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ABSTRACT

Piwi-interacting RNA (piRNA) is a type of non-coding small RNA that is highly
expressed in mammalian testis. PIRNA has been implicated in various human
diseases, but the experimental validation of piRNA-disease associations is costly and
time-consuming. In this article, a novel computational method for predicting
piRNA-disease associations using a multi-channel graph variational autoencoder
(MC-GVAE) is proposed. This method integrates four types of similarity networks
for piRNAs and diseases, which are derived from piRNA sequences, disease
semantics, piRNA Gaussian Interaction Profile (GIP) kernel, and disease GIP kernel,
respectively. These networks are modeled by a graph VAE framework, which can
learn low-dimensional and informative feature representations for piRNAs and
diseases. Then, a multi-channel method is used to fuse the feature representations
from different networks. Finally, a three-layer neural network classifier is applied to
predict the potential associations between piRNAs and diseases. The method was
evaluated on a benchmark dataset containing 5,002 experimentally validated
associations with 4,350 piRNAs and 21 diseases, constructed from the piRDisease
v1.0 database. It achieved state-of-the-art performance, with an average AUC value
of 0.9310 and an AUPR value of 0.9247 under five-fold cross-validation. This
demonstrates the method’s effectiveness and superiority in piRNA-disease
association prediction.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms, Data
Mining and Machine Learning, Neural Networks

Keywords piRNA-disease association prediction, Graph variational autoencoder, Graph
convolution network, Homogeneous similarity networks, Multi channel

INTRODUCTION

The PIWI-interacting RNAs (piRNAs) are non-coding small RNAs with 24-32
nucleotides (nt) (Ghosh et al., 2022), which interact with P-element-induced wimpy testes
(PIWTI) genes among proteins of the Argonaute family (Yang, Cho & Zheng, 2020). Recent
research evidence demonstrates that piRNA plays an important role in many biological
processes such as maintaining germline DNA integrity (Wang et al., 2023), epigenetic
regulation (Sun, Lee ¢ Li, 2022), transcriptional silencing, and heterochromatin formation
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(Zhao et al., 2019). Biological experiments also show that piRNA becomes a significant
biomarker for the diagnosis of diseases thanks to the abnormal expression of piRNAs and
PIWI proteins in various diseases (Weng, Li ¢~ Goel, 2019). For example, piR-38240, piR-
25783, piR-40666, and piR-28467 are valuable to the diagnosis of Alzheimer’s disease
(Olufunmilayo & Holsinger, 2023); piR-54265 level is positively correlated with tumor
tissue level in the serum of human with colorectal cancer from the research of Mai et al.
(2020); the level of piR-26399 in the serum of male subfertility patients was significantly
higher than in healthy males as discovered by Kumar et al. (2019); piR-26399 could be used
as a potential biomarker of male subfertility; piR-823 plays a vital role in many cancer
diseases (Maleki Dana, Mansournia & Mirhashemi, 2020; Wang et al., 2021, 2022b; Wei,
Ding & Liu, 2020). Therefore, finding disease-related piRNAs will contribute to the
diagnosis of these diseases.

Currently, a number of piRNAs have been discovered, and large-scale data sources
related to piRNA, such as piRNAdb (Piuco & Galante, 2021), piRNABank (Sai Lakshmi ¢
Agrawal, 2008) and piRBase (Wang et al., 2022a, 2019a), have been established, Such
datasets provide abundant information related to piRNA, including genomic element,
physicochemical property, and the sequence information. Databases of piRNA-disease
association verified by biological experiments have also been built. For example,
Muhammad et al. (2019) built the database of piRDisease by collecting 7,939
experimentally verified piRNA-disease associations with 4,796 piRNAs and 28 diseases
from more than 2,500 published biomedical literature; Zhang et al. (2020) built a database
named piRPheno through a manual extract method on opened publications to obtain the
association between piRNAs and diseases. It contains 9,057 experimentally verified
associations between 474 piRNAs and 204 diseases. On the other hand, building such data
sources is always costly and time-consuming with complex biological experiments (Chen
et al., 2019; Ernst, Odom ¢» Kutter, 2017). To address the problem, computational methods
for identifying piRNA-disease association have been put forward continuously in recent
years. One type of research is to treat the association prediction as a classification task. For
instance, Zheng et al. (2020a) introduced a computational model named APDA based on
Random Forest (RF) to find disease-related piRNAs. In their model, two groups of
comparative experiments were set to study the impact of features on prediction
performance. One group obtained the feature representation of piRNA and disease
through collaborative filtering (CF), while another group measured the similarity of
piRNA sequence as well as the disease semantics for feature construction. The experiment
on the benchmark dataset piRDisease V1.0 The experiment on the benchmark dataset
piRDisease V1.0 (Muhammad et al., 2019) showed that the latter one outperformed the
former one, indicating that those features was effective to the prediction task. Wei, Xu ¢
Liu (2021) investigated the impact of the high-quality negative samples to the prediction
task. They also proposed a computational method called iPiDi-PUL, which used positive
unlabeled learning (PUL) (Claesen et al., 2015; Mordelet ¢ Vert, 2014) to identify the
potential association between piRNA and disease. Such problem can also be viewed as a
link prediction or recommendation task, where piRNAs related to a disease are always
ranked for choosing. For example, Zhang, Hou ¢ Liu (2022) developed iPiDA-LTR, a
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learning To rank (LTR) model, to identify the potential association between piRNA and
disease. It uilitized gradient increasing decision tree to acquire feature representations of
piRNAs and diseases, and then employed multiple models, i.e., Random Forest and
support vector machine (SVM), to compute the association score between the unknown
piRNA and each known disease.

