
Synthetic dataset generation for
object-to-model deep learning in
industrial applications
Matthew Z. Wong, Kiyohito Kunii, Max Baylis, Wai Hong Ong,
Pavel Kroupa and Swen Koller

Department of Computing, Imperial College London, London, UK

ABSTRACT
The availability of large image data sets has been a crucial factor in the success of deep
learning-based classification and detection methods. Yet, while data sets for everyday
objects are widely available, data for specific industrial use-cases (e.g., identifying
packaged products in a warehouse) remains scarce. In such cases, the data sets have
to be created from scratch, placing a crucial bottleneck on the deployment of deep
learning techniques in industrial applications. We present work carried out in
collaboration with a leading UK online supermarket, with the aim of creating a
computer vision system capable of detecting and identifying unique supermarket
products in a warehouse setting. To this end, we demonstrate a framework for using
data synthesis to create an end-to-end deep learning pipeline, beginning with
real-world objects and culminating in a trained model. Our method is based on
the generation of a synthetic dataset from 3D models obtained by applying
photogrammetry techniques to real-world objects. Using 100K synthetic images for
10 classes, an InceptionV3 convolutional neural network was trained, which achieved
accuracy of 96% on a separately acquired test set of real supermarket product images.
The image generation process supports automatic pixel annotation. This eliminates
the prohibitively expensive manual annotation typically required for detection tasks.
Based on this readily available data, a one-stage RetinaNet detector was trained on
the synthetic, annotated images to produce a detector that can accurately localize and
classify the specimen products in real-time.

Subjects Computer Vision, Data Mining and Machine Learning
Keywords Industrial computer vision, Photogrammetry, Convolutional neural network, Computer
science applications, 3D Modelling, Synthetic data, Deep learning with limited data

INTRODUCTION
In this paper, we present a framework for using photogrammetry-based synthetic data
generation to create an end-to-end deep learning pipeline for use in industrial applications.

While deep learning techniques have documented great success in many areas of
computer vision, a key barrier that remains today with regard to large-scale industry
adoption is the availability of data that can be used for model training. While large
high-quality datasets are readily available for use with common object categories like
animals and household items, this no longer holds in the case of many potential
applications (e.g., the products in an industrial warehouse). For such applications, costly
and labor-intensive data acquisition and labelling must first be carried out before deep

How to cite this articleWong MZ, Kunii K, Baylis M, OngWH, Kroupa P, Koller S. 2019. Synthetic dataset generation for object-to-model
deep learning in industrial applications. PeerJ Comput. Sci. 5:e222 DOI 10.7717/peerj-cs.222

Submitted 17 April 2019
Accepted 29 August 2019
Published 14 October 2019

Corresponding author
Matthew Z. Wong, mzw17@ic.ac.uk

Academic editor
Feng Xia

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.222

Copyright
2019 Wong et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.222
mailto:mzw17@�ic.�ac.�uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.222
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

learning can be applied to the task at hand. As deep learning moves out of the academia
and into industry, this limitation poses a serious problem for potential users: how can
one cheaply and efficiently acquire training data when a large dataset does not already
exist?

Working in collaboration with a leading UK online supermarket, we address the
problem of dataset generation for fixed-appearance objects: object classes whose
appearance have little to no change for all instances within a class. Such objects are
ubiquitous in many potential deployment settings and include items such as consumer
products, industrial goods, and machine parts, among others.

To that end, we propose combining the use of 3D modelling and render-based
image synthesis to generate a synthetic dataset which can be used to train a deep
convolutional neural network (CNN), a type of neural network which is frequently used
for computer vision tasks. The inspiration comes from the following insight: for fixed
(or low variation) appearance object classes, texture, and geometry information can be
thought of as unchanging and can therefore be captured from a small number of physical
samples without the risk of overfitting to individual specimens. Our approach builds on
the existing literature by generating 3D scans of physical objects using photogrammetry.
By rendering scenes from these realistic 3D models, we were able to generate a diverse
array of synthetic images that were used as training data.

While previous work has made use of computer-generated 3D models to train CNNs,
our study extends this concept by successfully demonstrating that this approach can be
extended to 3D models acquired using photogrammetry.

In order to demonstrate our approach, we sought to train a deep learning model capable
of performing the task of recognizing groceries. A total of 10 products were chosen for a
classification task. Our results were promising: using our approach, we were able to
successfully train and optimize a CNN that achieves a maximum classification accuracy of
95.8% on a general environment test set.

Furthermore, our use of synthetic training data generation has also enabled the
automatic annotation and segmentation of training data. This has allowed us to train an
object-detector for the same set of objects.

