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ABSTRACT
Rice production is pivotal for ensuring global food security. In Pakistan, rice is not
only the dominant Kharif crop but also a significant export commodity that
significantly impacts the state’s economy. However, Pakistan faces challenges such as
abrupt climate change and the COVID-19 pandemic, which affect rice production
and underscore the need for predictive models for informed decisions aimed at
improving productivity and ultimately the state’s economy. This article presents an
innovative deep learning-based hybrid predictive model, ResNet50-LSTM, designed
to forecast rice yields in the Gujranwala district, Pakistan, utilizing multi-modal data.
The model incorporates MODIS satellite imagery capturing EVI, LAI, and FPAR
indices along with meteorological and soil data. Google Earth Engine is used for the
collection and preprocessing of satellite imagery, where the preprocessing steps
involve data filtering, applying region geometry, interpolation, and aggregation.
These preprocessing steps were applied manually on meteorological and soil data.
Following feature extraction from the imagery data using ResNet50, the three LSTM
model configurations are presented with distinct layer architectures. The findings of
this study exhibit that the model configuration featuring two LSTM layers with
interconnected cells outperforms other proposed configurations in terms of
prediction performance. Analysis of various feature combinations reveals that the
selected feature set (EVI, FPAR, climate, and soil variables) yields highly accurate
results with an R2 = 0.9903, RMSE = 0.1854, MAPE = 0.62%, MAE = 0.1384, MRE =
0.0062, and Willmott’s index of agreement = 0.9536. Moreover, the combination of
EVI and FPAR is identified as particularly effective. Our findings revealed the
potential of our framework for globally estimating crop yields through the utilization
of publicly available multi-source data.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Rice yield prediction, Google Earth Engine, NASA POWER project, Deep learning,
Remote sensing, ResNet-LSTM

INTRODUCTION
Rice production holds significant global importance, with Asia heavily reliant on it as a
dietary staple. In crop year 2022–2023, global rice consumption reached 517,184 thousand
metric tons, prompting increased rice imports in many countries by which rice-exporting
nations experience economic benefits through international trade (Statista, 2024).
Pakistan, possessing with tremendous agricultural potential owing to its fertile plains,
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diverse agroclimatic zones, and abundant water resources, has a robust agricultural sector,
divided into Rabi and Kharif cropping seasons-based on the monsoon rainfall pattern and
temperature fluctuations. Rice, a Kharif crop, is prominently cultivated in Punjab and
Sindh provinces. Pakistan produced 9,322.67 million tons of rice in 2022, with Punjab
contributing 5,779 million tons, highlighting its significant role in rice production (CRS,
2022). Globally, rice is a highly traded commodity, with Pakistan ranking fourth in rice
exports. In 2021, Pakistan exported around 3.9 million tons of rice (FAOSTAT, 2024). Rice
cultivation significantly impacts Pakistan’s economy, contributing to foreign exchange
revenue, employment, gross domestic product (GDP), government revenue through taxes
on rice exports. Challenges such as labor shortages and disruptions in the supply chain due
to COVID-19 pandemic (Goeb et al., 2022), locust attacks (Usman et al., 2022), losses from
flooding and climate change affect farmers and their crops (Shakoor et al., 2015). The
World Bank anticipates up to nine million people in Pakistan may fall into poverty due to
the pandemic (Saifi & Horowitz, 2023). To address these challenges, Pakistan needs to
focus on sustainable rice production. Predicting rice yields can assist farmers in making
informed decisions regarding inputs and planning, thereby enhancing productivity and
reducing costs on resource allocation and management practices.

Historically, rice yield prediction methods have been limited by factors such as reliance
on field surveys and visual inspections, leading to inconsistent and sometimes inaccurate
results due to human errors and variability among surveyors. Alternative approaches
include physiological models or crop growth models which simulate rice plant
development based on environmental variables, e.g., phenology-based models and process-
based models (Sivakumar et al., 2003), and statistical approaches which analyze past data
to identify trends and patterns, assuming that historical trends will persist into the future.
However, if underlying assumptions are not satisfied or if the data is not a good reflection
of the current situation, these models may struggle with accuracy and scalability.
Assimilation modeling combines actual data with model simulations to improve
prediction accuracy, but assumptions and computational complexities make scaling
difficult.

An alternative approach, machine learning (ML), presents a strategy to learn patterns
and relationships directly from data without the need for explicit models or presumptions.
ML is capable of processing unstructured data and capturing complex relationships that
conventional methods may find challenging to comprehend. However, ML often requires
human effort for feature engineering and can introduce bias if not handled carefully. Deep
learning (DL), a subset of ML (Lecun, Bengio & Hinton, 2015), automates the process of
feature extraction from raw data, reduces biasness and provides highly accurate end-to-
end predictions.

Remote sensing, using aircraft, satellites, unmanned aerial vehicles (UAVs) equipped
with specialized sensors (Campbell & James, 2011), and alternate platforms, emerges as
another valuable tool for acquisition of comprehensive data on environmental conditions
and crop health. This technique aids in ecological research by enabling the tracking and
examining of Earth’s physical properties. Satellite imagery, provided by satellite-based
remote sensing tools such as Sentinel-1, Sentinel-2, Landsat, and MODIS (Moderate
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Resolution Imaging Spectroradiometer), offers detailed insights into land cover, weather
patterns, and terrain. Google Earth Engine (GEE), a cloud-based geospatial analysis tool,
facilitates the processing and analysis of such satellite data, improving remote sensing
capabilities for monitoring agricultural landscapes and predicting rice yields.

A surge of interest has been observed in recent agricultural research targeted at
enhancing crop yield. Notable subjects include crop yield prediction (Muruganantham
et al., 1990; Oikonomidis, Catal & Kassahun, 2023), crop loss estimation (Wang et al.,
2022), pest and disease management (Gokila & Santhi, 2022), soil health and fertility
(Swapna, Manivannan & Kamalahasan, 2022), etc. Several studies have targeted the
prediction of specific crop such as wheat (Fei et al., 2023), cotton (Tahseen Haider et al.,
2022), maize (Zhang et al., 2019), and others.