In recent years, more and more deep learning computational methods have been
introduced into this research field. Wei, Ding ¢» Liu (2020) utilized a convolutional neural
network (CNN) model to get features of piRNA and disease and adopt a two-step PUL
method for association prediction. At the first step, an SVM is employed to get high-
quality negative samples, while these samples and known positive samples were fed into
another SVM classifier to predict potentially disease-related piRNAs in the second step.
Ali, Tayara ¢ Chong (2022) utilized one-hot encoding method to encode piRNA sequences
and disease semantics, and employed CNN to learn feature representation. In addition,
some researchers also use graph embedding methods to obtain the features of the piRNA-
disease association network. For example, Zheng et al. (2020b) proposed to utilize graph
attention network (GAT) (Velickovic et al., 2017) to learn the feature representation of
piRNAs and diseases. Hou, Wei ¢» Liu (2022) introduced a multiple-view learning
framework by graph convolution network (GCN) (Kipf & Welling, 2016a). They
constructed two GCN models, one was Asso-GCN, which learned feature representation of
association information from heterogeneous nodes in the association network, and the
other was Sim-GCN, which captured similarity features from homogeneous nodes of
piRNA or disease. The experimental results showed that graph models helped capture
non-linear association information over piRNA-disease association networks.

On the other hand, although existing graph-based methods achieve good performance,
they still have limitations. Firstly, it is challenging to fuse multi-layer similarity
information between piRNAs and between diseases. Current methods always combined
similarity features with an average operation (Wei, Xu ¢ Liu, 2021; Ji et al., 2021), which
may be detrimental to those important association information of piRNAs and diseases.
Secondly, current representation learning methods always employ sophisticated neural
networks such as CNN and GAT, which requires rich labeled data, whereas piRNA data
are sparse and imbalanced. In other words, such models are difficult to get underlying
feature representation by leveraging on unknown association information in graphs.

In this article, a novel model named the Multi-Channel Graph Variational Autoencoder
(MC-GVAE) is proposed to predict potential piRNA-disease associations. The motivation
lies in two folds: (1) the graph VAE model learn feature representation in an unsupervised
manner (Kipf & Welling, 2016b), which helps get underlying relationships in sparse
piRNA-disease association networks; (2) the multi-channel method helps fuse multiple
similarity information. Specifically, MC-GVAE first constructs four similarity networks by
measuring sequence or semantic similarity and GIP kernel similarity of piRNA and disease
(Van Laarhoven, Nabuurs ¢» Marchiori, 2011). Then, the graphs are modeled via a graph
VAE to obtain deep feature representations of piRNAs and diseases, and the homogeneous
similarity networks are integrated by a multi-channel method, where parameters are
shared over different graph VAEs for homogeneous similarity networks. Finally, the
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feature representations are concatenated and fed into a full-connected neural network to
prediction. The contributions of this article are listed as follows:

1) This article adopts a graph variational autoencoder (graph VAE) model to learn the
feature representation of piRNA and disease, trying to capture the data distribution
features in the graph.

2) This article proposes a multi-channel method to fuse information in homogeneous
similarity networks in order to better acquire the relations in piRNAs and diseases,
respectively.

3) Computational experiments show that the state-of-the-art performance for piRNA-
disease association prediction is achieved by this model.

MATERIALS AND METHODS

Benchmark datasets

The benchmark dataset is constructed from piRDisease v1.0 (Muhammad et al., 2019),
which is the same version used by iPiDi-PUL (Wei, Xu ¢ Liu, 2021), iPiDA-sHN (Wei,
Ding ¢ Liu, 2020), and DFL-PiDA (Ji et al., 2021), which offers the information of piRNA-
disease associations. There are 7,939 associations in this database, labeled by manual work.
In this study, we used the same data preprocessing steps as iPiDA-sHN (Wei, Ding ¢ Liu,
2020). These steps include filtering redundant and non-human piRNAs, removing piRNAs
that have no sequence information in the database. After applying these steps, we obtained
a benchmark dataset that is identical to the datasets used by iPiDi-PUL (Wei, Xu ¢ Liu,
2021), iPiDA-sHN (Wei, Ding ¢ Liu, 2020), and DFL-PiDA (Ji et al., 2021), containing
5,002 experimentally validated associations with 4,350 piRNAs and 21 diseases. The
benchmark dataset is a publicly accessible resource at http://bliulab.net/iPiDi-PUL/
dataset/.

