not
occupied by other agents (this problem formulation is often referred to as anonymous or
unlabeled multi-agent navigation/pathfinding) (Stern et al., 2019; Solovey ¢ Halperin,
2016; Turpin et al., 2014). Another formulation, referred to as online or lifelong multi-agent
navigation/pathfinding, involves agents receiving a new goal and continuing to move after
the old goal is achieved (Stern et al., 2019; Ma et al., 2017).

Centralized multi-agent navigation

Generally, navigation approaches can be divided into centralized and decentralized ones.
In the centralized case (commonly referred to as Multi-Agent Pathfinding or MAPF), it is
assumed that there is a central controller that creates a global plan for all agents and has
reliable connections with all agents at every moment in time (Stern et al., 2019). Such
methods usually rely on a discretized representation of the workspace (e.g., a grid graph
or a roadmap), although methods that consider continuous scenarios also exist

(Walker, Sturtevant & Felner, 2018; Andreychuk et al., 2022). Additionally, MAPF
algorithms often provide some theoretical guarantees, with some aimed at
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obtaining optimal solutions (Sharon et al., 2015) or bounded-suboptimal solutions
(Barer et al., 2014). However, these algorithms do not scale well to large numbers
of agents and, in practice, do not allow for finding solutions in a reasonable amount
of time.

On the other hand, if it is important to find a solution quickly, there are rule-based
solvers such as De Wilde, Ter Mors ¢» Witteveen (2014). However, the solutions obtained in
this case are usually far from optimal in terms of cost. A possible compromise between the
solution cost and performance may be provided by prioritized planning (Cdp ef al., 2015),
which often finds close-to-optimal solutions and is also fast and scalable. Nonetheless,
prioritized planning is generally incomplete.

Decentralized multi-agent navigation

In a decentralized case, no central controller is assumed, and every agent makes decisions
about its actions independently. Different works make various assumptions about the
availability and quality of communication between agents. On one hand, methods can rely
only on observable information, for example, knowing only the position of other agents
(Zhou et al., 2017) or the position and velocity (Van Den Berg et al., 2011a). Moreover, the
visibility range can also be limited (Wang et al., 2022). On the other hand, there are also
methods that use internal information on other agents, such as planned trajectories or
chosen control actions (Zhu ¢ Alonso-Mora, 2019).

It is important to note that one of the basic navigation schemes used in the decentralized
case is that each agent independently creates its global trajectory, taking into account only
the static environment, and then moves along it, avoiding collisions with other agents. The
global trajectory can also be modified, taking into account other agents, to reduce the risk
of collision or avoid deadlocks (Senbaslar et al., 2023). Global trajectories can be obtained
using a discrete environment representation (Yap, 2002) and one of the graph pathfinding
algorithms, such as Dijkstra’s algorithm (Dijkstra, 1959) or one of the A*-based heuristic
search algorithms (Hart, Nilsson ¢ Raphael, 1968; Daniel et al., 2010). The problem of
single-agent path planning is out of scope for this work, but this area is well studied, and
more relevant approaches can be found in Algfoor, Sunar & Kolivand (2015) and Patle
et al. (2019).

Collision avoidance methods solve the problem of following a global path while
ensuring movement safety and generating only the next safe step (although they may
consider several steps in advance). The collision avoidance procedure runs at a
higher frequency than the global scheduler and receives the most up-to-date information
(Senbaglar et al., 2023). In order to preserve the safety guarantee, such methods are
required to obtain solutions taking into account as many factors as possible, such as
localization or sensor data uncertainty, the agent’s shape, or kinematic constraints.
Decentralized collision avoidance methods will be discussed in more detail below.

Multi-agent collision avoidance
This section will address the methods for decentralized multi-agent collision avoidance. In
our work, we will consider approaches that rely on the assumption that all agents use the
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same policy, act cooperatively (i.e., they share responsibility for avoiding collisions), but at
the same time have limited communication abilities. Existing methods can be divided into
classical or model-based methods and learning-based methods. Below, we will look at the
most notable model-based methods, as well as consider a learning-based approach.

Velocity obstacles

The most well-known collision avoidance methods are based on the concept of velocity
obstacles (Fiorini ¢ Shiller, 1998). The main idea of such methods is to construct a safe
subset in the velocity space and, at each step, find a safe velocity close to some preferred
one inside such a subset. To find such subsets, velocity-based algorithms need information
about the positions, velocities, and sizes of neighboring agents. The first velocity-based
method that considered the problem of decentralized collision avoidance was the
Reciprocal Velocity Obstacles (RVO) algorithm (Van den Berg, Lin ¢~ Manocha, 2008). Due
to the reciprocity of collision avoidance, RVO allowed a reduction in the number of
oscillations. However, this approach guarantees collision avoidance only under specific
conditions, and oscillations still occur in various cases.

To eliminate these shortcomings, the Optimal Reciprocal Collision Avoidance (ORCA)
(Van Den Berg et al., 2011a) and Hybrid Reciprocal Velocity Obstacles (HRVO) (Snape
et al., 2011) methods were developed. The authors of Snape et al. (2011) mainly focused on
eliminating the “reciprocal dances” effect, where agents cannot reach an agreement on
which side to pass each other. On the other hand, the main contribution of the ORCA
algorithm is that it provides a sufficient condition for each agent to be collision-free (Van
Den Berg et al., 2011a). Moreover, the ORCA method allows for generating smoother
trajectories than RVO and HRVO (Douthwaite, Zhao ¢ Mihaylova, 2019). However, these
methods find solutions in velocity space rather than action space and cannot take into
account kinematic and dynamic constraints in general. In addition, the ORCA algorithm
does not consider uncertainty in the data.

Thus, an important area of research is the adaptation of velocity-based methods to
various kinematic constraints. The authors of Van Den Berg et al. (2011b) suggest the
Acceleration Velocity Obstacle (AVO) approach as a generalization of the basic Velocity
Obstacle method for various dynamics, but it does not exploit the advantages of reciprocity
introduced in RVO, HRVO, and ORCA methods. Snape et al. (2010, 2014) describe the
adaptation of the ORCA algorithm to the differential-drive robot dynamics by enlarging
the radius of the agent, and also proposes a second adaptation approach based on the ideas
of AVO.

The most general approach to adapting velocity-based methods to non-holonomic
constraints (Non-Holonomic ORCA or NH-ORCA) is described in Alonso-Mora et al.
(2013). In Alonso-Mora et al. (2013), the authors considered only the application of the
NH-ORCA on differential-drive robots, but in Alonso-Mora, Beardsley ¢» Siegwart (2018),
the dynamical systems of several other types were also taken into consideration. On the
one hand, NH-ORCA presents a general scheme that allows the consideration of
constraints of various types. However, it requires the preparation of special lookup tables
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for each specific motion model to find the maximum tracking error of the holonomic
trajectory by the non-holonomic agent. In addition, such methods find solutions in
velocity space, which requires the preparation of a special controller that allows for the
execution of a safe velocity with specified tracking error (Alonso-Mora, Beardsley ¢
Siegwart, 2018).

Methods to take into account uncertainty in information on state and environment have
also been developed, e.g., Probabilistic RVO (PRVO) (Gopalakrishnan et al., 2017),
Collision Avoidance with Learning Uncertainty (CALU) (Hennes et al., 2012), and
Combined Collision Avoidance with Learning Uncertainty (COCALU) (Claes et al., 2012).
Both CALU and COCALU also leverage the ideas of NH-ORCA to consider the differential-
drive kinematic constraints.

Buffered Voronoi cells

An alternative to velocity-based methods is to use approaches based on buffered Voronoi
cells (BVC) (Zhou et al., 2017). The main idea of such methods is to construct the Voronoi
cells around each agent or obstacle and, at each step, find an action that would keep the
agent inside the cell but move it towards the goal. An important advantage of such
methods is that there is no need for information on other agents’ velocities. However, such
methods are subject to the issue of deadlocks and oscillations. The authors of the original
BVC method (Zhou et al., 2017) propose using the right-hand rule, where each agent
always chooses to detour from its right side when encountering other agents. An
alternative approach is to use buffer zones of varying sizes depending on the priority of the
agent (Pierson et al., 2020), or to employ other deadlock resolution rules (Arul ¢» Manocha,
2021).

Similar to velocity-based methods, accounting for uncertainty and kinematic
constraints is an essential area of research, e.g., Wang ¢ Schwager (2019) and Zhu, Brito &
Alonso-Mora (2022). Let us consider the Buffered Uncertainty-Aware Voronoi Cells (B-
UAVC) method introduced by Zhu, Brito ¢~ Alonso-Mora (2022) in more detail. It modifies
the BVC method in a way that bases every action selection on the estimated position and
uncertainty covariance of agents, their neighbors, and obstacles. The article also introduces
approaches to adapting B-UAVC to several specific dynamic models, ultimately suggesting
the use of Model Predictive Control with B-UAVC constraints, necessitating the
development of a suitable MPC controller for the specific dynamics.