RELATED WORK
3D Modelling in deep learning
3DModelling has long been a mainstay of computer vision research. Nonetheless, it is only
more recently that its potential applications to deep learning-based image classification
and object detection have been considered, with 3D modelling used in conjunction with
CNNs to train networks for use on real images. Su et al. (2015) demonstrate the use of 3D
models for viewpoint estimation. By creating a database of millions of rendered training
images using CAD models drawn from existing 3D model repositories, they were able to
train a CNN that outperformed state-of-the-art methods on test sets containing real
images. Similarly, Peng et al. (2015) and Sarkar, Varanasi & Stricker (2017) use a large
number of 3D CAD models of objects to render realistic looking training images; the
output was used to train a CNN model for classifying real world images of the objects.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 2/18

http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

Tremblay et al. (2018) extend this approach by applying synthetic data generated from
3D CAD models to the problem of object detection; they demonstrate that using domain
randomization (i.e., varying parameters such as lighting, pose, and object textures), it is
possible to train a compelling object detection network on automatically generated,
non-photorealistic, synthetic data.

While previous work has exclusively made use of computer-generated 3Dmodels (CAD
software), our study extends this concept by successfully demonstrating that this approach
can be extended to 3D models acquired using photogrammetry.

3D multi-image photogrammetry
3D multi-image photogrammetry is the process of reconstructing the three-dimensional
properties of a selected object from a set of multiple two-dimensional images. Using such a
system, one is able to accurately recreate the surface geometry, texture, color, and shape of
the target object in a realistic manner.

The principles and techniques involved in multi-image photogrammetry have been
the subject of much active computer vision research and have been comprehensively
explored in the literature (Faugeras, 1992; Linder, 2018; Luhmann et al., 2007).
The fundamental mathematical model of photogrammetry is central projection imaging
(Luhmann et al., 2007). In this model, every 2D image is first used to generate a spatial
bundle of rays; when all the ray bundles frommultiple images are intersected, triangulation
can be used to simultaneously orient all images and calculate every three-dimensional
object point location.

State-of-the-art commercial systems are currently able to perform multi-image
photogrammetry with minimal effort and without the need for calibrated cameras (Agisoft
LLC, 2018). It is even possible to perform photogrammetry using only a smartphone
camera (EyeCue Vision Technologies, 2018). Currently available photogrammetry systems
thus give us the ability simply and effectively generate 3D models from real-world objects,
thereby paving the way for our object-to-model deep learning paradigm.

METHODS
Figure 1 shows the overall design of our object-to-model training pipeline, which is comprised
of four main stages. The first two stages, 3D modelling and image rendering, are used to
generate a synthetic dataset from physical samples of the target objects, while the next two
stages are used to train and validate a deep learning model trained on the synthetic dataset.

� 3D Modelling: This stage involves scanning physical products to produce 3D models.
These include texture and color representations of the product and are of high enough
quality to produce realistic images in the next stage.

� Image rendering: This stage produces a specified number of synthetic training images
for each object which vary object pose, lighting, background, and occlusions.

� Network training: For the purposes of this study, several deep CNN architectures were
trained to classify grocery items using rendered images generated from the image
rendering step.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 3/18

http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

� Testing and evaluation: The trained classifier is then tested on a relatively small number
(100 images per class) of test images collected.

These four stages fully define our end-to-end pipeline for generating and evaluating an
image recognition network, for a number of specified fixed-appearance objects. In essence,
the full pipeline takes in a set of physical objects and outputs a trained model. Each of the
four stages will be described in detail in the sections below.

3D Modelling
The goal of the 3D modelling stage was to demonstrate a means by which 3D models of
target objects can be feasibly created to be used as input for the image synthesis stage.
The method employed required the constructed models to be of high enough quality to
generate photo-realistic and consistent representations, as well as being economical to
employ in a research setting.

Photogrammetry was used as a tool of choice. This technique takes 2D images of a 3D
surface (photographs captured using a conventional camera) as input, and attempts to
reconstruct the surfaces primarily using texture cues on the surfaces by following the steps
below:

� Camera calibration: This is done automatically using matching features in the images,
and estimating the most probable arrangement of cameras and features. A sparse point
cloud of features on the modelled surface is calculated.

� Mesh generation: The point cloud is then triangulated and used to create a structural
mesh of the surface.

� Texture generation: Texture information on the mesh surface is recovered by
combining information from the original images.