For rice yield, some studies have exclusively trained models on meteorological data and
yield statistics (Chu & Yu, 2020), whereas others incorporated sentinel imagery
(Fernandez-Beltran et al., 2021), or Landsat imagery data (Siyal, Dempewolf & Becker-
Reshef, 2015). Some explored MODIS satellite variables including normalized difference
vegetation index (NDVI) (Son et al., 2020), enhanced vegetation index (EVI) (Cao et al.,
2021; Zhou, Xu & Chen, 2023), solar-induced chlorophyll fluorescence (SIF) (Cao et al.,
2021; Liu et al., 2022), gross primary productivity (GPP), soil-adjusted vegetation index
(SAVI) (Zhou, Xu & Chen, 2023), near-infrared reflectance of vegetation (NIRv) (Liu et al.,
2022), etc. However, numerous satellite variables remain untapped, and there is potential
to integrate extensive abiotic information with the high spatial and temporal coverage of
satellite images.

In rice yield prediction, ML approaches have been utilized, such as bagging of decision
trees (Siyal, Dempewolf & Becker-Reshef, 2015), random forest (RF), and support vector
machine (SVM) (Son et al., 2020). A study (Chu & Yu, 2020) fuses two neural networks i.e.,
back-propagation neural networks (BPNNs) to learn deep spatial features from area data,
and independently recurrent neural network (IndRNN) to learn temporal features from
meteorological data. An informer transformer-based model has also been employed (Liu
et al., 2022). The use of a 3D convolutional neural network (3DCNN) on sentinel images
(Fernandez-Beltran et al., 2021), and the presentation of deep learning based long short-
term memory (LSTM) model (Cao et al., 2021; Zhou, Xu & Chen, 2023) demonstrate the
diversity of approaches. But still the opportunity exists for improvement in DL models,
given their early development.

This study aims to predict rice yield across four tehsils of Gujranwala district, Pakistan,
using satellite imagery, meteorological data, and soil data collected from 2000 to 2021. The
data undergoes comprehensive preprocessing and alignment. The study utilizes two
models: residual network 50 (ResNet50), which is employed to extract essential features
from satellite images, and three distinct configurations of LSTMmodels are proposed. The
objective of this study is to address several questions: (i) which LSTMmodel configuration
among the three proposed provides accurate and precise results? (ii) which combination of
features affects the predictions? (iii) which satellite variable has the most significant impact
on predictions? and (iv) to investigate the convergence ability of the model.
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MATERIALS AND METHODS
This section is organized into five subsections: (i) study area, (ii) description of datasets
acquired from various sources, (iii) preprocessing techniques applied to the datasets,
(iv) the proposed deep learning model, and (v) evaluation metrics used in this study to
validate the proposed model.

Study area
The region of interest of this study is the rice cultivation area of Gujranwala district,
Punjab, Pakistan. Gujranwala is situated between 31.8°N–32.5°N and 73.6°E–74.5°E,
experiencing a hot climate during the Kharif season, with temperature ranging from 30 °C
to 42 °C, a UV index from 1.5 to 3, precipitation from 2 to 20 mm per day, humidity
ranging from 45% to 80%, and wind speeds from 1 to 3 m per second. Additionally, the soil
in this region has an average pH level of approximately 8.42, which supports crop
cultivation. Rice is the predominant Kharif crop in Gujranwala district, with the growth
period extended from late-April to mid-November. According to the government of
Punjab, it was reported that rice was cultivated in this region on 643 million acres in 2021
(Crops Statistics, 2022). Gujranwala is recognized as the bread basket of Pakistan. This
study encompasses the four tehsils (counties) of Gujranwala district: Wazirabad,
Gujranwala city, Nowshera Virkan, and Kamoke. Figure 1 illustrates the location and
spatial distribution of the region of interest.

Dataset description
In this study, we gathered yield statistics, remotely sensed satellite data, environmental
data, and some auxiliary data from various sources. An overview of the collected data is
presented in Table 1. All data were collected for the period 2000–2021 from last-April to
mid-November.

Yield statistics

Average annual yield data in terms of maunds per acre for Gujranwala district were
obtained for the period 2000–2021 from the crop reporting service, Government of
Punjab, Pakistan (CRS, 2022). This information was further validated using agriculture
statistics from the Pakistan Bureau of Statistics. In this study, yield data were served as
annotations for training and validating the proposed model.

Satellite imagery
This study utilized three NASA Terra-MODIS products, which were extracted from the
GEE. A collaborative effort between NASA and GEE ensures the ingestion of satellite
images on a daily basis, making them globally accessible for data mining.

One of the MODIS products used in this study is EVI which is an enhanced version of
NDVI. EVI is designed to quantify vegetation greenness. NDVI is considered to be a
traditional vegetation index, whereas EVI has improved sensitivity to biomass regions and
the ability to reduce atmospheric influences. EVI is formulated as given in Eq. (1).
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EVI ¼ 2:5 � NIR � R
NIR þ C1 Rð Þ � C2 Bð Þ þ L

(1)

where NIR is near-infrared reflectance, R is red reflectance, B is blue reflectance, C1 and C2

are coefficients, usually set to 6 and 7.5 respectively, and L is the canopy background
adjustment, generally set to 1. We extracted the EVI band from MOD13A2H.061
collection using GEE, which provides pre-calculated EVI data in raster format compositing
at 16-day intervals with the spatial resolution of 1 km (Didan, 2021).

The other two products, leaf area index (LAI) and fraction of photosynthetically active
radiation (FPAR), were also extracted. LAI represents the amount of leaf material per unit
ground area and is closely associated with the plant’s evapotranspiration capacity.
Whereas, FPAR represents the fraction of photosynthetically active radiations absorbed by
green vegetation. They are expressed in Eqs. (2) and (3) respectively.