Safety barrier certificates

Another approach to solving the collision avoidance problem is the use of Safety Barrier
Certificates (SBC) (Wang, Ames ¢» Egerstedt, 2017; Luo, Sun ¢ Kapoor, 2020). The core
idea of the method is to create linear constraints in the agent’s control space and find a safe
control input that is close to an optimal one. In the basic version, the algorithm requires
agents to know the internal states of other agents (e.g., current acceleration and control
constraints). However, considering certain dynamic models and assuming some prior
knowledge of agents about each other, this algorithm can be considered decentralized.
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Nonetheless, it should be noted that finding safe control necessitates the development of a
controller that provides optimal control based on user-defined criteria.

Reinforcement learning approaches

A separate area of research in collision avoidance is the development of reinforcement
learning-based methods (e.g., Long, Liu ¢ Pan, 2017; Long et al., 2018; Chen et al., 2019;
Fan et al., 2020 Everett, Chen ¢» How, 2021; Blumenkamp et al., 2022). The basic scheme of
most methods involves approximating the function (using neural networks) that estimates
actions regarding safety and progress toward the goal (the value function). At each step,
the algorithm selects the most valuable action and then executes it. One significant
advantage of such methods is that they are not demanding of input data and can
operate using only sensor data (e.g., LIDAR points), instead of the positions and velocities
of other agents. However, it is essential to note that these methods often lack theoretical
guarantees, and their generalizability to various scenarios and dynamic systems requires
verification.

PROBLEM STATEMENT

Consider a set of agents, /" = {1, 2, ..., N} that operate in a shared workspace R?. Let
G={g!, g%, ..., g'} denote agents goal locations in R*. Let 7 = 0, At, 2At, ... be the
discrete time (At = const) and for the sake of simplicity assume that At = 1, thus the
timeline is .7 = 0, 1, 2, .... The transition model of all agents is defined in non-linear
affine discrete-time form:

Xt+1 = F(Xt) + G(Xt)ut (1)

where x¢ € R" is the agent’s state at time moment f, uy = (1, Usy, ..., Um) € R™ is the
control input at time moment ¢, F : R” — R" and G : R"*" — R" are the functions that
define the motion of the agent. Every component of the control vector may be bounded:
Ukmin < Ukt < Uk max-

The state of the agent necessarily includes its position in the workspace and may include
additional components (e.g., orientation): x¢ = (px, py, ...). Since in this work we consider
a motion model with discrete time, we assume that during transition between positions
(Px.ts Pys) and (pxear, Pyi+ae) at adjacent moments in time ¢, t + At, the agent moves
uniformly and straightforwardly.

Example Let us consider a differential-drive robot. In this case, the robot’s state is
described as x¢ = (pxs, Py, 0:), where 0 is the agent’s orientation (heading angle). The
control input is u = (v, w)T, where v is the linear velocity (Viin < v < Vjay) and w is the
angular velocity (Wpin < w < Wy,.x). The functions that describe the robot’s motion are
the following:

cosf; 0
F(x¢) = x¢; G(x¢) = | sinf; 0 (2)
0 1

Thus, the equation of the motion can be written as:
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px,t+1 px7t COS Ht 0 v
Pyiv1 | = | Py | + | sin0; 0 < Wt > (3)
0141 0, 0 1 f

At each time step, each agent chooses a control input that brings it to the next location
(which can be different from the current one or the same as the current one).

Let sh'(x) be the mapping between the agent’s state x and the set of points in R?
occupied by the agent in this state. In other words, sh defines the footprint of the agent
when it is located in a specific state.

A control sequence (or just control) for an agent i is a mapping U’ : T — R, that can
be written as U’ = {uj, u}, u, ...}. The application of controls U’ to system 1 produces a
trajectory (or path) in the workspace. Path can be written as a mapping n’ : T — R” orasa
sequence of states in discrete time ©’ = {x}, x}, x5, ...}.

In this work, we are interested in converging solutions, i.e., controls by which an agent
reaches the neighborhood of a particular location and never moves away from it. Further
on, we will use the terms path and trajectory interchangeably.

The time step, t}m € T, by which the agent i reaches the neighborhood of its final
destination defines the duration of the trajectory: duration (1) = t}m

The control sequence for the agent i is valid w.r.t. iff at every step ¢ control U’(t) = ul
satisfy the control constraints:

Vie NVt e 0, tg, — 1] Vk € [1, m], g min < U'(); < Uk max (4)

Consider now the two control sequences for distinct agents: U’, U’. Let xi and x{ be the
states of the agents i and j at the time ¢ when executing the controls U’, U’ using the
motion model in Eq. (1). Trajectories are called conflict-free if the agents following them
never collide, that is:

sh(x) N sh(x}) = @, Vt € [0, max (8, th,)]

We assume that the At value is small enough, and if two agents i and j are collision-free
at time moments ¢ and t 4+ At, then they also did not collide when moving between

i j
1An Xear
The problem now is to find a control sequence for each agent i s.t. (i) each individual

corresponding states x!, x; and x

control sequence is valid; (i) the produced trajectory starts at the predefined initial state
and ends in the neighborhood % (g!) of the corresponding goal g' € G; (iii) each pair of
corresponding trajectories is conflict-free, i.e., the agents following them never collide.

If now the set of control sequences (one for each agent is given) is presented as a
solution, its cost can be defined using produced trajectories 7' as follows:

makespan = max (duration (') (5)

We are not imposing a strict requirement on optimizing the cost of the solution, but
lower-cost solutions are obviously preferable.
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Additional assumptions
In the rest of the article, we rely on the following assumptions, which are not uncommon in
the field: (i) all agents are homogeneous, and every agent i is represented as an open disk of
radius ' € R™; (ii) each action is executed perfectly, so at each time step, an agent’s
position is deterministic and known exactly.

Based on the first assumption, agents i and j are in a collision-free state if the distance
between them is greater (or equal) than the sum of their radii:

sh(xi) N sh(xjt) = & ||xi — X{Hz > 44 (6)

where || - ||, is Euclidean vector norm.

In this work, we consider a decentralized setting, which implies that each agent acts
independently and makes decisions on what controls to choose based on limited
information gained from local observation/communication. In particular, we adopt the
following assumptions regarding this aspect of the problem.

We assume that at each time step t € T, each agent i € /", indeed, knows its own state

xi, velocity vi = (Bu—fet) by "Z? 1) and radius r’. At the same time, communication with

other agents is not assumed, the agents can only use outer information on neighboring
agents that can be observed, namely, current positions, current velocities and radii. In
other words, the inner agent state (e.g., preferred velocity or current selected control) is not
available for other agents. Moreover, the visibility range is limited, and only the agents
within the predefined visibility range R’ € R™ are observable. No communication between
agents is assumed.

BACKGROUND

The proposed approach relies on the concepts of the Model Predictive Path Integral
algorithm. The Model Predictive Path Integral (or MPPI) algorithm was developed to solve
the nonlinear stochastic optimal control problem. The MPPI algorithm adopts the control
scheme from the MPC methods, where the problem is solved incrementally, and at each
step, a control sequence is generated for a small time horizon. The primary distinction
from MPC is that optimal control is constructed using a sampling-based optimization
method. At each time step, MPPI samples a set of control inputs and generates a set of
corresponding trajectories using a given model of the dynamic system. Each trajectory is
evaluated using a cost function, and based on the resulting costs, the control input is
selected. Therefore, the algorithm does not rely on linear and quadratic approximations of
dynamics and cost functions, enabling its application to a wide range of tasks (Williams
et al., 2016). Additionally, each sequence (and the corresponding trajectory) can be
sampled and evaluated independently, allowing for parallelization to enhance performance
(Williams, Aldrich & Theodorou, 2017).

Moreover, for sampling safe control actions, it is essential to incorporate control
constraints that ensure the safety of future movements. The Optimal Reciprocal Collision
Avoidance (ORCA) algorithm was selected for this purpose. It is based on the concept of
identifying a set of relative velocities that could result in a collision with a neighboring
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agent. Using this set, a linear constraint is formulated to establish a safe region in the
velocity space. While this algorithm offers sufficient conditions for safe motion, it is also
less prone to deadlocks or oscillations compared to, for example, BVC. Let us delve into
these approaches in more detail.

MODEL PREDICTIVE PATH INTEGRAL

Originally presented in Williams et al. (2016), the MPPI algorithm relies on the assumption
that the dynamical system is represented in a nonlinear affine form. The article by
Williams et al. (2017) discusses the evolution of the original idea, introducing the
Information Theoretic Model Predictive Control (IT-MPC) algorithm. This algorithm
allows for the consideration of a broader class of dynamical systems given in a general
nonlinear form. Subsequent research has focused on enhancing the robustness and
sampling efficiency of the algorithm, as indicated by works such as those by Gandhi et al.
(2021), Balci et al. (2022) and Tao et al. (2022a, 2022b). For instance, the works by Tao et al.
(2022a, 2022b) explore enhancing safety by exploring new sampling parameters
considering control barrier function. Another area of development aims at obtaining
smoother trajectories, as highlighted in the work by Kim et al. (2022). Additionally, there
are studies dedicated to adapting the MPPI algorithm to a multi-agent formulation. Such
approaches often assume communication between agents (Wang et al., 2022; Song et al.,
2023) or rely on predicting the motion of other agents without guaranteeing the safety of
the resulting actions (Streichenberg et al., 2023). A more detailed description of the MPPI
algorithm (hereafter referred to as the IT-MPC version) will be presented. The stages of the
algorithm are illustrated in Fig. 2.