Figure 2 shows a visualization of the steps described above as applied to an example
object. This approach has allowed us to fully capture all geometry and texture information
of all modelled objects. Minimal human effort is required—typically no more than
40 images were required per model, which can be done manually at a rate of approximately
5 min per product. In an industrial setting, this can be carried out even faster using

Figure 1 Overall system design. Full-size DOI: 10.7717/peerj-cs.222/fig-1

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 4/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-1
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

various commercial photogrammetry-based photo-capture systems which can be used to
automate the 3D modelling process.

Image rendering
The goal of the image rendering stage is to produce an infinite supply of high-
quality training data. This stage involves using a rendering engine to render a
pose image of the 3D model. The appearance of this image depends on a user-
defined distribution of rendering parameters θ. This is combined with a background
to generate the final training image. These steps are repeated to generate a
potentially unlimited number of training images. Figure 3 provides an illustration of
this process.

Scene appearance was fully defined with the following parameters: camera position w.r.t
object (defined via an azimuth θ and elevation 4), camera distance to the object, lighting
intensity (equivalently distance), number of lights.

As a simple heuristic, the camera location was defined to be evenly distributed around
rings in a spherical coordinate system. This is illustrated in Fig. 4. The reason for this
choice of distribution was due to the fact that it corresponded to common viewpoints of
handheld grocery items.

Lamp locations were distributed evenly on a sphere. Additionally, camera-subject
distance and lamp energies were distributed according to truncated normal distributions to

Figure 2 Visualization of the steps in photogrammetry: (A) camera calibration and point cloud
generation; (B) after mesh generation; (C) after texture generation.

Full-size DOI: 10.7717/peerj-cs.222/fig-2

Figure 3 Flow diagram for synthetic image rendering. Full-size DOI: 10.7717/peerj-cs.222/fig-3

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 5/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-2
http://dx.doi.org/10.7717/peerj-cs.222/fig-3
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

ensure no negative energy lamps were generated. Point lamps were used primarily as a
simple lighting model.

Location distributions

We generated location distributions according to the method below. Assuming that one
could define Cartesian coordinates (x, y, z) in terms of spherical coordinates (defined using
radius ρ, azimuth θ, and elevation 4) as:

x ¼ r cos u sinf y ¼ r cos u sinf z ¼ r cosf (1)

Distribution of camera locations were defined by stating:

r � Tðmr; sr; ar; brÞ (2)

f � Tð0;sf;�p=2;p=2Þ (3)

u � Uð0; 2pÞ (4)

Where Tðm; s; a; bÞ is the truncated normal distribution, with mean m and standard
deviation s, a, and b define the limits of the distribution, for which the probability density
function is zero outside the limits. Therefore if X � Tðm; s; a; bÞ, then X � Nðm; sÞ
if a � X � b. This set of variables defines a distribution around a ring in the X–Y
plane (with a normal Z), and the width of the ring can be controlled by specifying sf.
If x = (x, y, z) is drawn from the distribution, one can “flip” the ring to have normal aligned
with the X axis by doing:

x0 ¼ Ryðp=2Þx (5)

Where Ryðp=2Þ is the rotation matrix that rotates the point about the axis y, p/2
radians. This way points can be distributed around multiple rings (specified by their
normals). For the purposes of this project, camera was distributed about the rings with the
Y and Z axes as normals.

Figure 4 (A) The rings on the shell (red rings) around which random normalized camera locations
are sampled from (blue points); (B) The uniform distribution on the sphere of lamp locations.

Full-size DOI: 10.7717/peerj-cs.222/fig-4

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 6/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-4
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

It is also worth mentioning that setting sf to roughly p/3 radians generates a roughly
uniform distribution of points around a sphere. This approach was used for generated
lamp distributions.

Lighting conditions
The number of point light sources nL was also sampled from a uniform distribution of
non-negative integers (the min and max can be user-defined). The lamp energies E were
sampled using a truncated normal distribution:

nL � Ufnmin; nmaxg (6)

E � TðmE; sE; 0;þ1Þ (7)

Background scene generation
The rendered pose image is generated with a transparent background. Alpha composition
was used to combine the rendered pose image with a background image. The resulting
generated images are highly varied in terms of appearance. While a significant proportion
of images seemed to look “unrealistic” (e.g., a yogurt pot in the International Space
Station), the aim was not to achieve a simulation with perfect realism. Instead, the focus
was on achieving enough background variation within the training data so that the final
trained network would be as robust as possible, while ensuring that the objects themselves
were rendered as realistically as possible.