LAI ¼ 1
c
� ln

PARcanopy

PARsun
� 1� Rg
� �� �

(2)

FPAR ¼ 1 � e�0:5 LAIð Þ (3)

where c is the extinction coefficient which represents the fraction of radiation absorbed per
unit LAI, PARcanopy is the photosynthetically active radiation (PAR) within the canopy,
PARsun is the incoming PAR, and Rg is the fraction of incoming radiation absorbed by the
ground. These data were extracted fromMOD15A2H.061 collection, which provides 8-day
composite data with the spatial resolution of 500 m (Myneni, Knyazikhin & Park, 2021).

Climate and soil data
The climate and soil parameters utilized in this study is sourced from the NASA Langley
Research Center (LaRC) Prediction of Worldwide Energy Resources (POWER) project
funded through the NASA Earth Science/Applied Science Program. This project was
initiated to enhance earth science datasets and to generate new datasets from emerging

Figure 1 Location and spatial distribution of crop producing areas of Gujranwala district, Pakistan. Map data © 2023 Google Earth Engine.
Dataset source: Pakistan-Subnational Administrative Boundaries; The Humanitarian Data Exchange; CC BY 4.0, https://creativecommons.org/
licenses/by/4.0. Full-size DOI: 10.7717/peerj-cs.2219/fig-1
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satellite systems (POWER, 2020). The POWER project offers a data access viewer interface.
Through this interface, data specifically tailored for the agroclimatology community was
extracted, focusing on the daily temporal average within our study area.

From the POWER project, climate parameters were extracted, encompassing clear sky
surface PAR total, all-sky surface ultraviolet (UV) index, temperature (minimum,
maximum, wet bulb, earth skin) at 2 m, dew/frost point at 2 m, humidity (relative, specific)
at 2 m, precipitation, surface pressure, wind speed, and wind direction at 2 m. Additionally,
soil parameters retrieved from the POWER project include surface soil wetness, root zone
soil wetness, and profile soil moisture.

Auxiliary data
Certain auxiliary and supporting data utilized in this study include a MODIS land cover
type product, MCD12Q1.006, employed for crop land masking. This product was
extracted from GEE at a spatial resolution of 500 m and is presented in the yearly
composites (Friedl & Sulla-Menashe, 2019). Furthermore, the shapefile containing the

Table 1 Description of dataset collected from multiple sources.

Category Attributes (Resolution) Time steps Source

Yield statistics Average yield (maund/acre) Annual Crop reporting service, Government of the Punjab, Pakistan
(crs.agripunjab.gov.pk)

Satellite images EVI (1,748 × 1,317) 16 days MODIS dataset MOD13A2.061 (GEE)

FPAR (1,748 × 1,317) 8 days MODIS dataset MOD15A2H.061 (GEE)

LAI (1,748 × 1,317) 8 days MODIS dataset MOD15A2H.061 (GEE)

Climate data Clear sky surface PAR total (W/m2) Daily power.larc.nasa.gov

All sky surface UV index (dimensionless)

Temperature at 2 m (C)

Dew/Frost point at 2 m (C)

Wet bulb temperature at 2 m (C)

Earth skin temperature (C)

Temperature at 2 m Maximum (C)

Temperature at 2 m Minimum (C)

Specific humidity at 2 m (g/kg)

Relative humidity at 2 m (%)

Precipitation corrected (mm/day)

Surface pressure (kPa)

Wind speed at 2 m (m/s)

Wind direction at 2 m (degrees)

Soil data Surface soil wetness Daily Power.larc.nasa.gov

Root zone soil wetness

Profile soil moisture

Auxiliary data Crop mask Annual MODIS land cover type
MCD12Q1.006 (GEE)

Shape file of Pakistan (Tehsil-wise) – Pakistan-subnational administrative boundaries (https://data.humdata.
org/dataset/cod-ab-pak?)
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boundaries of all tehsils in the Gujranwala district was acquired from the Pakistan
subnational administrative boundaries dataset sourced by ‘The Humanitarian Data
Exchange’ (Humanitarian Data Exchange, 2022).

Data preprocessing
This study integrates two data modalities-satellite data in the form of images and
meteorological and soil data in numeric format–the preprocessing approach differs for
each. All imagery data underwent preprocessing using Java scripting in the GEE platform,
whereas numerical data were preprocessed manually.

Initially, all data was filtered for the time period spanning from 2000 to 2021, especially
for the months from April to November. Subsequently, the region geometry was applied to
the image data to encompass all tehsils of the Gujranwala district, as obtained from the
Pakistan subnational administrative boundaries. Nearest-neighbor interpolation was also
employed to address missing data within the LAI and FPAR collections. The EVI
collection was already complete, eliminating the need for interpolation. However, some
samples of meteorological and soil data were also missing; therefore, interpolation was
performed to identify missing values. The interpolation is formulated as given in Eq. (4).

Z ¼ f xi; yið Þ � f xi�1; yi�1ð Þ for imagery data
f xið Þ � f xi�1ð Þ for numerical data

�
(4)

where i represents missing sample and i-1 represents the previous sample of the missing
sample.

Moreover, meteorological and soil data were acquired on a daily basis, while LAI and
FPAR are composites of 8 days, and EVI is a composite at a 16-day interval. In this study,
all datasets were aligned at a 16-day interval, resulting in 13 time-steps. The start and end
dates of 13 time-steps used in this study for leap and non-leap years are illustrated in
Table 2.

A crop mask (MCD12Q1) was applied to all satellite images-EVI, LAI, FPAR images-
extracting only the crop cultivated areas within the region. Before applying the mask, they
went through interpolation. Despite LAI and FPAR inherently comprising cultivated areas
only, an additional crop mask was applied to enhance precision. It is noteworthy that
approximately 84% of the cultivated land in Gujranwala is dedicated to rice cultivation,
making rice the dominant crop in the Kharif season. Given this dominance, rice crop
masking was not applied, as it would not have a significant impact. The applied
preprocessing steps of this study are outlined in Fig. 2.