The problem of stochastic optimal control is under consideration where the works
dedicated to MPPI present the stochastic dynamical system equation of motion in a
general form:

Xer1 = F (X, ) (7)

where x; € R" is the state of the system at time ¢, uy € R™ is the input of the system at time
t. 7 :R" x R" — R" is a time-invariant (generally non-linear) state-transition function,
and there is a time horizon t € {0, 1, 2, ..., T}. It is assumed that there is no direct
control over the input @y, but uy ~ A" (u¢, £) is a random vector, and there is a direct
control over the mean u; € R™. Note, that Eq. (1) (that is a part of the definition of the
problem considered in this article) is a special case of Eq. (7).

Let us define U = (uyg, uy, ...,ur_1) as the control sequence, % is the set of admissible
control sequences, U = (g, @, ..., Gr_;) as input sequence and X = (X, X;, ...,Xr) as
the state trajectory over the time horizon T. Let us denote the distribution of overall input
sequence U as Q. The optimal control problem is defined as:

U* = arg min Eq [Z (X, U)], (8)
vea

where & is a specifically-designed cost function. In other words, the task is to find such a

sequence of controls for which the expected value of the cost function ¥ with respect to

the probability measure Q induced by the controlled dynamics is minimal.
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(c) Compute weights (d) Create new control sequence

Figure 2 Illustration of the MPPI algorithm step. The agent’s footprint is depicted as a blue disk. (A)
The algorithm retrieves the solution (control sequence) from the previous step to serve as a foundation
for further sampling. The corresponding trajectory is represented by a red line. (B) A set of control
sequences is generated through sampling, with corresponding trajectories depicted as blue lines. The
mean value of the sampling distribution is the control sequence from the previous step, with its corre-
sponding trajectory shown as a red line. (C) Each control sequence undergoes evaluation and is assigned
a weight based on the evaluation. Trajectories with higher weights are highlighted in red, while those with
lower weights are marked in blue. (D) The new solution, represented as a blue line, is derived as a
weighted sum of the sampled sequences. Agents execute only the first control from the sequence (shown
as a red arrow) and repeat the sampling process. Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-2

The MPPI family of the algorithms consider the cost functions of the form:

~

Z(X, U) = p(x) + ) (r(xe) + c(w)), €)

t

Il
oS

where ¢ (x;) is terminal cost function, r(x) is running cost function and c(u) is running
control cost function. For example, in the single-robot navigation task, one of the options
to define the terminal cost-function ¢ (x;) might be to compute the distance between the
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! Please note that the cost function that is
used to evaluate the constructed trajec-
tories, S(X, U) may be different from the
one used in defining the MPPI control
problem, #(X, U). Finding such S(X, U)
that the resultant U* is optimal in terms
of the expected value of Eq. (9), is one of
the key issues considered in the works
devoted to IT-MPC approach. The
authors of MPPI propose several cost
functions S(X, U) and we refer the reader
to Williams et al. (2017) and Williams
(2019) for more details.

last point of the trajectory x; and the target position. Cost term r(x;) might measure the
distance from the robot to the obstacles or to some reference geometric path at each point
of the trajectory x;.

The MPPI algorithms work as follows. Let the current state x, and some initial sequence
of controls U™ = (ui™, ..., u!™)) be given (a trajectory corresponding to the initial
control sequence is depicted on Fig. 2A as the red line). First, the MPPI algorithm samples
a set of K sequences:

& = (g, &, g ), & ~ (0, D). (10)

Based on U™" and &, a set of K control sequences U* is obtained:

k k Lk K Kk ini k
U = (ug, uy, ..., uf ), uf = u™ +¢g/. (11)

Using x, and the equation of motion 7, a corresponding trajectory X is obtained for
every sequence of controls U (a set of such trajectories is shown on Fig. 2B as blue lines,
red line represents the initial trajectory U™"):

Xk = (XOa F(X07 ul(;)v F(X11(7 ull()v ) F(Xl”;—la ul{“—l))' (12)

Each sequence of controls is evaluated, and its cost is computed. These costs are used to
calculate the weights «w(U) for importance sampling and obtain the resulting sequence of

* * * * 1
controls U* = (uj, uj, ...,up_4) .

u = Z (w(U)u). (13)

After the resulting controls are computed, control uy is executed and new initial
controls sequence U™ is built on the basis of the U* by removing u;; and adding some
default initial control value u™" to the end (a trajectory corresponding to resulting control
sequence depicted on Fig. 2D as blue line, executed control is shown as red arrow):

Uinit — (uﬂls’ u;, ~-"“fr—17 llinit)

Thus, the MPPI algorithm allows solving nonlinear stochastic optimal control problems
for a single agent. But in a decentralized multi-agent case it can create unsafe solutions (if
all sampled trajectories will lead to collisions and have a lot of weight), or require

numerous samples to find a safe solution.

OPTIMAL RECIPROCAL COLLISION AVOIDANCE

The Optimal Reciprocal Collision Avoidance (ORCA) method (Van Den Berg et al., 2011a)
represents a development of the theory of velocity obstacles (Fiorini ¢ Shiller, 1998). The
ORCA algorithm is designed to address the issue of decentralized reciprocal multi-agent
collision avoidance. In essence, the method identifies a velocity that will not result in a
collision with other agents, solely based on observable information and the assumption
that other agents are following the same policy.
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The method employs an iterative scheme to select a safe velocity. The solution is
obtained as follows: the agent updates its observations and information regarding its state.
Subsequently, in the velocity space, an area of safe actions bounded by linear constraints is
established. Within this area, a search for a velocity that satisfies all linear constraints and
is closest to a preferred speed is conducted using a linear programming algorithm.
Following this, the selected velocity is executed, and the agent’s state is updated.

Let us explore the process of constructing linear constraints for a scenario involving two
agents. (For a greater number of agents, the same procedure is repeated for each visible
agent.) Let vi be a change of the agent’s i position per unit of time Af.

i (Pxt — DPxi—1 Pyt — Pyt
Ve ( At ’ At ) (14)

For the sake of simplicity, we will not specify the index ¢, all further constructions will be
made for time ¢. Firstly, the agent i constructs a set of relative velocities VO, (velocity
obstacle) that will result in collision between agents i and j at some moment before time
t+ 7.

VO, = {vij | 3t' € [t,t + ] : (' —t) - vy € D(P, = Py, P — P}, 7' + 1)}, (15)

where (p}, p,), (Pk, P)) are positions of agents i and j, ', 7/ are radii of agents i and j and

D (px, py, r) is an open disk with center in point (p,, p,) and radius r.

On the basis of the VOj; a linear constraint ORCAj; is constructed as follows. Assume
that the velocities vi, v/ will lead the agents to a collision at time, t' : (' — t) <7 i.e,
VirGl =W -v)e VOj;. Let u be a vector to the nearest point on the boundary of VO;;

. In other words, u can be interpreted as the smallest change in relative velocity vF¢l

i?j

rel
ij
to prevent a collision within time 7.

fromv

u= (argamirn |[v — ijlH) - Vfgl. (16)
\S VOiU

Let n be the vector normal of the boundary of VOj; at point vir_;l + u and directed
outward to the boundary. Then, the set of collision-free velocities with respect to the agent
j can be constructed as a half-plane bounded by a line passing through the point v; + au
and perpendicular to the vector n.

ORCAj. = {v | (v = (Vi + tpespun)) - m > 0}, (17)

where a,, is responsibility factor. For agents avoiding collisions reciprocally, it should be
set to be greater or equal to 1/2. When avoiding collisions with static or dynamic obstacles,
it should be set oty = 1.

The half-plane ORCA;; for agent i is defined symmetrically. The described algorithm
also applied if 7 and j are not on a collision course.

Thus, the above algorithm effectively enables the derivation of linear constraints for
assessing the safety of velocities. Furthermore, the symmetrical construction of linear
constraints in the velocity space enables agents to orient themselves such that, in their
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efforts to avoid collisions, they move in different directions relative to each other (thereby
reducing the likelihood of deadlock occurring). However, it is important to note that this
method only allows for finding solutions in the velocity space, and the solutions obtained
may not be feasible in the presence of kinematic constraints.

MODEL PREDICTIVE PATH INTEGRAL FOR MULTI-AGENT
COLLISION AVOIDANCE

Preliminaries

A straightforward way to adapt the MPPI algorithm for collision avoidance is by adding a
penalty to the cost function for the intersection or proximity of the sampled trajectories
with other objects. In the case of multi-agent scenarios, it may be beneficial to utilize the
planned trajectories of other agents to assess potential collisions. Consequently, those
controls corresponding to more hazardous trajectories will carry less weight, and when
averaged (see Eq. (13)), will exert a reduced influence on the final control. A more
sophisticated approach (for example, Streichenberg et al., 2023) may involve filtering out
dangerous trajectories from the overall sample, excluding control sequences that could lead
to collisions from the weighted sum.