Figure 5 shows examples of synthetic training data generated using the method
described above. Note the variety of poses and lighting conditions represented, as well as
the multitude of different backgrounds.

Network training
The aim of the network training stage was to take a generated dataset as an input and
produce a trained neural network that could be used to classify products from the dataset.
The tool of choice for this task was a CNN, a class of neural networks that are frequently
used for image classification tasks. CNNs are specialized neural networks that perform
transformation functions (called convolutions) on image data. Deep CNNs contain
hundreds of convolutions in series, arranged in various different architectures. It is
common practice to take the output of the CNN and input it into a regular neural network
(referred to as the fully-connected (FC) layer) in order to perform more specialized
functions (in our context, a classification task). We refer readers to Rawat & Wang (2017)
for a comprehensive review of the use of Deep CNNs in Image Classification.

EXPERIMENTAL SETUP
3D Modelling
In practice, our 3D modelling stage involved two main steps:

� Step 1: Image capture of the objects to be modelled.

� Step 2: The generation of 3D models from captured images using a third party,
free-for-research photogrammetry software.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 7/18

http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

The first step involved capturing good images of the modelled object. The key here is
to capture images so as to aid in the three steps for photogrammetry described in the
3D modelling subsection. Since camera calibration is performed by matching sets
of features between groups of images to estimate the extrinsic (geometric) camera
parameters, it is paramount we had good overlap between images and a large number
of unique features to aid in reconstruction. Figure 6 shows an example subset of sample
images captured for 3D modelling.

For most of our object models, which generally measured no more than 20 cm at the
longest, the distance for image capture was set at about 40 cm away from the object.
Images were captured at two levels, roughly 30� and 60� elevation from the center of
volume of the object. The azimuth of the camera about the object was changed with
increments of 20� (see Fig. 2 for a visualization of typical camera placement relative to the
object). A base with distinct patterns was also placed below the captured object to aid in
feature matching.

In the second step of the 3D modelling stage, AgiSoft Photoscan� was used with the
images from the previous step as input. This is free-for-research software and can be used by
requesting a free license (https://www.agisoft.com/buy/licensingoptions/). The software
offers an automated pipeline that performs camera calibration/alignment and point cloud

Figure 5 Examples of generated synthetic images (A–T). Full-size DOI: 10.7717/peerj-cs.222/fig-5

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 8/18

https://www.agisoft.com/buy/licensingoptions/
http://dx.doi.org/10.7717/peerj-cs.222/fig-5
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

generation simultaneously. Mesh generation is then followed by texture generation. This
generates a mesh file in the .obj format, which contains positions of vertices in space, its UV
coordinate and polygons in the form of vertex lists, and a texture .jpeg file.

Image rendering
Blender, an open-source software, was used for the rendering of the synthetic training data.
A Python layer was built on top of the Blender API https://docs.blender.org/api/current/
index.html allowing for programmatic control of rendering parameters, which
implemented the rendering algorithm described in the Methods section, and enabled
automated generation of training data at scale. The output of this layer was a 300 � 300
pixels RGB alpha image, which contained the product of interest in random orientation
and random lightning, while keeping the alpha values of the remaining pixels as zero. The
final image was created by merging it with a random background image from the SUN
database of over 80,000 images (Xiao et al., 2010). For this purpose a Python wrapper
around the open-source Python Imaging Library was built. Both Blender and the PIL
wrappers have been open sourced with this paper to facilitate reproducibility and future
work (https://github.com/921kiyo/3d-dl).

Datasets
Training data
Using our 3D modelling and image rendering methods, we generated a training data set
which consists of 100,000 training images for 10 different grocery products1 (10,000
images per class) with manually chosen values for the distributions of rendering
parameters. Figure 5 shows examples of the generated training data.

Figure 6 Example subset of images captured for the modelling of a yogurt pot at different elevations
and angles (A–D). Notice how a magazine was used as a base to create more keypoints for camera
alignment. Full-size DOI: 10.7717/peerj-cs.222/fig-6

Table 1 The runtimes for rendering.

Rendering (100K images)

Samples Resolution (px) Runtime (h)

64 224 4

128 224 6

64 300 5.5

128 300 9

Note:
Rendering runtimes depend heavily on rendering settings. Hardware used was an Nvidia GTX Titan X GPU.