Model architecture
This study proposes a hybrid of two deep learning models: (i) ResNet50 for feature
extraction and feature selection of satellite imagery, and (ii) three distinct architectures of
LSTM for predicting rice yields.

ResNet50 architecture
The ResNet50 architecture is a transfer learning based convolutional neural network
(CNN) comprising 50 layers. It includes initial layers, residual blocks, and final layers. The
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residual blocks, which consist of convolutional and identity blocks, allow the network to
learn significantly deeper patterns without encountering the vanishing gradient problem.
This problem arises when the gradient of the loss function becomes very small relative to
the network parameters, which propagates backward through the network during training,
severely slowing down the training process and making effective training difficult.
ResNet50 mitigates this problem by employing skip connections in the residual blocks,
allowing information to bypass one or more layers, thereby introducing the concept of
residual learning. This pre-trained model has been trained on the ImageNet dataset
(Koonce, 2021).

In this study, the weights from ImageNet were utilized for feature extraction. Following
the extraction of features, this model was employed to select 1,000 most prominent
features for each image by tailoring the last layer of the ResNet50 model. These selected
features of satellite images are fed to the LSTMmodel. The architecture of ResNet50 model
utilized in this study (Mukherjee, 2022) is depicted in Fig. 3.

LSTM architecture
LSTM model is a type of recurrent neural network (RNN) designed to handle both spatial
and temporal details. Unlike conventional RNN models that struggle with the vanishing
gradient problem, LSTMs use gate functions to effectively learn and process long
dependencies in sequential data (Yu et al., 2019). A LSTM cell comprises several key
components: the cell state which serves as long-term memory, and three gates–the input
gate, the forget gate, and the output gate. The input gate controls which new information
should be updated or added to the cell state, the forget gate controls which information
from the previous cell state should be removed or discarded. And the output gate controls
the output based on the current cell state. The cell state is updated by combining the
retained information from the previous state with new values, modulated by the input gate,

Table 2 Time-steps at 16-day interval used in this study.

Intervals For non-leap years For leap years

1 24 April–9 May 23 April–8 May

2 10 May–25 May 9 May–24 May

3 26 May–10 June 25 May–9 June

4 11 June–26 June 10 June–25 June

5 27 June–12 July 26 June–11 July

6 13 July–28 July 12 July–27 July

7 29 July–13 August 28 July–12 August

8 14 August–29 August 13 August–28 August

9 30 August–14 September 29 August–13 September

10 15 September–30 September 14 September–29 September

11 1 October–16 October 30 September–15 October

12 17 October–1 November 16 October–31 October

13 2 November–17 November 1 November–16 November
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and by discarding unnecessary information as directed by the forget gate. The insights into
a LSTM cell are depicted in Fig. 4.

Proposed configurations of the ResNet50-LSTM
The satellite images undergo initial processing through the ResNet50 model, which
extracts features from them using pre-trained weights of ImageNet. Subsequently, 1,000
most contributing features against each image were selected. These selected features are
then input into proposed LSTM model for rice yield prediction. Conversely, numerical
environmental data is directly fed into the LSTMmodel without undergoing the ResNet50
model.

This article proposes three configurations of the LSTM architecture for rice yield
prediction, as depicted in Fig. 5. In all configurations, the features of satellite images–EVI,
LAI, FPAR images–extracted from the ResNet50 model, and environmental data–climate

Figure 2 Pre-processing flow on datasets. Satellite imagery, crop mask © 2023 Google Earth Engine; Dataset source: MOD13A2, MOD15A2H;
NASA LP DAAC at the USGS EROS center; Region geometry © 2023 Google Earth Engine; Dataset source: Pakistan-Subnational Administrative
Boundaries; The Humanitarian Data Exchange; CC BY 4.0, https://creativecommons.org/licenses/by/4.0; Climate and soil data © POWER, 2020.

Full-size DOI: 10.7717/peerj-cs.2219/fig-2
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and soil data–are input to five separate cells of LSTM at layer 1. Each LSTM cell
encompasses various internal components, such as input, forget, and output gates, and a
memory cell or cell state. The capacity and complexity of LSTM cell are measured in terms
of units. In proposed architectures, all the LSTM cells are configured with 64 units, except
for the cell that receives soil data, which has 32 units. Because soil data has less
dimensionality as compared to other data.

In the first configuration shown in Fig. 5A, all the LSTM cells are independent. The
results of these cells are then concatenated, followed by a dropout layer with a 20% dropout
of neurons to reduce overfitting. Finally, a dense layer is set up to predict rice yield. In the
second configuration shown in Fig. 5B, all five cells of LSTM at layer 1 are dependent on
the result of their previous cell. For instance, LSTM cell 1 receives the EVI features, LSTM
cell 2 receives the FPAR features along with the result of LSTM cell 1, and so on. The rest of
the architecture remains consistent with Fig. 5A. In the third proposed configuration
illustrated in Fig. 5C, all LSTM cells at layer 1 are interconnected and dependent on the
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Figure 3 Architecture of ResNet50. Full-size DOI: 10.7717/peerj-cs.2219/fig-3

Figure 4 Insights into the LSTM cell. Full-size DOI: 10.7717/peerj-cs.2219/fig-4
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result of their previous cell. Additionally, another LSTM layer is added after the dropout
layer, while the rest of the architecture remains unchanged. The changes in the layer
architecture of the three configurations, as elaborated above, are highlighted with red boxes
in Fig. 5.

The LSTM and ResNet50 architectures are developed within the Spyder notebook
environment using the Keras (Ketkar, 2017), Numpy (McKinney, 2013), TensorFlow
(Singh & Manure, 2020), and Sklearn (McKinney, 2013) libraries. The Adam optimizer is
used to facilitate an adaptive learning rate. The proposed model is evaluated over ten-fold
cross validation, and 100 epochs with a batch size set to 32.