The primary challenge in a decentralized scenario is that agents lack access to
information about the planned trajectories of other agents. This necessitates the prediction
of trajectories based on available data. Several works focusing on classical MPC for multi-
agent tasks address this problem (Streichenberg et al., 2023) (e.g., Zhu & Alonso-Mora,
2019; Cheng et al., 2017). In this article, we consider a scenario in which only information
on the positions and current velocities of other agents is available. Consequently, the
prediction can be based on a constant velocity model, assuming that other agents will
continue to move at their current velocities. However, it is important to note that more
complex and sophisticated motion prediction models can be employed, such as those
based on neural networks (Gulzar, Muhammad ¢ Muhammad, 2021).

The basic approach to adapting MPPI for decentralized multi-agent scenarios can
reduce the likelihood of collisions. However, since agents need to make decisions about
their actions in parallel and independently, without the ability to communicate, the chosen
actions cannot guarantee the safety of the found controls. For instance, consider the
scenario from Fig. 3A. Two agents (yellow and green circles) attempt to predict trajectories
(dotted arrows) of other agents (blue circles). They realize that their current controls could
lead to collisions with other agents, so they opt for alternative “safe” actions (colored
arrows in Fig. 3B). However, since the green and yellow agents made decisions in parallel
and independently, a collision occurs between them (Fig. 3C). Additionally, when
excluding unsafe control sequences from the sample, it may be necessary to continue
sampling until the number of safe trajectories reaches a predefined minimum. This, in
turn, could significantly reduce the algorithm’s performance.

To ensure collision-free motion in a decentralized setting, it is essential for all agents to
adhere to a common set of rules, expressed as a set of constraints built according to the
same principle. An example of such principles can be the ORCA algorithm discussed
earlier. A direct method to incorporate various constraints in stochastic optimization is to
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Figure 3 An example of a scenario where choosing an action based on predicted trajectories can lead
to a collision between agents. Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-3

significantly reduce the weight or exclude from the weighted sum those elements of the
sample that do not satisfy these constraints. However, this approach noticeably reduces the
sampling efficiency, as constraints can eliminate a significant portion of the sample
elements.

Consider the example in Fig. 1. The brown agent is moving toward its goal but is
surrounded by blue agents preventing its movement (Fig. 1A). Based on available
information, ORCA constraints were constructed in the velocity domain (Fig. 1B, with the
white area representing a set of safe velocities). Next, the agent samples a batch of controls
using a normal distribution with some initial parameters (the corresponding velocities are
shown as brown dots on Fig. 1B, and the brown circle represents the confidence interval of
40), and it is evident that a significant number of samples lie outside the safe zone.

As a result, it is necessary to significantly reduce the number of samples that do not
satisfy the set of constraints. To address this, we propose finding distribution parameters
close to the original ones, such that the sampled controls satisfy the constraints with a
predefined probability (a similar technique was also described in Tao et al. (2022a, 2022b),
but the described approach only considers the single-agent case and does not guarantee
collision-free motion). Additionally, control limits can be included in this problem as
constraints, which can also improve sampling efficiency. In the following sections, we will
demonstrate that the search for such parameters can be reduced to a convex optimization
problem. An illustration of sampling from a safe distribution is shown in Fig. 1C (with
green dots representing velocities corresponding to the sampled controls, the green ellipse
representing the confidence interval of 40, and the orange area illustrating control limits
constraints).

Thus, the final pipeline of the proposed algorithm is as follows (Fig. 4). Firstly, the
algorithm constructs a set of linear constraints for the current state. After that, the safe
distribution parameters should be determined. Furthermore, based on the available
information, the trajectories of other agents should be predicted. Next, a set of control
sequences is sampled. Moreover, the first control in each set is sampled using the safe
distribution. This ensures that the next selected control will not lead to a collision. Each
control sequence is evaluated, including penalties for conflicts with the predicted
trajectories of other agents. Finally, based on the estimates obtained in the previous step, a
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Figure 4 Common collision avoidance pipeline based on MPPI algorithm. The red elements on
scheme demonstrate the components that were added to MPPI procedure to adapt in for decentralized
multi-agent scenario. (*) The main contribution of our work is introducing of a method for taking into
account linear constraints in the sampling process. The corresponding component is marked with an
asterisk on the scheme. Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-4

control action is formulated and executed. For a more detailed description of the
algorithm, we refer the reader to the Supplemental Materials, where a detailed pseudocode
of the algorithm routine is presented.

The most significant stage of the suggested approach is the construction of a new
distribution for sampling safe control actions (the corresponding component is marked
with an asterisk on the scheme in Fig. 4). In the subsequent sections, a comprehensive
exposition of this procedure will be presented, along with a technique for reducing this task
to second-order cone programming (SOCP). Additionally, a theoretical examination of the
proposed approach will be provided.

Constructing safe distribution
As mentioned earlier, to incorporate collision avoidance linear constraints into the
sampling process, it is essential to determine new distribution parameters that are close to
the initial ones u, X. The objective is to ensure that the probability of the constraint being
satisfied by the velocity vector obtained based on the sampled control is higher than a
certain predefined value o, which is close to 1. This task can be formulated as an
optimization problem using the chance constraints representation of linear constraints.
First, we need to define the closeness of new distribution parameters y/, X’ for

ue = {us1, ..., U, } with the initial 4, 2. In this article, we assume that components of u,
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are independently normally distributed. Then, it can be done using 1-norm ||/ — p||; and
||diag (') — diag (2)||, where diag(A) is a vector constructed from main diagonal
elements of some matrix A. So, the objective function of optimization problem can be
formulated in the next form:

|1 = wlly + [|diag (X') — diag (Z)]]- (18)

Moreover, it should be noted, that elements of diag (£') = (i, o2, ...,d’2) must be
positive or zero. So, additional constraints of the next form appear.

ar>0, k=1, ..m. (19)

Next, we need to consider collision avoidance constraints. In our work we suggest using
velocity constraint from ORCA algorithm, but other linear constraints on velocity (e.g.,
from Velocity Obstacles based methods) or position (e.g., from BVC based methods) can be
applied in the similar manner.

Let ./ be a set of visible neighbors of some agent i. Let us denote single linear
constraint ORCA;; for agent i and other agent j € A~ + as triple (aj, bj, ¢;). So, velocity
) satisfies it if the following inequality is true:

vector vi = (V;’t, V;,J

aj- vy, +bj-v,, +¢<0. (20)

The velocity vector (i.e., movement per unit of time) for a given state x! and control
action u! can be predicted using the model from Eq. (1). Since the state x; includes the
agent’s position (py, p,.), the velocity vector can be rewritten so that linearly depends on
the control ul (for a fixed state xi, the F(x;) and G(x;) values can be considered as a
constant vector F and matrix G).

V;7t = F1 + G171th71 + ...+ Gl,m Ut m _px,t (21)
Ve =P+ Gy + oo 4 Gom hem — Pyt

Let aj = {(4;G11 + 0iG21), -, (@Gim + bjGom) } and b) = —(c¢; + aj(F1 — pae)+
bi(F, — py.t))- So, the inequality 20 can be rewritten in the following form

a;Tut < b]’.. (22)

While sampling, we can consider u¢ = {1, ..., U n} as stochastic vector with
independently normally distributed components. Then, involving chance constraints
theory (for more information see Theorem 4.9 in Section 4.3 “Chance-Constrained
Programming” from Liu & Liu (2009)), Pr{ajue < bi} > o if and only if:

aTy + @7 (o) /2T 8 < b, (23)

where g/, 2" are mean and covariance matrix of uy, ®(-) is the standard normal
cumulative distribution function and o is the required confidence level. We also

Dergachev and Yakovlev (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2220 17/42


http://dx.doi.org/10.7717/peerj-cs.2220
https://peerj.com/computer-science/

PeerJ Computer Science

can incorporate controls limitations from Eq. (4), which can be rewritten using
chance-constraints:

%5 ! + (I)_I(O()O'i S uk,maxv
:ukl - (I)_I(OC)O’L 2 Uk min (24)
k=1,...,m,

where 1’ is component of mean 4/, o} is element from main diagonal of X'.
So, the optimization problem to create new distribution parameters for agent i can be
written as:

arg min,, ;|1 — s + ||diag (=) — diag(%)|;

st aTu + 0 ' (a), /aZaT < b, Vje ]
(25)

,uk/—i—qfl(oc)a;( < Ukmax, k=1,...,m
' — @ (2)of > wkmin, k=1, ..., m
o, >0, k=1, ..., m

Therefore, by solving the defined optimization problem, it is possible to derive new
parameters for the sampling distribution so that, with a given probability «, the sampled
controls will comply with both safety constraints and control limits. In this section, we
only address the general formulation of the optimization problem.