Computation method

This study proposes a MC-GVAE model to predict the potential associations between
piRNAs and diseases. The model is a pipeline with four sequential steps: data
preprocessing, similarity network construction, representation learning based on Multi-
channel graph VAE, and prediction. In the step of data preprocessing, the piRNA sequence
expression and the adjacency matrix of piRNA-disease associations are extracted from the
piRDisease V1.0 database. The adjacency matrix is as follows:

a1 a2 e ain
az1 az» N arn

A= . o . (1)
Am1 Am2 - Gmn

where ajj =1 if the i-th RNA is associated with the j-th disease, otherwise ajj = 0. Then,
the k-mer algorithm is used to calculate the sequence features of each piRNA, and the
Pearson product-moment correlation coefficient is used to obtain the sequence similarity
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Figure 1 The flowchart of MC-GVAE. The diagram illustrates the core processes of the proposed MC-
GVAE model. In the diagram, blue dots represent piRNA entities, and green diamonds represent disease
entities. In Step 1, data is pre-processed from the piRDiseaseV1.0 database to form an association Matrix.
Step 2 involves constructing four similarity networks based on piRNA sequence similarity, piRNA GIP
kernel similarity, disease semantic similarity, and disease GIP kernel similarity. Step 3 introduces the
Multi-Channel Graph Variational Autoencoder, where graph VAE learns feature representations in an
unsupervised manner and integrates various similarity networks using a multi-channel approach. In
Step 4, the feature representations are put into a three-layer neural network for predicting piRNA-disease
associations. Full-size Ka] DOT: 10.7717/peerj-cs.2216/fig-1

matrix of piRNAs. Meanwhile, based on the adjacency matrix of piRNA-disease
associations, the Gaussian kernel function is used to calculate the GIP similarity matrix of
piRNAs and diseases. In addition, the directed acyclic graph (DAG) of each disease in the
associated matrix is obtained from the disease descriptor vocabulary MeSH, and the
semantic value of each disease is calculated, resulting in the semantic similarity matrix of
diseases. In the step of similarity network construction, four different similarity
subnetworks are constructed based on the four different similarity features obtained in the
previous step. In the step of representation learning, four identical VGAE models are used
to separately learn the feature representations of piRNAs and diseases from four different
similarity subnetworks, and then concatenate the four different feature representations to
better mine the associations between piRNAs and diseases. In the step of prediction, a
three-layer fully connected neural network is used to classify and predict all sample pairs,
obtaining the final prediction results.The flowchart of MC-GVAE’s computation process is
shown in Fig. 1. The following sections will give a detailed introduction to each step’s
specific implementation.

Similarity network construction

To construct the similarity network, we computed the similarity features between piRNAs
and diseases from four different perspectives, namely piRNA sequence similarity, disease
semantic similarity, piRNA GIP kernel similarity, and disease GIP kernel similarity. These
similarity features can reflect the different correlation patterns between piRNAs and
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diseases, which can help our model to better mine the associations between piRNAs and
diseases.

PiRNA sequence similarity network
piRNA sequence similarity network is an undirected graph, where each node represents a
piRNA sequence and each edge represents the relation of two nodes. Generally, the
relation can be measured by the similarity of features of two sequences. One sophisticated
method to obtain the features of piRNA sequences is K-mer (Li ef al., 2016), an algorithm
to extract sequence-derived features using the overlapping shifting window. In this study,
K-mer is utilized to divide RNA nucleotide sequences into subsequences of length d and
count their occurrence frequencies (Kirk et al., 2018), to obtain the sequence feature
vectors of RNA. Following the algorithm of Ji et al. (2021), the value of K was set to 3 in K-
mer to obtain a 64-dimensional vector.

Pearson product-moment correlation coefficient is employed in this study to calculate
the similarity of piRNA sequence features. The calculation method is as follows:

Cov(Fp,, Fp,
P(pp) = 2 P ) o
GFPi O-ij
where Fp, and Fp, denotes the sequence feature vector of i-th and j-th piRNA, respectively.

Cov(Fpi, Fp].) denotes covariance between Fp, and Fp.. OFy, and Ty, denotes the standard

deviation between Fp, and Fp,.

Disease semantic similarity network

In this study, the disease semantic similarity is computed via the disease database MeSH
(Lipscomb, 2000). The knowledge of disease in such database can be organized as a directed
acyclic graph G = (V,E), where V is the set of nodes represent diseases and E the set of
edges represent the relations of diseases. The semantic contribution value D4(t) of the
disease t to the disease d is measured as follows:

1, ift=d
Da(t) = { max{ox D(t'),t' € childrenof t}, ift#d ®

where a denotes the semantic contribution factor, with a value of 0.5 (Wang et al., 2010).
t denotes a disease node in the node set V of the directed acyclic graph, and t’ denotes a
child node of t. For example, in the directed acyclic graph of Brain Neoplasms, Central
Nervous System Disease is a subclass of Brain Diseases. Therefore, Central Nervous System
Disease represents t’ and Brain Diseases represents t in this case.