Evaluation methods
Obtaining real-world future data for validating the proposed model is not possible.
Therefore, the evaluation of the proposed model is conducted using a k-fold cross
validation technique. Initially, the dataset and yield values are shuffled as a group. The
entire dataset is then divided into k equal-sized subsets referred to as folds. The model is
trained and validated k times, utilizing a different fold as the validation set at each iteration
(Anguita et al., 2012). In this study, k is set to 10. Various evaluation metrics are computed
at each fold to assess the model’s performance. Subsequently, the average of each
evaluation metric across all folds is calculated to determine the generalized performance of
the model.

Given that rice yield prediction involves predicting numerical outcomes, it is inherently
a regression problem. Thus, the evaluation metrics utilized in this study include the
coefficient of determination (R2), root mean square error (RMSE), mean absolute error

Figure 5 Three configurations of proposed LSTM model. (A) Model configuration 1: single LSTM layer without interconnected cells, (B) model
configuration 2: single LSTM layer with interconnected cells, (C) model configuration 3: dual LSTM layers with interconnected cells.

Full-size DOI: 10.7717/peerj-cs.2219/fig-5

Aslam and Farhan (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2219 11/26

http://dx.doi.org/10.7717/peerj-cs.2219/fig-5
http://dx.doi.org/10.7717/peerj-cs.2219
https://peerj.com/computer-science/


(MAE), mean bias error (MBE), mean relative error (MRE), mean absolute percentage
error (MAPE), and Willmott’s index of agreement (d). These metrics are specifically
designed to evaluate the performance of regression models, and are particularly chosen for
this study as they collectively offer a well-rounded evaluation of different aspects of model
performance, providing a comprehensive assessment of the model’s predictive accuracy
and reliability. These metrics are formulated in equations from Eqs. (5) to (11),
respectively.

R2 ¼ 1�
Pn

i¼1 Ri � Pið Þ2Pn
i¼1 Ri �meanRð Þ2 (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Ri � Pið Þ2
n

s
(6)

MAE ¼
Pn

i¼1 Ri � Pij j
n

(7)

MBE ¼
Pn

i¼1 Ri � Pið Þ
n

(8)

MRE ¼ 1
n

Xn
i¼1

Ri � Pi
Ri

����
���� (9)

MAPE ¼ 1
n

Xn
i¼1

Ri � Pi
Ri

����
����� 100 (10)

d ¼ 1�
Pn

i¼1 Ri � Pið Þ2Pn
i¼1 Ri �meanRj j þ Pi �meanRj jð Þ2 (11)

where n denotes the total number of samples, Ri represents the reported or observed value,
Pi represents the predicted value determined by the model, and meanR indicates the mean
of all reported values. R2 determines the proportion of variance in predicted values. It
measures how well the data fit the regression model. The R2 values vary from 0 to 1, with
one indicating the perfect model fit. RMSE is the square root of the average of squared
differences between reported and predicted values. It provides a clear measure of the model
accuracy and is sensitive to large errors. MAE characterizes the average absolute
differences between reported and predicted values, and provides a straightforward measure
of prediction accuracy. Smaller values of RMSE, and MAE depicts the better model
performance. MBE indicates whether the model tends to underpredict or overpredict. A
positive MBE suggests overprediction, whereas a negative MBE suggests underprediction.
MRE represents the average of the absolute values of the differences between predicted and
reported values, and is useful for understanding the average relative size of the errors.
MAPE provides a percentage-based measure of the average prediction error. Willmott’s d
measures the agreement between reported and predicted values, considering both the
mean square error and variance of the reported values. It is a comprehensive measure that
combines aspects of correlation and error magnitude. d ranges from 0 to 1, where one
indicates perfect agreement between reported and predicted values, and suggest better
model performance.
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RESULTS
This section is organized into two subsections: the description of feature sets and their
integration, and the evaluation of proposed LSTM architecture across the selected feature
sets.

Feature sets and their integration
The LSTM accepts two modalities of data: imagery data and numerical data. The features
from imagery data are extracted from proposed tailored ResNet50 model. One complete
input sample comprises of five sets of input features: (i) a set of 1,000 features extracted
from EVI images, (ii) a set of 1,000 features extracted from LAI images, (iii) a set of 1,000
features extracted from FPAR images, (iv) a set of 14 climate variables, and (v) a set of 3
soil variables. Each feature set is fed into a separate cell of the LSTM model at layer 1.

For this study, all five aforementioned basic feature sets are utilized. Additionally,
various combinations of numerical and imagery data are examined, including a
combination of numerical data, combinations of one satellite imagery data with numerical
data, combinations of two imagery datasets, combinations of two imagery datasets with
numerical data, combination of three imagery datasets, and a combination of all possible
features. This results in 17 distinct combinations of feature sets being input into the
proposed model. The feature sets and their descriptions are detailed in Table 3.

Evaluation of ResNet50-LSTM configurations across selected feature
sets
This study focuses on both imagery and numerical data. Satellite variables–EVI, LAI,
FPAR–are regarded as imagery data, whereas climate and soil variables are expressed as
numerical values. Features from all imagery data are extracted using ResNet50
architecture. A total of 17 different combinations of input feature sets are created and fed
into three proposed configurations of the LSTMmodel. Three configurations are presented
to determine the effect of addition and connection of different layers on prediction
outcomes. These configurations are briefly explained as follows:

Model configuration 1: single LSTM layer without interconnected cells

In this configuration, there is a single LSTM layer, and each LSTM cell operates
independently, characterized by minimal complexity. The model architecture is illustrated
in Fig. 5A.

Model configuration 2: single LSTM layer with interconnected cells
In this configuration, there is a single LSTM layer, and the LSTM cells within this layer are
interconnected. The rest of the architecture is identical to that of model configuration 1. It
allows the model to capture complex dependencies. The model architecture is illustrated in
Fig. 5B.

Model configuration 3: dual LSTM layers with interconnected cells
In this configuration, a deeper LSTM architecture is introduced having two LSTM layers.
In the first LSTM layer, which receives the input, all cells are interconnected. It captures
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initial temporal patterns and feeds them into the second layer, enhancing the model’s
capacity to learn hierarchical representations of sequential data. The rest of the
architecture is identical to the model configuration two. The model architecture is
illustrated in Fig. 5C.