1 Ten grocery products used in our study
are 1. Anchor Spreadable, 2. Innocent
Coconut Water, 3. Essential Waitrose
Low Fat Natural Cottage Cheese,
4. Liberte Honey Greek Style Yogurt,
5. Rachel’s Organic Greek Style Lemon,
6. Yeo Valley Organic Strawberry Yogurt,
7. New Covent Garden Slow Roast
Tomato Soup, 8. Alpro Longlife Original
Soya Milk Alternative, 9. Munch Bunch
Strawberry Squashums, 10. Cypressa
Traditional Halloumi Cheese.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 9/18

https://docs.blender.org/api/current/index.html
https://docs.blender.org/api/current/index.html
https://github.com/921kiyo/3d-dl
http://dx.doi.org/10.7717/peerj-cs.222/fig-6
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

The durations for generating training images is shown in Table 1. The training set used
in our experiments took approximately 9 hours to generate using our NVIDIA GTX
TITAN X GPU.

Test data
To evaluate the classifier’s generalization performance, a special test and validation set was
acquired by conventional image capture. As the aim of our method was to create training
data for unique fixed-appearance objects for which no suitable dataset already exists, it
was not considered constructive to make use of standard test sets such as ImageNetDeng et al.
(2009), given that these test sets generally focus on generic object categories (e.g., car) rather
than specific individualized objects. Figure 7 displays some examples of our test set which was
manually acquired in a variety of locations. The set contains 1,000 images of 10 classes
(100 images per class) from a variety of perspectives, at different distances, in different lighting
conditions and with and without occlusion. These images were acquired with a number of
different devices, including smartphones, DSLR cameras, and digital cameras.

Network training
For network training, three different CNN architectures were tested using the Keras API
(Chollet, 2015). These were Google’s InceptionV3 (Szegedy et al., 2014), the Residual
Network (ResNet-50) (He et al., 2015) architecture, and the VGG-16 (Simonyan &
Zisserman, 2014) architecture.

A FC layer with 1,024 hidden nodes and 10 output nodes for each class was defined, and
a standard stochastic gradient descent optimizer with momentum was used. For all of the
above architectures, the only parameter that was manipulated was the number of
trained convolutional layers (the FC layers are always trained), ranging from zero layers to
all layers. The final reported models were trained with all convolutional layers unfrozen
for retraining. The weights for the convolutional layers were initialized based on those

Figure 7 Sample of proprietary general environment test set (A–H).
Full-size DOI: 10.7717/peerj-cs.222/fig-7

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 10/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-7
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

trained using the ImageNet dataset (Deng et al., 2009). All other parameters were kept
constant as shown in Table 2. Additionally, for the InceptionV3 model a grid-search was
carried out to fine-tune the learning rate used.

All computation was performed on a system using an Intel Xeon E5-1630 v3 3.70 GHz
CPU with 31 GB memory and an NVIDIA GTX TITAN X GPU. A virtual environment
was used with Tensorflow 1.4.1 and Keras 2.1.3 installed.

EXPERIMENTAL RESULTS
We evaluated the performance of our system on two common computer vision tasks,
namely image classification and object detection.

Image classification
The first task evaluated was to perform image classification on the images in our general
environment test set. We were able to achieve a test accuracy of 95.8% using the
InceptionV3 architecture with the optimized learning rate and all convolutional layers
being retrained. The confusion matrix for this network is shown in Fig. 8.

Table 2 Constant variables for network training.

Learning rate (InceptionV3) 0.00256

Learning rate (VGG16, ResNet50) 0.0001

Image input size (px, px) (224,224)

Batch size 64

Number of fully-connected layers 2

Hidden layer size 1,024

Optimizer SGD

Epochs 12

Figure 8 Confusion matrix for InceptionV3 using synthetic data on general environment test set.
Full-size DOI: 10.7717/peerj-cs.222/fig-8

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 11/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-8
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

The trained network was able to classify almost every single image that it could
reasonably have been expected to successfully identify. In fact, the majority of the few
misclassified images showed the underside of products. From this point of view, the
product is usually seen as a white circle or rectangle. This means that there are few to none
distinct features by which the different products can be distinguished, making the
classification of products shown from the underside extremely challenging, even for
humans.

Experimentation with different CNN architectures yielded favorable results, with the
InceptionV3 architecture achieving the best performance. These results are shown in
Table 3.

These results demonstrate that a classifier can be successfully trained using only
synthetic data acquired using photogrammetry techniques. To our knowledge this is the
first demonstration of the use of photogrammetry-based synthetic data in successfully
training a CNN.

Benchmark experiment
To further demonstrate the value of our approach, we also performed a comparison
experiment evaluating the performance of a network trained on real images, as opposed to
the synthetic data used in our proposed method. To ensure a meaningful comparison, the
real images used were the same images used to create the 3D models for synthetic data
generation.