The disease semantic similarity D(d;, d;) is based on an assumption that the more
DAGs shared by disease pairs, the larger their similarity (Wang et al., 2010). The similarity
is defined as follows:

ZteT(d[)mT(dj) (Ddi(t) + Dd;(t))
D(d;) + D(d;)

D(dn dj) = (4)
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where D(d;) and D(d;) denotes the semantic value of disease d; and dj, respectively, and
can be obtained as follows:

D(d) = > Dq(t) (5)

teT(d)

GIP kernel similarity networks

Experimental evidence shows that similar piRNAs usually show similar correlation
patterns with diseases (Chen et al., 2016). On the other hand, such patterns always mean
nonlinear relationship between piRNAs and diseases. Therefore, The GIP kernel similarity
was utilized to measure the association of piRNAs and diseases, based on the topology of
the known association knowledge of piRNAs and diseases and the interaction profile
corresponding to each piRNA and disease (Van Laarhoven, Nabuurs ¢ Marchiori, 2011).
In other words, piRNAs having higher GIP kernel similarities with those disease-related
ones could be the positive candidates in piRNA-disease association prediction. The GIP
kernel similarity is defined as follows:

P=exp (=4 || Alp:) — A(p))I) (6)

D =exp (—/a || Aldi) — A(d)]?) )
1 &

by =22 | Tow)l? (8)
P m=1

PRI SRR FRTE (9

d _E; | T(dn)ll

where A(p;) denotes the association between piRNA p; and all diseases in the sample. A(d;)
denotes the association between disease d; and all piRNA in the sample. N, and Ny
denotes the number of piRNA and disease in the sample, respectively.

Representation learning based on multi-channel graph VAE

A graph VAE is a kind of variational autoencoder applied to graphs composed of GCN and
VAE and is an unsupervised learning framework. Therefore, the graph VAE not only
learns graph structure features but also generates data distribution features of piRNA and
disease. In the section that follows, GCN and graph VAE will be briefly introduced.

GCN

Graph convolution network (GCN) is a powerful representation learning method in graph
structure data. Here a GCN model was employed to extract four feature vectors of piRNA
and disease from four similarity networks, including piRNA sequence, disease semantics,
piRNA GIP kernel, and disease GIP kernel similarity networks. Firstly, an adjacency
matrix was constructed with the weight based on piRNA sequence similarity. Then, the
piRNA-disease association matrix A € R»****2! is set as graph features, in which each row
of the piRNA-disease association matrix is initialized as each piRNA feature H. Finally, a
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two layers GCN is utilized to obtain a low-dimensional feature matrix. H' and W' denotes
the node feature and the parameter matrix of the i-th layer. Therefore, the node features
vectors H'*! in each layer is represented as follows:

11
HT! :ReLu<D 2AD 2H’W’> (10)

where the ReLu() function serves as an activation mechanism to introduce non-linearity
into the model.

Graph VAE
The graph VAE model is an end-to-end framework, including an encoder and a decoder.
In the encoder stage, a GCN is employed to learn the feature representation vector. In the
decoder one, the similarity matrix was reconstructed by calculating the inner product of
the vector.

The encoder contains two layers. The first layer is to obtain the low dimensional vector
of each node, while the second layer generates its distribution feature. The two layers are
formalized as follows:

1t = GCN, (X, A) (11)
loga = GCN,(X,A) (12)

where GCN,() and GCN,() are two GCNs and share the weight, and X is the feature
matrix of nodes. The latent representation Z is defined as follows:

Z= u+ oxe (13)

where ¢ ~ N(0,1).

Optimal parameters were obtained by reconstructing the piRNA similarity matrix
through the calculation of the inner product between the feature embedding F and its
transpose FT. During the learning time, consideration was given to two loss functions,
binary cross-entropy and KL-divergence, to minimize the distance between the target and
the reconstructed matrix. The loss function £ is denoted as follows:

L = Byziax)[logp(A|Z)]-KL[g(Z|A, X)|[p(Z)] (14)

Multi-channel representation learning

Essentially, the piRNA sequence similarity network and the piRNA GIP similarity network
demonstrate the relevance of piRNAs with different perspective. That is the same situation
between the disease semantic similarity network and the disease GIP similarity network.
Therefore, A tensor can be used to represent such similarity networks, each slice denoting
one kind of relevance meaning. A multi-channel feature representation model can also be
built to learn from such tensor network (Chen et al., 2022). The aim of the multi-channel
method is to model information from multiple aspects, which may lead to sufficient feature
representation learning. Average pooling, parameter sharing and cross-attention are
always leveraged for multi-channel modeling. In this study, a multi-channel learning
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model is built, where the module of each channel learns the representation of piRNA by
leveraging on one similarity network respectively.

Predicting piRNA-disease association based on neural network
Firstly, the representation of piRNA-disease association pairs is obtained by concatenating
four features Zps, Zpg, Zps, and Zyg, where Zps denotes the distribution representation
learned from the piRNA sequence similarity network, Zpg from the disease semantic
similarity network, Zpg from the piRNA GIP kernel similarity network, and Zy; from the
disease GIP kernel similarity network:

F = (Zps, Zps, ZpG, Zic) (15)

Then, the final representation F was fed into a three layers full connection neural
network classifier, and get the prediction score y; as follows:

y; = sigmoid(MLP(F)) (16)

where sigmoid() is an activation function to transform y; to be a number between 0 and 1.
In this study, the piRNA-disease association pairs with y, > 0.5 as 1 (positive sample). The
otherwise labeled as 0 (negative sample). However, unlike graph VAE, only the binary
cross-entropy was utilized as loss function for prediction.