Table 4 presents the validation results of all selected 17 feature sets for three proposed
configurations of the model using R2, RMSE, MAE, MBE, MRE, MAPE in percentage, and
Willmott’s index of agreement indicated by d. The bold entries show the best results
among three model configurations and 17 feature sets.

The LSTM cells in the first layer are tailored according to feature sets. For instance, if a
feature set contains only one set of features, then only one LSTM cell is employed in layer 1
to receive input. Consequently, for FS01–FS05, the model configurations 1 and 2 had the
same effect and produced similar results because both configurations incorporate a single
LSTM cell in layer 1, thereby diminishing the effect of interconnections between cells.

Figure 6 demonstrates the comparative analysis of all feature sets across the three
configurations of the proposed model. It is evident from Fig. 6A that model configuration
having dual LSTM layers yield higher R2 values, except for FS04 and FS05, which consist of
climate and soil variables respectively. These feature sets have a lower number of features,
and do not produce satisfactory results. In model configuration 3, among all feature sets,
FS14 demonstrates the highest R2. Similarly, Willmott’s index of agreement for third
model configuration surpasses other configurations for all feature sets as illustrated in
Fig. 6B. In particular, FS14 exhibits the highest value of d, signifying superior model
performance of third model configuration for EVI, FPAR, climate, and soil variables.

Table 3 Feature sets used in this study.

Serial no. Feature set Description of features

1 FS01 EVI

2 FS02 FPAR

3 FS03 LAI

4 FS04 Climate variables

5 FS05 Soil variables

6 FS06 EVI + FPAR

7 FS07 EVI + LAI

8 FS08 LAI + FPAR

9 FS09 Climate + Soil

10 FS10 EVI + Climate + Soil

11 FS11 FPAR + Climate + Soil

12 FS12 LAI + Climate + Soil

13 FS13 EVI + FPAR + LAI

14 FS14 EVI + FPAR + Climate + Soil

15 FS15 EVI + LAI + Climate + Soil

16 FS16 LAI + FPAR + Climate + Soil

17 FS17 EVI + LAI + FPAR + Climate + Soil
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Figure 6 Comparative analysis of all three configurations of proposed model with respect to feature sets. (A) Comparative R2, (B) comparative
Willmott’s index of agreement ‘d’, (C) comparative RMSE, (D) comparative MAE, (E) comparative MBE, (F) comparative MRE, and (G) com-
parative MAPE (%). Full-size DOI: 10.7717/peerj-cs.2219/fig-6
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As depicted in Figs. 6C, 6D, 6F, and 6G, RMSE, MAE, MRE and MAPE of third model
configuration decline as compared to other model configurations for all feature sets
indicating satisfactory performance of model. But, for FS05, it did not perform well.
However, for model configuration 3, FS14 exhibits the lowest values of RMSE, MAE, MRE
and MAPE among all feature sets. Figure 6E illustrates that some feature sets result in
underpredictions, while other lead to overpredictions.

However, it is observed that model configuration having dual LSTM layers with
interconnected cells demonstrates the best performance among all configurations.
Additionally, among the satellite variables (EVI, LAI, and FPAR), FPAR, represented as
FS02, provides higher accuracy compared to the other satellite variables i.e., R2 = 0.9305.
The combination of EVI and FPAR, represented as FS06, outperforms other combinations
of two satellite variables i.e., R2 = 0.9832. For all satellite variables excluding environmental
data, represented as FS13, results drop to R2 = 0.9702. This exhibits that EVI and FPAR
give favorable results when combined, particularly when integrated with climate and soil
variables as demonstrated by FS14 with R2 = 0.9903. The model operates effectively within
100 epochs and exhibits convergence. The convergence of model configuration 3 is
illustrated in the form of a loss vs. epochs plot for each feature set in Fig. 7.

Figure 8 presents scatter plots derived from reported values and predicted values
produced by the third model configuration for all 17 feature sets. It is noticed that for FS04,
FS05, and FS09, the model exhibited poor performance.

Summarizing, the model configuration having dual LSTM layers with interconnected
cells outperforms other proposed configurations for all feature sets. Additionally, feature
set FS14, which includes EVI, FPAR, climate, and soil variables, attains the best results
among all feature sets. On the other hand, feature sets FS04 and FS05 performed the worst,
likely due to their limited number of features.

DISCUSSION
This study introduces a fusion of deep learning models, combining ResNet50 and LSTM,
to predict rice yield. The model incorporates multi-modal data collected from various
sources including three remotely sensed satellite variables: EVI, LAI, and FPAR, along with
meteorological and soil parameters. The satellite images undergo feature extraction using
the ResNet50 model as it is known for its effectiveness in feature extraction because of its
residual learning mechanisms, generalization capabilities, and balanced complexity.
Subsequently, these features, along with other environmental parameters are fed into the
proposed LSTM model. LSTM is employed as a predictive model because it is a powerful
sequence modeling technique. This study presents three configurations of the ResNet50-
LSTM model. The architecture of each configuration slightly differs from each other. The
ResNet50 excels at capturing hierarchical spatial features from satellite images, whereas
LSTM can model temporal dependencies. The hybrid ResNet50-LSTM architecture
leverage both spatial features (extracted by ResNet50) and temporal dynamics (modeled by
LSTM), thus combining the strengths of both approaches.

The study concludes that the configuration with two LSTM layers, where all LSTM cells
are connected to the previous cells of that layer, gives optimal results and converges
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Figure 7 Loss vs. epochs plot of model configuration having dual LSTM layers with interconnected
cells for feature set FS01–FS17. Full-size DOI: 10.7717/peerj-cs.2219/fig-7
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Figure 8 (A-Q) Scatter plots of reported or actual values vs. predicted values computed from
proposed model configuration 3 having dual LSTM layers with interconnected cells for feature set
FS01–FS17. Full-size DOI: 10.7717/peerj-cs.2219/fig-8
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quickly. The model was trained on a corei5 processor and 8-GB RAM. But, for feature sets
FS13 (EVI, LAI, FPAR) and FS19 (all possible combinations), the model fails to operate on
8-GB RAM, due to their large number of trainable parameters and computational
complexity. Consequently, for these combinations, we had to work with 16-GB RAM.