Reducing to second-order cone program

As showed earlier, the problem of finding safe distribution parameters can be formulated
as an optimization problem. Particularly, the problem Eq. (25) is a special case of a
nonlinear programming problem. Solving the latter in the most general form is known to
be NP-hard (Murty ¢» Kabadi, 1985). However, numerous special cases exist (depending
on how the objective function and the inequality constraints are formulated), that can be
solved in polynomial time (Nemirovski, 2004).

In this section, we will demonstrate that the considered formulation of the optimization
problem, i.e., Eq. (25), can be rewritten as a Second-Order Cone Program (SOCP). This
fact enables the use of a variety of approaches to find a solution for our problem, such as
the interior-point method (Kuo & Mittelmann, 2004), which has polynomial time
complexity. Additionally, there are numerous open-source and commercial solvers that
handle such problem formulations (e.g., the CVXPY Python library (Diamond & Boyd,
2016; Agrawal et al., 2018), the ECOS library (Domahidi, Chu ¢ Boyd, 2013), etc.).
Theorem 1. The optimization problem from Eq. (25) can be represented as a SOCP problem.

Proof. The standard second-order cone program can be written as follows:

minimize £

- (26)
st |[Ax+bill, < ¢gx+d;, i=1,...,N,

where x € R" is optimization variable, f € R", A; € R"" b; € R", ¢; € R" d € # are
problem parameters, || - ||, is Euclidean norm, #; is dimension of i second-order cone
constraint.
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Firstly, we need to reformulate the objective function from Eq. (25) into a linear form, as
shown in Eq. (26). To measure the distance between the new parameters and the initial
ones, a 1-norm is employed. Hence, the objective function comprises a sum of absolute
values. This type of function can be linearly represented by introducing auxiliary variables
and additional linear constraints. So, our objective function can be represented in linear
form, same as in SOCP.

Secondly, the linear constraint (for example, from Eqs. (19) and (24)) can be
represented as second-order cone constraint with n; = 1.

Finally, chance constraints Eq. (23) should be represented as second-order cone
constraint. Let x be optimization variable, A} € R*™*2™ is diagonal matrix and ¢ € R*" isa
vector such that:

X = () ooy By Oy ooy O bty oo b St ot ) (27)

A]/: (Om,m Ima; 02m,2m), (28)
1

;o /

¢ = "I - (aj,0,...,0) (29)

where O m is m X m zero matrix, I, ,, is n X m zero matrix, I, is m X m identity matrix.
So, /a;TZ'aj can be rewritten as |[Ax||; and Eq. (23) can be represented in second-

order form:

A, < ¢Tx' + b, VjE N, (30)

1
= (a)

Thus, the suggested optimization problem can be represented in the form of a second-
order cone program.

Example detailed description of representation optimization problem in form of SOCP
for single-integrator and differential-drive robot dynamics are presented in the
Supplemental Materials.

Control safety guarantee

In this section, we justify the safety guarantees of the suggested approach by presenting the
following theorem.

Theorem 2. Let i be the current agent with state X, N} is the set of neighboring agents with
states xt,] € . For any collision-free state x,

sh(x) Nsh(x) =D, Vje N (31)

the control ul selected by the suggested algorithm will not lead to a collision with probability

0 = alVilK where K is a number of samples and o is a probability guarantee threshold.

Proof. Let ORCA} = {ORCA | j € Ai } be the set of linear constraints that was
obtained by ORCA algorithm based on available information about xi, X, j € A Using
Egs. (20)-(22) and controls limitation, linear constraints in control domaln can be
obtained. These constraints form a convex subset in control space Safe C R™.
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Let i’ and X' are distribution parameters, obtained by solving optimization problem 25.
According to Theorem 4.9 in Section 4.3 “Chance-Constrained Programming” from (Liu
¢ Liu, 2009) variable u' ~ A"(i/, 2') satisfies Pr{ajue < bi} > o, for every single
constraint. Thus, when sampling the value of u’ from the distribution A"(¢/, Z'), it will
satisfy the constraint with a probability. So, K samples satisfy |./";| constraints with
probability § = Vi,

If all samples satisfy the constraints, then the weighted sum uy (Eq. (13)) lies inside the
convex subset Usiafe. Therefore, the control u; satisfies all the constraints, thus the
corresponding velocity satisfies the ORCA constraints, which means the control u; is safe
(according to Van Den Berg et al. (2011a)).

Remark 1. Note that the safety of the selected action can be guaranteed only if the visibility
radius of the agent exceeds the maximum movement that the agent can make in one time
step, otherwise it may encounter agents that lie outside the visibility range.

Remark 2. In order to guarantee safety when applying the proposed approach, it is necessary
to select such parameters o and K that the 6 probability does not exceed some desired
threshold. For example, if the number of neighboring agents that are taken into account
|A"i| = 5 and we choosing the parameters o. = 0.9999966 (®~!(x) = 4.5), K = 500, then
the probability 6 = 0.991536009.

However, high o values can lead to conservative solutions or deadlocks. This limitation
can be avoided by using the idea of removing samples that lie outside the linear constraints.
In this case, the sampling efficiency decreases slightly (for example, with
|| = 5,00 =0.99865010 (®!(a) = 3.0) and K = 500, the probability 5 will be 0.034,
but only 3.37 samples will be removed in average), but strict guarantees of safety of the
selected control will be given, since all elements of the weighted sum 13 will be guaranteed to
lie inside the convex subset Usiafe.

At the same time, the number of elements that would need to be removed from the sample
when using the initial distribution parameters depends significantly on the current location
of the linear constraints and may be a significant part. An example of such a sample is shown
in Fig. 1B. So, all dots located outside the white area are potentially unsafe.

Remark 3. Note that in some cases, the problem may be infeasible if the set of safe velocities
obtained from the ORCA algorithm is empty, or if there is no admissible control action that
satisfies the constraints found. Possible solutions to this issue may include decelerating the
agent or relaxing constraints by decreasing t (refer to Theorem 4 in Alonso-Mora et al.
(2013)). An approach similar to the one described in section “4.1.2 Double integrator
dynamics” in Zhu, Brito & Alonso-Mora (2022) can also be utilized. It is based on
increasing the radius of the agent taken into account by ORCA to obtain an additional
buffer for braking.

EXPERIMENTAL EVALUATION

We implemented the proposed method in C++ (https://github.com/PathPlanning/MPPI-
Collision-Avoidance) and evaluated its efficiency in various scenarios, including several
dynamics. Firstly, we conducted experiments using a prevalent model of a differential drive
robot’s movement. The corresponding system model is widely discussed in works on
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collision avoidance with kinematic constraints (Snape et al., 2011, 2010; Zhu, Brito & Alonso-
Mora, 2022), enabling us to compare it with several well-known methods. Subsequently,
experiments were performed with a more complex car-like dynamic model. The third
experiment aimed to compare the proposed approach with the existing state-of-the-art
learning-based method. It is important to note that in all the launches, (i) all agents (robots)
were simulated as disks, (ii) all agents (robots) had accurate information about their states,
(iii) the controls were executed perfectly, and (iv) the movement was simulated according to
the model described in the corresponding section. Lastly, we conducted an experiment
involving heterogeneous agents (i.e., agents with different sizes and speeds) and uncertainty
in the available state information.

Differential-drive dynamics

Experimental setup

In the first series of experiments, the next model of differential-drive robot was used (a
similar dynamic was described as an example in the problem statement section). The
agent’s state x was defined as x = (px, py, 0)", where py, py is the position of the robot
(center of corresponding disk) in 2D workspace, 0-heading angle of the robot. The control
was defined as u = (v, W)T, where v-linear velocity (viin < v < Vpay), w—angular velocity
(Wiin < W < Wpae). The model involves next equations of motion:

cosf; 0
X1 =X+ | sinf; 0 |uAt. (32)
0 1

The following parameters for all robots were used in the experiments: robot sizes (radius
of the corresponding disks) r = 0.3 m, linear velocity limits v,,;, = —1.0 m/s,

Vimax = 1.0 m/s, angular velocity limits wy,;, = —2.0 rad/s, Wyax = 2.0 rad/s, sight/
communication radius R was not limited.

Three types of scenarios were used in the experiment: Circle, Grid, Random. Each
scenario included several instances, which consists of n pairs (p,,,,, &), i=1, ...,n of
initial states pl,,,, = (P qares p;»,sturﬂ 0'...,) and goal positions g’ = ;go ol p;',’go .)- The
instance launch was considered successful if the algorithm found a collision-free solution
that move every agent i to some neighborhoods of the goal position %;(g'), and the
number of simulation steps did not exceed some limit kj;,,. The duration of the time step of
simulation is fixed and equal to At. For all scenarios, the values of At, € and kj;,,, were set to
0.1s, 0.3 m and 1,000 steps, respectively. Each instance was launched multiple times.