RESULTS

Experimental setup and hyperparameter configuration

In the experiments, a five-fold cross-validation is conducted in the training stage in order
to make this model more reliable. More specifically, samples in the training data are
divided equally into five subsets, four of which are utilized for training and one of which
for testing. Note that each subset has one chance to be the test data. The evaluation metrics
that are mostly employed in association prediction tasks, including accuracy, recall,
precision, F-1 score, and Matthews correlation coefficient (MCC).

To visually illustrate the performance, this study employs the receiver operating
characteristic (ROC) curve and the precision-recall (PR) curve. The ROC curve reflects the
relationship between the true positive rate and the false positive rate of the model at
different thresholds, while the PR curve reflects the relationship between the precision and
recall of the model at different thresholds. In addition, the Area Under Curve (AUC) and
the area under PR curve (AUPR) were also employed as evaluation metrics, which are
frequently used to measure the performance of classification or prediction tasks. AUC and
AUPR are obtained by calculating the area under the ROC curve and the PR curve,
respectively, and they can comprehensively reflect the performance of the model at
different thresholds.

The experiment is based on the Python deep learning framework PyTorh v1.11.0, and
the GCN model is performed by adopting Deep Graph Library (DGL) v0.8.1, a highly-
performant package for graph neural networks (Wang et al., 2019b). The computational
method of this article was performed on the Ubuntu 20.04 with two 1080Ti GPUs.
Moreover, several important hyperparameters settings of this study were presented.
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Table 1 Model hyperparameter settings.

Component Hiddenl Hidden2 Output Learning  Loss function Activation
dimension dimension dimension rate function
GVAE 48 16 - 0.001 Weighted sum of binary cross-entropy and KL ReLU
divergence
Classifier 48 16 1 0.001 Weighted sum of binary cross-entropy Sigmoid

Table 2 The performance of MC-GVAE based on five-fold CV.

Test fold AUC AUPR Accuracy Precision Recall F1-score Mcc

1 0.9331 0.9286 0.9005 0.9339 0.8534 0.8945 0.8042
2 0.9237 0.9180 0.9010 0.9356 0.8632 0.8979 0.8047
3 0.9303 0.9252 0.8926 0.9401 0.8403 0.8874 0.7898
4 0.9351 0.9340 0.9130 0.9480 0.8708 0.9077 0.8285
5 0.9295 0.9177 0.9030 0.9315 0.8727 0.9011 0.8078
Average 0.9310 0.9247 0.9020 0.9390 0.8601 0.8977 0.8070

According to the previous work (Kipf & Welling, 2016b), GCN was also adopted as an
encoder, and the experiment demonstrates that if the number of hidden layers is over 2, the
prediction performance of the model will be declined. The dimension of the vector in
hidden layerl and hidden layer2 were set as 48 and 16, and the learning rate is determined
as 0.001. The training epoch is detected as 50, and the Adam optimizer and loss function
with cross entropy and KL divergence were employed to update the parameters of MC-
GVAE in each epoch. The following Table 1. provides a detailed overview of the model
architecture and hyperparameter settings for GVAE and the classifier.

Predicting piRNA-disease association based on neural network

A benchmark dataset (Wei, Xu ¢ Liu, 2021) based on the piRDisease database v1.0 was
made use of. The benchmark dataset included 10,004 piRNA-disease association pairs, in
which the positive sample pairs contained 5,002 associations with 4,350 piRNAs and 21
diseases. In addition, 5,002 negative sample pairs were randomly selected from unknown
piRNA-disease association sample pairs. Finally, the detail of the results were shown in
Table 2, and the results of AUC and AUPR are shown in Figs. 2 and 3, respectively. Table 2
shows the average performance of model MC-GVAE on the benchmark dataset based on
five-fold cross-validation.

Table 2 shows that MC-GVAE achieved high levels of performance on all metrics, with
average values of 0.9310, 0.9247, 0.9020, 0.9390, 0.8601, 0.8977, and 0.8070, respectively.
This indicates that MC-GVAE can effectively learn the complex features of piRNA and
disease, and use the graph structure information to improve the prediction accuracy. From
the description of Fig. 2, the ROC curve is close to the upper left corner, the P-R curve is
close to the upper right corner, and the curves of each fold are very close, which shows that
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Figure 3 The P-R curves of MC-GVAE. Full-size K&l DOT: 10.7717/peerj-cs.2216/fig-3

MC-GVAE has excellent accuracy and robustness in distinguishing positive and negative
samples and precisely retrieving positive samples.

The effect of GCN encoding module

In order to explore the impact of different encoders, we make a comparative experiment,
where two encoders are built: one is based on a GCN model, and the other is implemented
with a linear layer neural network. The decoder and the training objective are kept
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Figure 5 The P-R curves of MC-GVAE and VAE. Full-size K&l DOT: 10.7717/peerj-cs.2216/fig-5

unchanged. AUC and AUPR scores of the two models VAE and MC-GVAE on the
benchmark dataset are shown in Figs. 4 and 5, respectively.