The study identifies that the FPAR satellite variable significantly contributes to yield
prediction compared to other variables. Combining FPAR with EVI enhances results,
while the combination of all satellite variables (EVI, LAI, FPAR) shows a slight drop.
However, the best results are obtained when FPAR and EVI are combined with
meteorological parameters and soil variables. The findings also highlight that
meteorological and soil variables alone do not contain sufficient hidden features for
effective yield prediction. However, when combined with satellite data especially EVI and
FPAR, they contribute to achieving optimal results.

For rice yield prediction, numerous studies have employed ML models (Siyal,
Dempewolf & Becker-Reshef, 2015; Son et al., 2020; Guo et al., 2021), neural networks (Chu
& Yu, 2020), Attention based LSTM (AtLSTM) and transformer model (Liu et al., 2022),
CNN, and LSTM model (Cao et al., 2021; Zhou, Xu & Chen, 2023). Some investigations,
such as those by Guo et al. (2021) and Fu, Tian & Zhan (2023), have delved into
understanding the impact of phenological stages on rice yield. On the other hand, several
studies have traditionally relied on explicit hand-crafted feature engineering in their ML
approaches. Our research introduces a unique approach leveraging deep learning. We
employ LSTM and transfer learning-based ResNet50 within an automated end-to-end
prediction framework. Notably, no previous studies have used the combination of
ResNet50 and LSTM for rice yield prediction. Furthermore, ResNet50 has not been utilized
for feature extraction in this context. Additionally, our LSTM layer architecture is entirely
different from the frameworks presented in prior studies, offering an innovative
configuration that enhances the prediction accuracy and efficiency. A distinctive aspect of
our study is the utilization of pre-calculated remotely sensed indices of satellite images, a
departure from certain studies that undertake explicit operations for index extraction.
Despite reported accuracies in existing studies using deep learning approaches reaching up
to 93%, our proposed approach signifies a substantial leap forward, achieving an
impressive 99% accuracy. In Table 5, a comprehensive summary of state-of-the-art studies
is provided, with bold entries in the “Predictive Model Used” column emphasizing the
superior performance of their respective methodologies. The last entries in the table
present a concise overview of our proposed model, highlighting its advancements and
remarkable accuracy.

Within the scope of this study, our satellite image preprocessing involves a series of
critical steps aimed at optimizing the satellite input data for our predictive model. The
process incorporates region geometry application, land cover masking, interpolation
techniques, and mapping, culminating in the transformation of the raw data into 16-time
steps for comprehensive analysis. Notably, our approach distinguishes itself from some
studies (Fernandez-Beltran et al., 2021; Son et al., 2020) by opting not to employ cloud
masking during preprocessing. Our model is deliberately trained with the inclusion of
cloud effects. The remarkable performance metrics of our study, which were achieved
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without the explicit cloud masking technique, reflects the outcome of this distinctive
approach, demonstrating an R2 of 0.9903, RMSE of 0.1854, and Willmott's index of
agreement (d) reaching 0.9536. This distinctive aspect of our approach highlights the
resilience of our model, by demonstrating its capability to effectively handle cloud-affected
satellite imagery.

The EVI satellite index MOD13A2 has been employed by certain studies in the
literature (Cao et al., 2021; Zhou, Xu & Chen, 2023; Liu et al., 2022), obtaining R2 values up

Table 5 Comparison of our proposed approach with state-of-the-art studies. Entries in bold indicate the model that performs best. In the last
column, the results of the best respective model are given.

Studies Targeted
region

Time
coverage

Input parameters Pre-processing techniques Predictive
model used

Best results

Zhou, Xu &
Chen (2023)

Hubei
province of
China

2000–2019 Yield and boundary data,
satellite data (EVI, SAVI,
GPP), weather data

Masking, Conversion of remote sensing images
to normalized histogram, use dummy variable
to represent spatial heterogeneity

CNN,
Convolutional
LSTM,
CNN-LSTM

R = 0.934
RMSE = 89878
MAE = 52802

Fu, Tian & Zhan
(2023)

Maha
Sarakham,
north-
eastern
Thailand

– Optical images (MODIS),
SAR images (Sentinel-1),
ground-truth

Extraction of NDVI and EVI, Smoothing, making
logistic curves, and then derived variables for
regression model

RF regression
model

R2 = 0.95
RMSE = 0.06 ton/
ha

Liu et al. (2022) Northwest
India

2001–2016 Yield statistics, climate
indicators, satellite data
(NDVI, EVI, NIRv, SIF)

Mapping of land cover type AtLSTM,
Informer
model

R2 = 0.81
RMSE = 0.41
(t/ha)

Cao et al. (2021) China 2001–2015 Satellite variables (EVI,
SIF), soil properties,
weather features

Pearson correlation analysis (PCA) for extracting
and combining features

LASSO,
ML-RF,
DL-LSTM

R2 = 0.87
RMSE = 298.11
(kg/ha)

Fernandez-
Beltran et al.
(2021)

Nepal 2006–2014 Sentinel-2, Climate data,
soil data, ground truth

Apply additional bands i.e., NDVI and cloud
masks to the sentinel-2 images

3D CNN RMSE = 89.03 (kg/
ha)

Guo et al. (2021) South China 1981–2010 Rice phenology, climate
data, yield data

Partial correlation analyses to remove compound
effects, made variable combinations, selection
of combinations to get impact of preseason

Back
propagation,
SVM, RF

R2 = 0.33
RMSE = 737

Chu & Yu (2020) China 2015–2017 Yield data, area data,
meteorology data

Missing value interpolation, data normalization,
hot code assignment to regions on basis of area
data, descriptive statistics of data