During the 3D modelling stage, we used a DSLR camera to capture 60 real images of
each product from all angles, and subsequently used about 30–40 of those images to
generate the 3D models for use in synthetic data. For this control experiment, we used
transfer learning to train a network on those 60 images per class, using a data generator
with image augmentation to produce an arbitrarily large dataset for training. To carry
out transfer learning, we initialized an InceptionV3 network with ImageNet weights,
further trained all layers using the augmented real images. InceptionV3 with transfer
learning achieved convergence. However, this performance failed to generalize adequately,
with the trained model achieving only 64.5% accuracy on the general environment test set;
while demonstrating some evidence of learning, this result fell far below the model trained
on synthetic images. The confusion matrix for this network is shown in Fig. 9.

The results of the control experiment show that in situations where only a small number
of training images can be captured, our method of generating synthetic training data from
3D models is more effective than the alternative of using image augmentation.

Table 3 Summary of testing results (accuracy, data source, average precision, average recall) for
different architectures.

Network Data source Accuracy A. Precision A. Recall

InceptionV3 Synthetic images 95.8 96.0 95.8

ResNet50 Synthetic images 93.8 93.9 93.8

VGG16 Synthetic images 83.2 84.6 83.2

InceptionV3 Augmented real images 64.5 75.7 64.5

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 12/18

http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

Object detection
Our approach opens up the opportunity to train object detectors and segmentation
algorithms given that our pipeline can produce pixel-level annotations of products. This is
possible as the placement of the object of interest in the image is fully under our control,
and can be logged automatically. For this application, we have logged the object bounding
box. This information can then be compared with the detector estimated bounding box.
This provides a huge advantage as no manual pixel annotation is necessary as is the
case with currently available datasets, e.g., the Microsoft Coco dataset (Lin et al., 2014).
First experiments using RCNNs on our dataset show strong results when performing
object detection on our general environment test set.

The chosen architecture for this task is the RetinaNet architecture (Lin et al., 2017).
This is a one-stage architecture that runs detection and classification over a dense sampling
of possible sub-regions (or “Anchors”) of an image. The authors have claimed that it
outperforms most state-of-the-art one-stage detectors in terms of accuracy, and runs
faster than two-stage detectors (such as the Fast-RCNN architecture (Girshick, 2015)).
A “detection as classification” (DAC) accuracy metric was calculated by using the
following formula:

DAC ¼
Xn

i
TPi

n
(8)

Where the quantity TPi is summed over every image i, and is calculated:

TPi ¼ 1 if top 3 detections for i contain correct class
0 otherwise

�
(9)

The same general environment test set introduced above was used to test the accuracy
of this learning task, when the same set of rendered training images were used. The
rendered images were split into a train and validation set. The validation split of
the rendered images is used to measure the deviation in network performance between real

Figure 9 Confusion matrix for InceptionV3 benchmark experiment on general environment test set.
Full-size DOI: 10.7717/peerj-cs.222/fig-9

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 13/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-9
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

and rendered images. The number of rendered validation images per class used was the
same as that of the real test images. Figure 10 highlights the performance of the detection
algorithm when applied to a set of sample test images.

The reported DAC accuracy for the test set was 64%. Upon closer inspection of the test
results, it was discovered that the detection bounding boxes were mostly accurately
calculated. However, the main factor driving the score down was incorrect classifications.
This classification loss was less pronounced in the rendered image validation dataset,
giving a final accuracy of 75%.

The logged validation accuracy for both real and rendered data is shown in Fig. 11,
and indicates a deviation between how the network perceives real images of objects, and
rendered images. This is a surprising finding, given near-perfect performance on the
classification task as noted above. This shows that our current set of rendering parameters
might not be as robust as previously thought, and can be dependent on the learning task.

Figure 10 Detection bounding boxes and confidence scores for classification (A–J).
Full-size DOI: 10.7717/peerj-cs.222/fig-10

Figure 11 Real and rendered image validation scores for product detection, logged every 200
training steps. The DAC accuracy for real images deviates from the rendered accuracy at around 20K
steps. Full-size DOI: 10.7717/peerj-cs.222/fig-11

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 14/18

http://dx.doi.org/10.7717/peerj-cs.222/fig-10
http://dx.doi.org/10.7717/peerj-cs.222/fig-11
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

It is likely that further optimization of the rendering pipeline can be done in order to
optimize against the detection task, and to make it more robust against a larger variety of
learning tasks.