Circle scenario. Let us consider the first experimental scenario. At the initial moment, a
set of n agents is located equidistant from each other on a circle with a diameter of
Deircie = 12 m. The goal for each agent is to move to the position directly opposite their
starting point. The initial heading angle is chosen so that the agent is oriented towards the
goal position. The number of agents varies from 2 to 15 with an increment of 1. In this
scenario, agents are generally sparsely distributed, but to reach their goals, they must pass
through the center of the circle, which can lead to the formation of a dense cluster of agents
in the center and potential deadlock situations. Each instance with a fixed number of
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Figure 5 Illustration of experimental scenarios with differential-drive robot kinematics.
Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-5

agents was launched 10 times. An illustration of the Circle scenario instance with eight
agents is shown in Fig. 5A.

Grid scenario. In the second scenario, agents are located in the centers of cells of a
regular square grid. Goal positions are obtained by randomly permutation agents between
cells. The initial heading angle is selected equal to zero for all agents. The number of agents
n in the scenario varied between four (2 x 2 grid), nine (3 x 3 grid) and 16 (4 x 4 grid). In
addition, the size of the cell Hg;; varied, which allows changing the density of agents in the
scenario. Three different cell sizes were selected for the experiment: Hgiy = 2.4 m = 8r
(denote instances with such cell size as sparse instances), Hgig = 1.8 m = 6r (denote
instances with such cell size as medium instances), Hgiy = 1.5 m = 5r (denote instances
with such cell size as dense instances). So, 10 instances were generated with a certain fixed
number of agents 7 and cell size Hgg (90 instances in total) and each instance was
launched 10 times. Such a scenario allows us to evaluate the behavior of algorithms when
the agents are densely located. Note, however, that the cell sizes are chosen so that the
distance between the agents is sufficient for movement even with doubling the radius with
a safety buffer 2(r + ¢,) in algorithm ORCA-DD. An illustration of the scenario with 3 x 3
grid is presented in Fig. 5B.

Random scenario. The third scenario simulates the case of robots navigating in a
common environment with a lower density and an irregular placement of start and goal
positions. The scenario is constructed as follows. The area 20 m x 20 m is discretized into
a grid with a cell size of 1 m x 1 m and 50 lists of 25 start/goal pairs are generated. The
initial and goal position of each agent is selected as the center of a random cell inside
the area. A cell cannot be selected by the start/goal of an agent if it is already selected by the
start/goal of another agent in the current list or is a neighbor of another agent’s start/goal
cell. The initial heading angle is selected randomly. Instances are created by selecting the
first n agents from the same list, where # varies from 5 to 25 in increments of 5 (250
instances in total, 50 for each number of agents). Each instance was launched 10 times. An
illustration of the Random scenario instance with 15 agents is presented in Fig. 5C.
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In addition to the proposed method, denoted as MPPI-ORCA, we also evaluate two
collision avoidance algorithms: ORCA-DD (Snape et al., 2010) and B-UAVC (Zhu, Brito &
Alonso-Mora, 2022). The first of them is based on the well-known ORCA (Van Den Berg et
al., 2011a) algorithm, but uses a doubly increased radius of the agent for control, taking
into account kinematic constraints. The second one is based on the Buffered Voronoi Cells
approach, containing numerous improvements to the base method BVC, including
consideration of kinematic constraints of the differential-drive robot. Both methods have
been modified in such a way that a small random value &,, syﬂ/ is added to the goal
direction vector. This was necessary to reduce the chance of getting into deadlocks in
symmetric cases. In addition, for all the methods involved in the experiment, the radius of
the agent used in the computations was increased by €, = 0.05 m relative to the real radius
to minimize the chance of collision by creating additional safety buffer.

Experimental results

Success rate and makespan. The main metrics measured during the experiment were
success rate and makespan. Success rate is the percentage of successful instance launches.
Makespan is the duration of the solution obtained at instance launch (i.e., the time step
when all agents have reached the target positions). Note that in all determined cases (i.e.,
cases with perfect knowledge of agents’ states) in our experiments, the success rate drop
occurred due to going beyond the step limit, and not a single collision was observed in any
algorithm.

As a result of the experiment on a Circle scenario, all launches of all algorithms were
100% successful. The average makespan and standard deviation for each number of agents
in the circle are shown in Fig. 6. As you can see, the proposed algorithm on average
provides better solutions than the other two evaluated approaches. And although the
results of MPPI-ORCA and ORCA-DD partially overlap each other, however, the gap
between them grows with an increase in the number of agents. At the same time, the results
of algorithm B-UAVC are noticeably worse than those of MPPI-ORCA and ORCA-DD.
For example, for 10 agents, the makespan of B-UAVC is on average 80% more than the
same value of MPPI-ORCA.

When examining the trajectories in detail (illustration of solutions of an instance with
10 agents is given in Fig. 7), it can be observed that the ORCA-DD algorithm produces
smoother trajectories. However, in some cases, the trajectories have a longer duration, and
the speed of the agents is lower. This may be due to the use of a doubled radius in
calculations, which, while reducing efficiency, also prevents the accumulation of a large
number of agents in the center of the circle. Meanwhile, MPPI-ORCA, due to its stochastic
nature, yields more fluctuating trajectories, but with lower durations for its solutions.
Agents controlled by the B-UAVC algorithm move toward the goal until they approach
each other at a small distance, leading to a dense accumulation of agents near the center of
the circle and the formation of a deadlock. When resolving a deadlock, the algorithm
generates trajectories with high cost.

The average success rate on Grid, grouped by the number of agents and the density of
agents, is shown in Table 1. It is important to note that for each number of agents and each
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Figure 6 The average makespan values and its standard deviation for evaluated algorithms for
different number of agents in Circle scenario. The lower is the better.
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Figure 7 Illustration of solutions for Circle instance with 10 agents for evaluated algorithms. At the top, the trajectories visualization is shown.
Below is a graph of the average agents’ speed over time (blue line) and the average speed of all agents for the entire time of the simulation (brown
line). Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-7

density, 10 instances were generated, each of which was launched 10 times (100 runs in
total). Hence, the minimum decrement in the success rate is 1%. For example, the failure of
one launch of one instance leads to a success rate of 99%. It can be observed that for tasks
with four agents, all algorithms successfully find a solution in most cases, even with
increasing density. However, when the number of agents increases to nine, the density
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Table 1 The average success rate values for evaluated algorithms for different density and different
number of agents in Grid scenario. Bold indicates the highest success rate values for a specified density
and number of agents.

Agents num. Task type ORCA-DD B-UAVC MPPI-ORCA
4 Sparse 98% 100% 100%
Medium 97% 99% 100%
Dense 87% 90% 100%
9 Sparse 93% 100% 100%
Medium 64% 83% 100%
Dense 30% 57% 99%
16 Sparse 78% 96% 100%
Medium 29% 35% 100%
Dense 0% 16% 93%
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Figure 8 The average makespan values and its standard deviation for evaluated algorithms for
different density of agents in Grid scenario. The result on a specific instance was added to the sum
only if all the algorithms successfully solved it in all launches. The lower is the better.

Full-size K&l DOT: 10.7717/peerj-cs.2220/fig-8

significantly impacts the results of the ORCA-DD and B-UAVC algorithms. For example,
with a minimum density of nine agents, ORCA-DD found a solution in 93% of launches,
and the B-UAVC algorithm found a solution in 100% of launches. Yet, with a maximum
density, the number of successful launches drops to 30% and 57%, respectively.
Meanwhile, the proposed method copes successfully with a noticeably larger number of
instances, and even for the most complex case with 16 agents and maximum density, the
success rate drops only to 93%.

Let us consider the costs of obtained solutions in the Grid scenario, grouped by the
density of agents in tasks, which is shown in Fig. 8. The plot illustrates the average
makespan value among instances with the same density and standard deviation. If at least
one instance launch of at least one algorithm failed, the instance was excluded from
averaging. It can be seen that in all cases, the proposed method obtains more effective
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Figure 9 Illustration of solutions for Grid-Sparse instance with nine agents for evaluated algorithms. At the top, the trajectories visualizationis
shown. Below is a graph of the average agents’ speed over time (blue line) and the average speed of all agents for the entire time of the simulation
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Table 2 The average success rate values for evaluated algorithms for different number of agents in
Random scenario. Bold indicates the highest success rate values for a specified number of agents.

Agents num. ORCA-DD B-UAVC MPPI-ORCA
5 100% 100% 100%
10 100% 100% 100%
15 99.2% 99.6% 100%
20 99% 99% 100%
25 99.8% 97.8% 99.8%

solutions with a noticeably smaller deviation. For example, for dense instances, the
solution cost of the MPPI-ORCA algorithm is, on average, 3.2 times lower than the ORCA-
DD and 2.3 times lower than the B-UAVC values. At the same time, unlike the Circle
scenario, the duration of solutions of ORCA-DD is generally worse or comparable to the
duration of solutions of B-UAVC. This can be explained by the fact that with a dense
placement of agents, an increase in the radius of the agent begins to have a significant
impact. An illustration of solutions of the Sparse instance with nine agents is given in
Fig. 9.