BBI-Model RMSE = 0.0057
MAE = 0.0044
MBE = −0.0062
MRE = 0.5784

Son et al. (2020) Taiwan 2000–2018 Yield statistics, satellite data
(NDVI)

Masking using blue band of satellite images,
linear interpolation

RF, SVM RMSE = 8.7%
MAE = 5.6
Willmott’s d =
0.95

Siyal,
Dempewolf &
Becker-Reshef
(2015)

Larkana,
Pakistan

2006–2013 Conventional crop
reporting data, satellite
images (NDVI, RVI)

Classification of rice/non-rice areas, calculation
of missing data, and vegetation indices,
conversion of Landsat digital numbers to top-
of-atmosphere reflectance

Bagged seven
decision trees
(majority vote)

R2 = 0.925
RMSE = 80726 t
MBE = -85016 t

Our proposed
approach

Gujranwala,
Pakistan

2000–2021 Yield statistics, satellite
variables (EVI, FPAR,
LAI), meteorological and
soil parameters

Filtering, interpolation, region geometry, land
cover masking, unification of data to 16 time-
steps

ResNet50-
LSTM

R2 = 0.9903
RMSE = 0.1854
MAE = 0.1384
MBE = 0.0701
MRE = 0.0062
MAPE = 0.62%
Willmott’s d =
0.9536
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to 0.87. Moreover, previous studies have not employed FPAR for rice yield prediction,
despite its demonstrated effectiveness in predicting autumn crop yield with an R2 of 0.973
(Dang et al., 2021). Similarly, LAI has been proven to be effective in predicting wheat yield,
incorporating vegetation temperature condition index (VTCI) and phenological stages,
which showcases optimal results (Tian et al., 2021). Our findings emphasize the significant
impact of FPAR on rice yield prediction, revealing its effectiveness over LAI.

Furthermore, a hybrid model combining ResNet and LSTM has been utilized for the
evaluation of growth status under drought and heat stress, reaching around 97% accuracy
(Xing et al., 2023). This research asserts an entirely unique ResNet50-LSTM layer
architecture achieving 99.03% accurate results for rice yield prediction and strengthen the
study.

These findings highlight the significance of our research by introducing a scalable and
cost-effective methodology for predicting rice yields across large geographic regions in a
timely manner. The approach is cost-effective as it utilizes remotely sensed, readily
available real-time data, thereby reducing the requirement for extensive financial
resources, and excessive operational costs. By utilizing publicly available multi-source data,
our approach enhances the accessibility and applicability, ensuring practicality in diverse
agricultural landscapes. The adaptability and effectiveness of our model hold promise for
influencing agricultural practices on a global scale, promoting more informed decision-
making and resource management strategies.

CONCLUSION
This study introduces and evaluates three configurations of a deep learning-based
predictive model that seamlessly integrates ResNet50 and LSTM models. The model is
trained using multi-modal data from diverse sources, encompassing satellite data such as
EVI, FPAR, and LAI indices, as well as climate and soil data. Our findings imply that the
LSTM model configuration featuring two LSTM layers with interconnected cells emerges
as the most efficient among the proposed configurations, delivering optimal results with
rapid convergence during training. Exploring various feature combinations
demonstrates that the amalgamation of FPAR, EVI, climate, and soil variables achieves
the highest accuracy rate of 99% with minimal error rates. FPAR emerges as a key
influencer in rice yield predictions, highlighting its significant impact on the model's
performance. This research presents a cost-effective and scalable approach leveraging
readily available real-time remotely sensed data for accurately predicting rice yields
across vast regions, with potential for global utilization in crop yield estimation. These
outcomes hold practical applications in crop management and planning, precision
agriculture, climate change adaption, and risk assessment and management. Notably,
our focus on MODIS satellite imagery lays the groundwork for future undertakings.
Because of the high spatial resolution of Sentinel or Landsat products, we plan to extend
this work by encompassing these products, thereby broadening the scope of our
predictive model.
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Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/AqsaAsla/Enhancing-Rice-Yield-Prediction-code.git
- AqsaAsla. (2024). AqsaAsla/Enhancing-Rice-Yield-Prediction-code: Initial Release

(0.1.0). Zenodo. https://doi.org/10.5281/zenodo.12244347
The raw data is available at the following sites:
- Yield labels: Rice Estimates, Crop Reporting Service, Government of the Punjab,

https://crs-agripunjab.punjab.gov.pk/node/165#overlay-context=reports
- The MOD13A2 v061, EVI: Didan, K. 2021. MODIS/Terra Vegetation Indices 16-Day

L3 Global 1km SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed
Active Archive Center. https://doi.org/10.5067/MODIS/MOD13A2.061

- The MOD15A2H v061, LAI, FPAR: Myneni, R., Knyazikhin, Y., Park, T. 2021.
MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061 [Data set].
NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.
5067/MODIS/MOD15A2H.061

- Climate and Soil data: The POWER Project, NASA, https://power.larc.nasa.gov/data-
access-viewer/

- Auxiliary data, MCD12Q1 v006, Land cover type product: Friedl, M., Sulla-Menashe,
D. 2019. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN
Grid V006 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center.
https://doi.org/10.5067/MODIS/MCD12Q1.006
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- Shape files: Pakistan-Subnational Administrative Boundaries, The Humanitarian Data
Exchange, https://data.humdata.org/dataset/cod-ab-pak?

The yield data collected from Crop Reporting Service, Processed climate and soil data,
and Google Earth Engine Java Scripts for the collection and processing of satellite imagery
available at GitHub and Zenodo:

- https://github.com/AqsaAsla/Enhancing-Rice-Yield-Prediction-Data.git
- AqsaAsla. (2024). AqsaAsla/Enhancing-Rice-Yield-Prediction-Data: Initial Release

(0.1.0). Zenodo. https://zenodo.org/records/12301300.
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