DISCUSSION
Novel contribution
In the course of our study, we developed an original pipeline that goes from data acquisition,
over data generation to training a CNN classifier. This is a novel combination of several tools
including photogrammetry for 3D scanning and the use of a graphics engine for training
data generation. The 95.8% accuracy achieved on the general environment test set
demonstrates that photogrammetry-based 3D models can be successfully used to train an
accurate classifier for real-world images. To our knowledge this the first-time
photogrammetry-based 3D models were used to train a CNN. In addition, we developed an
end-to-end software tool for synthetic dataset generation, which includes the development
of Blender API, Scene generation library as well as the evaluation of the classifier. All the
code used in our study has been open-sourced (https://github.com/921kiyo/3d-dl).

Limitations
Throughout the research conducted into this approach, two main limitations became
apparent.

First, using photogrammetry for 3D modelling results in reconstruction noise in the
case of transparent features and large unicolor areas, thereby reducing overall network
performance. This could be mitigated by combining photogrammetry with other
information sources. For example, products from Occipital, Inc. (2018) use an infrared
iPad mount to combine information from a typical camera with information from an
infrared sensor to create more accurate 3D models. Industrial-grade RGBD scanners
which combine depth and color information are also readily available on the market,
allowing for the creation of 3D models of far greater accuracy.

Second, the process of acquiring 3D models and preparing them for rendering required
roughly 15 min of manual work per product. While this is manageable for a small
product set, this would become an increasingly serious limitation as the number of
products to be scanned increases. A deployment-ready solution using our method will
require a more sophisticated approach to acquiring the product photos in order to
minimize the amount of manual labor required. This could include investments into
appropriate hardware such as the above-mentioned industrial grade 3D scanners as well as
automating the scanning process. For larger products (e.g., cars) a large room or
warehouse could be fitted with multiple movable cameras to capture photographs for
photogrammetry.

FURTHER WORK
The viability of using photogrammetry-based data synthesis for training deep neural
networks sets the stage for further research capitalizing on the advantages of this approach.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 15/18

https://github.com/921kiyo/3d-dl
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

For example, an area holding great promise is that of expanded hyperparameter
optimization. Standard neural network pipelines generally allow for the optimization of
network hyperparameters, whilst assuming a fixed pre-existing dataset (Bergstra & Bengio,
2012). The system described here, which performs both data generation and model
training, can be thought of as a black box with tunable hyperparameters that include both
rendering and network training hyperparameters. This expanded set of hyperparameters
provides a more expressive and robust model to maximize performance on real-world
computer vision tasks. For example, consider the task of detecting objects in a low-light
environment. By measuring performance on real validation images taken from this
environment, an appropriate optimization procedure (e.g., a greedy sequential search, or
Bayesian optimization (Snoek, Larochelle & Adams, 2012; Bergstra et al., 2011)) may be
able to efficiently find a suitable lighting distribution in our rendering framework which
maximizes performance of the model by optimizing network training, as well as
optimizing the training data itself.

CONCLUSION
The insatiable need for ever-larger quantities of quality training data is one of the main
limitations of deep learning. As deep learning is applied more extensively, this limitation
will become increasingly evident. Novel applications of deep learning will require
novel datasets which will need to be manually created with great cost and effort. In this
paper, we have shown that by generating synthetic training data using photogrammetry,
we are able to produce training data of sufficiently high-quality for use in deep learning
applications, while significantly reducing the amount of work and cost associated with
data collection. Furthermore, the image generation process allows automatic pixel
annotation which allows for the training of detection models. We believe our work holds
particular promise for use in industrial applications, where recognition and detection tasks
tend to involve a large range of unique objects for which there is likely not to be pre-
existing datasets. Our method thus opens up new opportunities for the application of deep
learning to fields where large-scale data collection and dataset curation has previously been
unfeasible or expensive.

ACKNOWLEDGEMENTS
We would like to thank Dr Bernhard Kainz at Imperial College London for his advice and
valuable feedback, and to Ocado Group, particularly Luka Milic and David Sharp in the
10x Technology Team, for insightful discussions and suggestions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 16/18

http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

Author Contributions
� Matthew Z. Wong conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

� Kiyohito Kunii conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

� Max Baylis conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper.

� Wai Hong Ong conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

� Pavel Kroupa conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, performed the computation work.

� Swen Koller conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, performed the computation work,
authored or reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Code is available at GitHub: https://github.com/921kiyo/3d-dl.

REFERENCES
Agisoft LLC. 2018. Agisoft photoscan. Available at http://www.agisoft.com/.