It can be seen from the Figs. 4 and 5 that the AUC and AUPR scores of MC-GVAE are
higher than those of VAE, respectively, under the same benchmark dataset based on 5-fold
cross validation, which also means that the prediction performance of MC-GVAE is
significantly better than that of MC-GVAE. It indicates that the GCN encoder can
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Table 3 Performance of graph representation learning models.

Models AUC AUPR Acc Pre Recall F1 Mcc

GCN 0.6508 0.7659 0.5741 0.2793 0.3757 0.6508 0.3107
Graphormer 0.6063 0.6469 0.6517 0.6645 0.4989 0.5393 0.3081
GAT 0.8971 0.9034 0.7852 0.9309 0.6245 0.7267 0.6146
GVAE 0.9310 0.9247 0.9020 0.9390 0.8601 0.8977 0.8070

effectively obtain the structure information of four views graph, and have an important
impact on MC-GVAE model.

Performance comparison of graph representation learning

To investigate the performance of different graph neural networks in modeling the
similarity knowledge with four similarity networks, three models, GCN, GAT and Graph
Transformer model—Graphormer (Ying et al., 2021), were employed. A two-layer GCN
model was built to obtain low-dimensional feature representations of each view, and the
numbers of the hidden units in the first and the second layer were 48 and 16, respectively.
A single-layer GAT with an eight-head self-attention mechanism was also applied to learn
the feature representations of four different views. Furthermore, the Graphormer model
was also applied to learn feature representations, utilizing the GraphormerLayer provided
in the DGL library. The hidden layer was designed with 48 units, num_heads set to 3,and a
Dropout rate of 0.1 for the feature layer.

The number of parameters in all models is the same in the hidden layer, and the
dimension of the input and the output vector were set to 48 and 16, respectively. The
learning rate of the model is 0.001 during the training process.

Using a five-fold cross-validation method, four GNN models were trained on the
benchmark dataset and their prediction performance was compared using common
evaluation indicators, including AUC, AUPR, precision, recall, F1-scores, and MCC, for
the purpose of comparing the performance of representation learning. Finally, the average
of these indicators was listed as experimental results in Table 3.

Experimental results indicate that the graph variational autoencoder (GVAE) model
surpasses other models across all evaluation metrics, particularly in terms of area under the
curve (AUC), area under the precision-recall curve (AUPR), precision, recall, F1 score, and
MCC. These findings affirm the efficacy and superiority of the graph VAE in the task of
predicting piRNA-disease associations. Although the Graphormer, as a Graph
Transformer model, demonstrates potential abilities in processing graph-structured data,
it remains inferior to the GVAE models, which is built for capturing complex relations
over graphs. Moreover, the generative learning approach of the graph VAE offers
enhanced interpretability in understanding the associations between piRNAs and diseases.
Consequently, this research underscores the significance of graph VAE in such tasks and
provides new directions for future studies.
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Ablation study

The feature representation of two different views was concatenated as the final
classification feature of piRNA-disease association pairs in this model. In order to explore
the contribution of the features of two views to the overall performance of MC-GVAE, an
ablation study was performed under the benchmark dataset on five-fold cross validation.
Some variants of MC-GVAE model were as follows:

¢ MC-GVAE without graph VAE: the graph VAE is removed, and four similarity features
are directly fed into a three-layer full-connected neural network to predict the piRNA-
disease association.

¢ MC-GVAE without NN: it only uses the inner product to reconstruct two prediction
matrices based on the features of two views and gets the final prediction matrix by
averaging two re-construction matrices.

¢ MC-GVAE without association: only two similarity calculation data, piRNA sequence
and disease semantics, are employed to build the input data to learn node features of
piRNA and disease.

¢ MC-GVAE without attribution: only the GIP similarity data for piRNA and disease are
employed as the input data to learn node features of piRNA and disease.

Figure 6 shows the results of the models mentioned above. It can be seen that the
original model still achieves the best performance, while MC-GVAE without graph VAE
has the lowest AUC and AUPR performance. It can also be seen that, the performance of
MC-GVAE without association view and MC-GVAE without attribution view based on
different views by using the same computing framework is similar, and both achieve
remarkable results. In addition, the best performance based on two different view features
was achieved by this model MC-GVAE.

To quantify the impact of each component, statistical significance tests were conducted
for the four variants and MC-GVAE. As demonstrated by the T-test results in Table 4, the
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Table 4 Significance testing results for models of ablation test.

Variant Statistic p-value Interpretation

w/o Graph VAE 61.905 0.000 Significant decrease, indicating the importance of the Graph VAE component.
w/o NN 68.509 0.000 Significant decrease, indicating the importance of the NN component.

w/o Association 0.849 0.396 No significant decrease, suggesting the association view may not be critical.
w/o Attribution 0.382 0.703 No significant decrease, suggesting the attribution view may not be critical.

MC-GVAE without graph VAE component and the MC-GVAE without NN component
resulted in a significant decrease in performance, with statistical values of 61.905 and
68.509, respectively, and p-values of 0.000, indicating the importance of these two
components to the model’s performance. In contrast, the variants without association and
without attribution did not show statistically significant performance decreases, with
statistical values of 0.849 and —0.382, respectively, and p-values of 0.396 and 0.703.
These results underscore the significance of the graph VAE and n three-layer full-
connected neural network components in our model. The original MC-GVAE model
achieved optimal performance in integrating feature representations from two different
views, demonstrating that our proposed multi-view computational framework can
significantly enhance the performance of piRNA-disease association prediction tasks.