Lastly, it is noteworthy that the average makespan for MPPI-ORCA decreases with
increasing density. This is due to the fact that when averaging denser instances, fewer
instances with a large number of agents (nine or 16) are included in the sample.
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Figure 10 The average makespan values and its standard deviation for evaluated algorithms for
different number of agents in Random scenario. The result on a specific instance was added to the
sum only if all the algorithms successfully solved it in all launches. The lower is the better.
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The average success rate of Random scenario launches, grouped by the number of agents,
is shown in Table 2. According to the results from the table, all algorithms successfully
coped in most cases, however, individual failed launches began to appear for ORCA-DD
and B-UAVC algorithms with 15 agents, while the proposed method failed only once on
an instance with 25 agents.

Let us consider the makespan values in Random scenario. The Fig. 10 display the average
makespan value among instances with the same density and standard deviation. Similar to
the Grid scenario, if at least one instance launch of at least one algorithm failed, the
instance was excluded from averaging. The results indicate that the proposed algorithm, as
in the previous scenarios, creates solutions of shorter duration on average. Moreover, the
deviation of values is much lower than that of the other two methods. At the same time,
ORCA-DD and B-UAVC show similar results in this scenario. Illustration of solutions of
instance with 20 agents is given on Fig. 11.

Average distance. In addition to the metrics of success rate and makespan, the average
distance traveled by agents was also measured. The results corresponding to the Circle,
Grid, and Random scenarios are presented in Figs. 12-14.

Consider the results for the Circle scenario (Fig. 12). It is evident that, for all instances,
the ORCA-DD algorithm generates shorter solutions in terms of distance compared to our
method. Conversely, our method demonstrates superior performance compared to the B-
UAVC algorithm.

However, the previously discussed solution durations indicate that our method achieves
the goals faster on average than both competing algorithms. This may be attributed to the
fact that the ORCA-DD method significantly reduces the speed of the agents when
navigating complex situations, allowing some agents to overtake others. In contrast, the

Dergachev and Yakovlev (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2220 27/42


http://dx.doi.org/10.7717/peerj-cs.2220/fig-10
http://dx.doi.org/10.7717/peerj-cs.2220
https://peerj.com/computer-science/

PeerJ Computer Science

1.0

£ 08
T 0.6
& 0.4
2021

0.0 T T T T ¥ T T T T

0 5 10 15 20 25 0 5 10 15 20 25

Time, s Time, s Time, s
(a) ORCA-DD (b) B-UAVC (b) MPPI-ORCA

Figure 11 Illustration of solutions for Random instance with 20 agents for evaluated algorithms. At the top, the trajectories visualization is
shown. Below is a graph of the average agents’ speed over time (blue line) and the average speed of all agents for the entire time of the simulation
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Figure 12 The average travelled distance and its standard deviation for evaluated algorithms for
different number of agents in Circle scenario. The result on a specific instance was added to the
sum only if all the algorithms successfully solved it in all launches. The lower is the better.
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B-UAVC algorithm generates significantly oscillating trajectories when the agents are

densely packed, resulting in prolonged solution durations and greater distances traveled.
This phenomenon is illustrated in Fig. 7, where the average speed of ORCA-DD agents

decreases significantly during the time interval from 0 to 5, while the trajectories of most
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ORCA-DD agents remain relatively straight. Additionally, the B-UAVC agents exhibit low
mean velocity during the time interval from 5 to 25, with significant oscillation around the
center of the circle.

In the Grid scenario, both competing algorithms produce solutions that are nearly
equal to or slightly shorter than those generated by the proposed method. The solutions of
B-UAVC are generally shorter than those of ORCA-DD. This may be attributed to the
inflated radius of the ORCA-DD agent, which results in longer trajectories in dense
environments.
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We hypothesize that, similar to the Circle scenario, the proposed method is more
proactive in resolving dense situations. In contrast, the other two methods tend to reduce
agent speeds, resulting not only in longer solution durations but also in deadlocks. This
behavior consequently leads to a lower percentage of solved problems. This hypothesis is
further confirmed by the plots and illustrations in Fig. 9.

Last but not least, in the Random scenario, all three algorithms exhibit very similar
results in terms of trajectory lengths, both in terms of mean values and overlap in standard
deviations. However, the solution durations of the proposed algorithm are shorter than
those of the competing algorithms (Fig. 10).

This may be attributed to the fact that, in this scenario, the agents are not densely
located, leading to fewer conflict situations and trajectories that are nearly straight for all
algorithms. However, the proposed method tends to select higher speeds on average, as
evidenced by the speed plots in Fig. 11.

In general, the experimental results show that the proposed approach not only
successfully copes with classical multi-agent navigation scenarios, but is also able to
generate effective solutions in scenarios where the density of agents is high and the
probability of a deadlock is high. At the same time, the resulting solutions have, on average,
a lower duration than the two well-known collision avoidance algorithms, both in complex
scenarios and in scenarios with a low density of agents. The distance travelled is on average
close to similar indicators of competing methods, and increases relative to them only in
dense scenarios.

Thus, based on the results for both duration-based and distance-based metrics, we
suggest that the proposed method solves complex situations more efficiently by more
actively overcoming deadlocks, which leads to longer trajectories, but allows agents to
reach goals faster on average.

Car-like dynamics

Experimental setup

The second series of experiments consisted in validating the proposed method when
controlling car-like robot. For these purposes, the next model was used. The robots’ state
X = (Px, Py 0)" in this case is the same as for a differential-drive robot. However, the
control input u = (v, ¢)” in this case is the linear velocity v and the steering angle ¢. At
the same time, similarly to the differential-drive case, the range of control actions is
bounded (Viin <V < Vipax, —7/2<P 00 < @ < @00 <7/2). The equations of motion
involved in model was the following:

min

Pxt+1 = Pxt + Vi cos 0,At (33)
Pxt+1 = Pyt + v sin 0;At (34)
0,01 = 0, —I—%tan ¢, At (35)

where L-distance between rear and front axles. It is easy to see, that in this case, agents can
not turn around when linear velocity v is zero. Thus, the dynamics of this type significantly
complicates collision avoidance.
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Table 3 The success rate and average makespan values for suggested approach in Circle scenario for car-like dynamics.

Agents num. 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Success rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Makespan 166.8 169.8 193.4 211.2 216.8 247.0 276.6 2854  298.7 3194 342.0 355.5 368.7 392.7

The following parameters for all robots were used in the experiments: robot sizes (radius
of the corresponding disks) r = 0.3 m, linear velocity limits v,,;, = —1.0 m/s,
s

_ s .
min = —5 1ad/, Vmax =5 rad, the distance

Vmax = 1.0 m/s, angular velocity limits ¢
between axles L = 0.2, sight/communication radius R was not limited.

In the experiment, the Circle scenario was involved with the same instances as in
experiments with differential-drive robots. The values of At, € and k;;,, were set to 0.1 s,
0.3 m and 1, 000 steps, respectively. The additional safety buffer €, = 0.05 m as in

differential-drive case was also used. Each instance was launched 10 times.

Experimental results

The main metrics used during the experiment were also success rate and makespan. The
results of launches of the suggested approach are shown in Table 3. It can be seen, that in
all cases our approach successfully solve all task at all launches.

At the same time, we note that the makespan has grown relative to the differential-drive
dynamics. For example, for two agents in the scenario, the value has increased by about
25%, and for 15 by 66%. This growth may be due to the fact that, unlike differential-drive
robots, car-like dynamics does not imply the possibility of turning in place. Thus, with a
dense arrangement of agents, they need to either move back, or, in some cases, even move
along the loop.

Such effects can be observed on the visualization of trajectories on Fig. 15 obtained
during the execution of tasks. So, it can be observed that for a few agents (2 and 5), the
trajectories are smooth and similar to trajectories of differential-drive robots, but for cases
with 10 and 15 agents, the trajectories include “jiggling” and loops.

Comparison with learning-based approach

Experimental setup

In this experiment, the proposed approach was compared with modern reinforcement
learning-based method (Blumenkamp et al., 2022). The original implementation provided
by the authors of the article was used for training and launches. However, for the purposes
of the experiment, a number of changes were made to the setup.

The main change was the exclusion of obstacles from the environment. We also
eliminated the acceleration restrictions for the learning-based method. In addition, the
following train and experimental parameters were used. The suggested approach used
differential-drive motion model (Eq. (3)). Robot sizes (radius of the corresponding disks)
r = 0.25 m, linear velocity limits v, = —1.0 m/s, Vi = 1.0 m/s, angular velocity
limits Wy, = —2.0 rad/s, Wyax = 2.0 rad /s, sight/communication radius R was not
limited. We also involved additional safety buffer of size €, = 0.05 m for both algorithms
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Figure 15 Illustration of solutions for Circle instance with 2, 5, 10, 15 car-like agents for MPPI-
ORCA algorithms. At the top, the trajectories visualization is shown. Below is a graph of the average
agents’ speed over time (blue line) and the average speed of all agents for the entire time of the simulation
(brown line). Full-size K&] DOT: 10.7717/peerj-cs.2220/fig-15

to minimize the chance of collision. The values of At, € and kj;,,, were set to 0.1 s, 0.3 m and
1,000 steps, respectively. Each instance in experiment was launched 10 times. The scenario
proposed by the authors of the work, including five agents, was used for training.
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Table 4 The average success rate values for suggested algorithm in comparison with learning-based
approach for different number of agents. Bold indicates the highest success rate values for a specified
number of agents.