Bergstra J, Bardenet R, Bengio Y, Kégl B. 2011. Algorithms for hyper-parameter optimization. In:
Proceedings of the 24th International Conference on Neural Information Processing Systems,
NIPS’11. Red Hook: Curran Associates Inc., 2546–2554.

Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. Journal of Machine
Learning Research 13:281–305.

Chollet F. 2015. Keras. Available at https://github.com/fchollet/keras.

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. 2009. ImageNet: a large-scale hierarchical
image database. In: CVPR 2009, Miami beach Florida.

EyeCue Vision Technologies. 2018. Qlone. Available at https://www.qlone.pro/.

Faugeras OD. 1992. What can be seen in three dimensions with an uncalibrated stereo rig? In:
Computer Vision— ECCV92 Lecture Notes in Computer Science, Santa Margherita Ligure, Italy,
563–578.

Girshick RB. 2015. Fast R-CNN. Available at http://arxiv.org/abs/arXiv:1504.08083.

He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. In: CVPR 2016,
Las Vegas, NV, USA, 770–778. Available at https://www.cv-foundation.org/openaccess/content_
cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 17/18

https://github.com/921kiyo/3d-dl
http://www.agisoft.com/
https://github.com/fchollet/keras
https://www.qlone.pro/
http://arxiv.org/abs/arXiv:1504.08083
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

Lin T, Goyal P, Girshick RB, He K, Dollár P. 2017. Focal loss for dense object detection. CoRR.
abs/1708.02002.

Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D,
Zitnick CL, Dollár P. 2014. Microsoft COCO: common objects in context. Available at
cocodataset.org.

Linder W. 2018. Digital photogrammetry a practical course. Berlin: Springer.

Luhmann T, Robson S, Kyle S, Harley I. 2007. Close range photogrammetry: principles, techniques
and applications. Dunbeath: Whittles.

Occipital, Inc. 2018. Structure by occipital. Available at https://structure.io/.

Peng X, Sun B, Ali K, Saenko K. 2015. Learning deep object detectors from 3D models. In:
ICCV ’15 Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV).
Piscataway: IEEE.

Rawat W, Wang Z. 2017. Deep convolutional neural networks for image classification: a
comprehensive review. Neural Computation 29(9):2352–2449 DOI 10.1162/neco_a_00990.

Sarkar K, Varanasi K, Stricker D. 2017. Trained 3D models for CNN based object recognition. In:
Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications – Volume 5: VISAPP, (VISIGRAPP 2017)
International Conference on Computer Vision Theory and Applications (VISAPP-17). Available
at https://av.dfki.de/publications/trained-3d-models-for-cnn-based-object-recognition/.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. Available at https://arxiv.org/pdf/1409.1556.pdf.

Snoek J, Larochelle H, Adams RP. 2012. Practical Bayesian optimization of machine learning
algorithms. In: Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’12. Lake Tahoe, NV, USA. Curran Associates Inc.,
2951–2959.

Su H, Qi CR, Li Y, Guibas L. 2015. Render for CNN: viewpoint estimation in images using CNNs
trained with rendered 3D model views. In: ICCV 2015, Santiago, Chile. Available at https://www.
cv-foundation.org/openaccess/content_iccv_2015/papers/Su_Render_for_CNN_ICCV_2015_
paper.pdf.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V,
Rabinovich A. 2014. Going deeper with convolutions. Piscataway: IEEE. Available at https://
ieeexplore.ieee.org/document/7298594.

Tremblay J, Prakash A, Acuna D, Brophy M, Jampani V, Anil C, To T, Cameracci E,
Boochoon S, Birchfield S. 2018. Training deep networks with synthetic data: bridging the
reality gap by domain randomization. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). Piscataway: IEEE.

Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A. 2010. Sun database: large-scale scene
recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Piscataway: IEEE, 3485–3492.

Wong et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.222 18/18

cocodataset.org
https://structure.io/
http://dx.doi.org/10.1162/neco_a_00990
https://av.dfki.de/publications/trained-3d-models-for-cnn-based-object-recognition/
https://arxiv.org/pdf/1409.1556.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Su_Render_for_CNN_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Su_Render_for_CNN_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Su_Render_for_CNN_ICCV_2015_paper.pdf
https://ieeexplore.ieee.org/document/7298594
https://ieeexplore.ieee.org/document/7298594
http://dx.doi.org/10.7717/peerj-cs.222
https://peerj.com/computer-science/

	Synthetic dataset generation for object-to-model deep learning in industrial applications
	Introduction
	Related Work
	Methods
	Experimental Setup
	Experimental Results
	Discussion
	Further Work
	Conclusion
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