Comparison with other methods

In this part, the performance of MC-GVAE and comparative methods including iPiDi-
PUL (Wei, Xu ¢ Liu, 2021), iPiDA-sHN (Wei, Ding ¢ Liu, 2020), and DFL-PiDA (Ji et al.,
2021), based on the same benchmark dataset under five-fold CV.

» iPiDi-PUL is a widely used and cited method for piRNA-disease association prediction,
which also adopts four types of features like our method. Specifically, it adopts an
ensemble learning method, which employs multiple random forests with different
depths to predict piRNA-disease association. It extracts key features by principal
component analysis (PCA) (Abdi & Williams, 2010), and gets various prediction scores
via multiple random forests classifiers. Finally, averaging all classifier scores is used by
the model. Different from our study, it does not use a graph-based learning model to
capture the complex relationships between piRNAs and diseases, but relies on PCA to
extract features. Choosing iPiDi-PUL as a comparative method may help to study the
performance of graph-based learning models against models of reduction dimensions in
representation learning.

e iPiDA-sHN is a state-of-the-art method for piRNA-disease association prediction. It is a
two-step PUL model. It trains the initial classifier with positive samples and randomly
selected negative samples, and then trains another classifier using positive samples and
negative samples acquired in the previous step. Support Vector Machine (SVM) is
leveraged to build the classifier. Different from our method, it does not use a graph
variational autoencoder, but a CNN, to learn the latent representations of piRNAs and
diseases. Choosing iPiDA-sHN as a comparative method may help to study the
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Table 5 The performance comaprison of MC-GVAE and other methods.

Methods Average AUC Average AUPR
iPiDi-PUL (Wei, Xu ¢ Liu, 2021) 0.8540 0.7852
iPiDA-sHN (Wei, Ding ¢ Liu, 2020) 0.8867 0.8340
DFL-PiDA (i et al.,, 2021) 0.9042 -

MC-GVAE 0.9310 0.9247

performance of graph variational autoencoder against other graph-based learning
models.

e DFL-PiDA is constructed from a convolutional denoising autoencoder neural network
combined with an extreme learning machine (ELM) to predict disease-related piRNAs.
It utilizes a single hidden layer feedforward neural network to build the ELM. Different
from our method, it use a convolutional denoising autoencoder to learn feature
representations. Choosing DFL-PiDA as a comparative method may help to study the
performance of graph variational autoencoder against other autoencoder models.

Our MC-GVAE method was performed on the Ubuntu 20.04 with two 1080Ti GPUs
environment. The results are shown in Table 5. We can see that, the MC-GVAE model
outperforms other methods in terms of both average AUC and AUPR metrics,
demonstrating that it can effectively predicts piRNA-disease associations and has higher
prediction accuracy and stability. Meanwhile, there are some possible reasons of low
performance of the three models: (1) iPiDi-PUL employs PCA to extract key features,
which may overlook some relevant information; (2) iPiDA-sHN adopts SVM to construct
the classifier, which may be influenced by the sample imbalance; (3) DFL-PiDA merely
fuses four similarity matrices, which fails to learn the rich feature representations of piRNA
and disease. In addition, iPiDA-sHN and DFL-PiDA outperform iPiDi-PUL, which show
that neural networks are effective than traditional models.

Case study
In this part, the prediction performance of MC-GVAE was further evaluated, three
diseases, renal cell carcinoma, Alzheimer’s disease, and cardiovascular diseases with the
largest number of associations in the association matrix were selected as case studies.
Specifically, the association information of three diseases-related was firstly removed from
the benchmark dataset, and the data remained was employed as the positive samples for
training. Then, three diseases-related associations were used as positive samples in each
prediction process, and the negative samples from unknown associations of three diseases
with other piRNAs. Finally, the prediction scores between three diseases and other known
piRNAs were obtained, respectively, and the top 20 piRNAs-related with the highest
prediction score were selected for analysis.

Tables 6-8 shows the top 20 renal cell carcinoma-related, the top 20 predicted
Alzheimer’s diseases-related, and the top 20 predicted cardio-vascular diseases-related
piRNAs which achieves the high scores of disease-associated prediction, respectively. As
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Table 6 Top 20 predicted renal cell carcinoma-related piRNAs.