Agents num. MPPI-ORCA Multi-Agent RL
4 98% 48%
5 98% 42%
6 87% 16%

It is worth noting separately that, unlike the proposed approach, the trained method
uses a holonomic model of motion (i.e., such a model of motion where the agent chooses
the desired velocity at each step, after which it perfectly executes it; at the same time, the
agent is able to instantly change both the amplitude of the velocity and its direction). Thus,
the limit on the maximum angular velocity was ignored. This is dictated by the fact that
when training agents with differential-drive dynamics, the method did not allow finding a
solution for training scenarios even after 4,000 training iterations.

In this scenario, the initial and goal positions of the robots were located similarly to the
Circle scenario described earlier. The radius of the circle was set to 0.7 m. However,
when generating instances, the center positions of the circles for the initial and goal
positions were placed at a random distance from each other. In addition, all positions in
the initial and goal circles were shifted to a random angle (separate angles for the initial
and goal positions were used). The number of agents ranged from four to six with step 1,
and 50 different instances were generated for each number of agents.

Experimental results

The main metrics measured during the experiment were the success rate. The average
success rate of launches of instances, grouped by the number of agents, is shown in Table 4.
In the table, it can be seen that even when using a more complex dynamic model, the
proposed approach shows noticeably better results in all cases. Separately, we note that the
scenario chosen for this series of experiments was designed in such a way as to be similar to
the scenario used in training. When using other scenarios, the success rate of the learning-
based method decreased significantly. We assume that this is not due to the disadvantages
of the method, but to the limitations of the training scenarios. However, this is an indicator
of the difficulties associated with the generalization abilities of the learning-based
approaches.

Ilustration of solutions for suggested and learning-based methods in instances with
four, five, and six agents for evaluated algorithms are shown in Fig. 16. It can be seen that
in scenarios where the learning-based algorithm found solutions, they can be more
straightforward, however, this is due to the fact that the proposed algorithm takes into
account the differential-drive constraints while the learning-based algorithm does not.

Heterogeneous agents and information uncertainty
Experimental setup

In this scenario, we decided to examine the possibilities of the proposed method to operate
under conditions of uncertainty in the available information and to estimate the influence
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(a) MPPI-ORCA, 4 agents (b) MPPI-OﬁCA, 5 agents (c) MPPI-ORCA, 6 agents
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Figure 16 The trajectories visualization for suggested (A-C) and learning-based (D-F) methods with 4, 5, 6 agents for evaluated algorithms.
Full-size &l DOI: 10.7717/peerj-cs.2220/fig-16

of uncertainty on the results. In addition, it was decided to check the ability to operate with
different agents moving in the same environment.

For these purposes, the modified Random scenario with differential-drive robots was
used. All the agents in the scenario were divided into two groups. In the first group, all the
robots had a radius of 0.2 m, linear velocity limits v,,;, = —1.0 m/s, Vyax = 1.0 m/s,
angular velocity limits Wy, = —2.0 rad/s, Wy = 2.0 rad/s. In the second group, all
robots had a radius of 0.5 m, linear velocity limits v,,;, = —3.0 m/s, vy = 3.0 m/s,
angular velocity limits w,,;, = —6.0 rad/s, Wya, = 6.0 rad/s. In addition, the safety
buffer has been increased to 0.15 m to deal with inaccuracies in the input data.

Uncertainty was added to the data as follows. At each step of the algorithm, modified
information about its position, velocity and direction, as well as the positions and velocities
of other agents, was provided as input data. Each value was modified by normal noise with
specified standard deviations (g, for position noise, g, for velocity noise, oy for direction
noise). The following values of uncertainty were used in the experiments. The first step was
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Table 5 The average success rate values for suggested algorithm with varying levels of uncertainty in
the available data for different number of agents in Random scenario with heterogeneous agents. Bold
indicates the highest success rate values for a specified number of agents.

N Perfect 6xy = 0.01,09 = 0.02 Gxy = 0.08,09 = 0.04 Gxy = 0.16,69 = 0.08
5 100% 100% 100% 100%

10 100% 100% 100% 99%

15 98% 99% 100% 84%

20 94% 97% 100% 47%

25 93% 96% 99% 12%

to run an algorithm without inaccuracy in the information. Next, three levels of

uncertainty were used. In the first level, the values were set to g5, = 0.01, 59 = 0.02, in the
second level g,, = 0.08, 59 = 0.04, in the third level g,, = 0.16, 59 = 0.08. The level of
uncertainty in the velocity data was set based on the level of uncertainty in the position

) 2
g, = ny+°'xy-

Experimental results

The main metrics measured during the experiment were success rate and makespan. The
average success rate of launches, grouped by the number of agents, is shown in Table 5. In
all launches except experiments with the highest level of uncertainty, the drop in success
rate is associated only with exceeding the time step limit. However, in experiments with the
highest level of uncertainty, isolated cases of agent collisions were observed (one case for
tasks with 15 and 20 agents, and four cases for tasks with 25 agents). Moreover, increased
uncertainty also hinders agents from accurately reaching the goal area, which can also
influence the results, especially with a high level of inaccuracy in the data.

According to the results from the table, we can observe that for all levels of uncertainty,
except the highest, the algorithm copes with most of the tasks. Consequently, it can be
concluded that the proposed approach is able to successfully handle heterogeneous
scenarios in which a limited level of uncertainty is allowed. However, if the uncertainty is
significantly high, it is necessary to select a suitable safety buffer to prevent solutions that
may lead to collisions. Nevertheless, an excessive increase in the radius of the agent can
lead to deadlocks. It is also important to consider that inaccuracy in the information may
result in the inability to accurately reach the goal position.

Furthermore, it is interesting to note an effect where, with a slight increase in
uncertainty, the proportion of successful solutions may increase. A hypothesis is that a
small amount of randomness in the data makes it easier to overcome deadlocks or
symmetric situations, similar to how the goal vector for ORCA-DD and B-UAVC methods
was modified by a small random value.

The average makespan and standard deviation for each number of agents are shown in
Fig. 17. The results took into account instances that were successfully solved at least once at
all levels of uncertainty. Unsuccessful launches were removed from the sample and did not
affect the average. From the results, it can be seen that uncertainty can affect the quality of
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Figure 17 The average makespan values and its standard deviation for suggested algorithm with
varying levels of uncertainty in the available data for different number of agents in Random
scenario with heterogeneous agents. The lower is the better.
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the solutions obtained, and with the introduction of a small inaccuracy in the data, the
quality of solutions also changes slightly. However, the quality of solutions and their
stability are significantly reduced if the uncertainty is high.

The experiments have shown that the proposed method is capable of performing
complex tasks involving agents of various types, even when there is uncertainty in
knowledge about the state of the agent and its neighbors. At the same time, when choosing
algorithm parameters, it is worth taking into account the level of uncertainty in the data
that may occur under certain conditions.

CONCLUSIONS

This article addresses the issue of decentralized multi-agent collision avoidance and
proposes a sampling-based method to solve this problem that incorporates kinematic
constraints. The key concept of the proposed approach involves determining a distribution
based on linear constraints, enabling the sampling of safe control actions. We demonstrate
that, in general, the distribution parameters can be obtained by solving a Second-Order
Cone Programming (SOCP) optimization problem. We establish that the obtained
solutions are not only safe, but also enhance sampling efficiency.

Subsequently, we conduct a comprehensive evaluation of the proposed method through
a series of experiments encompassing diverse scenarios involving the differential-drive
robot and car-like dynamics. A comparative analysis is performed against state-of-the-art
decentralized collision avoidance methods, namely differential-drive ORCA and B-UAVC.
The results illustrate the efficacy of the suggested approach as it successfully solves
challenging tasks, including scenarios in which existing algorithms fail to find appropriate
solutions. Furthermore, our method demonstrates improved solution quality, particularly
in terms of duration, compared to other methods.
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We also compared the proposed approach with a modern learning-based method and
showed that, on the one hand, the proposed method copes with the task more effectively.
On the other hand, the results show that the learning-based methods can experience
significant difficulties with generalization, especially if the learning scenarios cover only a
small number of situations.

Finally, we conducted experiments with heterogeneous agents involving uncertainty in
the available information. The results showed that, with the right choice of parameters, our
method effectively copes with cases of limited uncertainty in the data.

Future work will explore in more detail the incorporation of uncertainties in state and
neighbor information, as well as inaccuracies in control execution. Additionally, an
important direction for further research involves the implementation of the proposed
approach using the Robot Operating System (ROS) (Macenski et al., 2022), and conducting
experiments utilizing more advanced simulations such as Gazebo (Koenig & Howard,
2004) or CoppeliaSim (Rohmer, Singh ¢ Freese, 2013), and also on real robots.
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