Rank piRNA ID Evidence Rank piRNA ID Evidence
1 piR-hsa-27703 piRDisease 11 piR-hsa-7770 piRDisease
2 piR-hsa-8086 piRDisease 12 piR-hsa-16646 piRDisease
3 piR-hsa-3577 piRDisease 13 piR-hsa-26809 piRDisease
4 piR-hsa-20320 unconfirmed 14 piR-hsa-23919 piRDisease
5 piR-hsa-29714 piRDisease 15 piR-hsa-13300 piRDisease
6 piR-hsa-8104 piRDisease 16 piR-hsa-15195 piRDisease
7 piR-hsa-27148 piRDisease 17 piR-hsa-15696 piRDisease
8 piR-hsa-4269 piRDisease 18 piR-hsa-11906 piRDisease
9 piR-hsa-10523 piRDisease 19 piR-hsa-12955 piRDisease
10 piR-hsa-19848 piRDisease 20 piR-hsa-20480 piRDisease
Table 7 Top 20 predicted Alzheimer’s diseases-related piRNAs.
Rank piRNA ID Evidence Rank piRNA ID Evidence
1 piR-hsa-28851 piRDisease 11 piR-hsa-27399 piRDisease
2 piR-hsa-24775 piRDisease 12 piR-hsa-19620 piRDisease
3 piR-hsa-18393 Unconfirmed 13 piR-hsa-30892 piRDisease
4 piR-hsa-15837 Unconfirmed 14 piR-hsa-28188 piRDisease
5 piR-hsa-9851 piRDisease 15 piR-hsa-11129 Unconfirmed
6 piR-hsa-23209 Roy et al. (2017) 16 piR-hsa-1823 Roy et al. (2017)
7 piR-hsa-24366 Unconfirmed 17 piR-hsa-2107 Roy et al. (2017)
8 piR-hsa-6147 piRDisease 18 piR-hsa-13013 Unconfirmed
9 piR-hsa-19012 Unconfirmed 19 piR-hsa-15023 Roy et al. (2017)
10 piR-hsa-1849 Roy et al. (2017) 20 piR-hsa-29716 Unconfirmed
Table 8 Top 20 predicted cardio-vascular diseases-related piRNAs.
Rank piRNA ID Evidence Rank piRNA ID Evidence
1 piR-hsa-21532 piRDisease 11 piR-hsa-29617 piRDisease
2 piR-hsa-27477 piRDisease 12 piR-hsa-18847 piRDisease
3 piR-hsa-170 piRDisease 13 piR-hsa-12656 piRDisease
4 piR-hsa-29225 piRDisease 14 piR-hsa-17388 piRDisease
5 piR-hsa-14359 piRDisease 15 piR-hsa-23376 piRDisease
6 piR-hsa-21348 piRDisease 16 piR-hsa-8322 piRDisease
7 piR-hsa-28877 piRDisease 17 piR-hsa-12634 piRDisease
8 piR-hsa-12176 piRDisease 18 piR-hsa-22176 piRDisease
9 piR-hsa-3790 piRDisease 19 piR-hsa-1053 piRDisease
10 piR-hsa-13468 piRDisease 20 piR-hsa-18939 piRDisease
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shown in Table 6, only one association is still unconfirmed in renal cell carcinoma. In
Table 7, eight piRNA candidates of the top 20 in Alzheimer’s disease are verified by
piRDisease v1.0 database, and the other five candidates’ piRNAs are confirmed by
published literature. However, seven piRNA candidates with the possible association are
unconfirmed. In Table 8, all piRNA candidates in top 20 are predicted for cardio-vascular
diseases. In other words, those piRNA-disease associations predicted only according to the
known knowledge by our model are verified by biological experiments. It indicates that
iPiDA-VAGE is effective in piRNA-disease association prediction.

CONCLUSIONS

Being a significant biomarker for the diagnosis of diseases, piRNA has attracted much
attention of academic community. Compared to traditional biological experiments,
computational methods are more effective to find potential associations between piRNAs
and diseases. In this article, a novel computational model named MC-GV AE was proposed
to predict disease-related piRNAs based on a multi-channel graph VAE. An end-to-end
computational framework was adopted, and four similarity networks were employed in
order to learn latent association knowledge. For homogeneous networks, a multi-channel
method was proposed to integrate them for learning. The experimental results showed that
the proposed model was effective to predict piRNA-disease association.

Opverall, the advantage of MC-GVAE lies in two folds: (1) it use a graph variational
autoencoder, which helps to learn feature representations over graphs; (2) it use a multi-
channel method, which helps to capture semantic relations of multiple aspects. On the
other hand, there are also potential limitations of MC-GVAE: (1) it depends on rich and
high-quality data, which are not always available; (2) it is based on the assumption of static
piRNA-disease associations like other GNN-based models, whereas the knowledge could
be updated for new biological findings; (3) it lacks the ability of casual inference, which is
useful for some applications.

There are some directions for the further improvement of this model. Firstly, the
similarity knowledge derived from computational methods, such as sequence similarity,
disease semantic similarity and GIP kernel similarity does not always accurate, and the
incorrect knowledge maybe noisy to the model. Therefore, more accurate knowledge from
biological experiment evidence is needed, such as position-specific information of piRNA
sequence thermodynamic and physicochemical properties of piRNAs etc. Secondly, there
are few ground-truth negative samples in the current knowledge bases of piRNA, and
pseudo negative samples via random selection may lead to poor robustness of the model.
In the furure work, more reasonable sampling methods, such as positive unlabeled learning
(PUL), or non-sampling learning methods, could be adopted to make a more robust
model. Thirdly, considering that our model is independent from concrete RNA sequences
and diseases, it can be easily transferred to other prediction tasks of RNA-disease
association. To this end, more experiements with different ncRNA databases will be made
to validated the performance of the proposed model in the future work.
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