
Submitted 16 April 2024
Accepted 28 June 2024
Published 5 August 2024

Corresponding author
Mihai Udrescu, mudrescu@gmail.com

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.2210

Copyright
2024 Ardelean and Udrescu

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Hybrid quantum search with genetic
algorithm optimization
Sebastian Mihai Ardelean* and Mihai Udrescu*

Department of Computer and Information Technology, University Politehnica of Timisoara,
Timisoara, Timis, Romania

*These authors contributed equally to this work.

ABSTRACT
Quantum genetic algorithms (QGA) integrate genetic programming and quantum
computing to address search and optimization problems. The standard strategy of the
hybridQGA approach is to add quantum resources to classical genetic algorithms (GA),
thus improving their efficacy (i.e., quantum optimization of a classical algorithm).
However, the extent of such improvements is still unclear. Conversely, Reduced
QuantumGenetic Algorithm (RQGA) is a fully quantum algorithm that reduces the GA
search for the best fitness in a population of potential solutions to running Grover’s
algorithm. Unfortunately, RQGA finds the best fitness value and its corresponding
chromosome (i.e., the solution or one of the solutions of the problem) in exponential
runtime, O(2n/2), where n is the number of qubits in the individuals’ quantum
register. This article introduces a novel QGA optimization strategy, namely a classical
optimization of a fully quantum algorithm, to address the RQGA complexity problem.
Accordingly, we control the complexity of the RQGA algorithm by selecting a limited
number of qubits in the individuals’ register and fixing the remaining ones as classical
values of ‘0’ and ‘1’ with a genetic algorithm. We also improve the performance of
RQGA by discarding unfit solutions and bounding the search only in the area of valid
individuals. As a result, our Hybrid Quantum Algorithm with Genetic Optimization
(HQAGO) solves search problems in O(2(n−k)/2) oracle queries, where k is the number
of fixed classical bits in the individuals’ register.

Subjects Algorithms and Analysis of Algorithms, Quantum Computing
Keywords Quantum computing, Quantum genetic algorithms, Genetic algorithm optimization,
Hybrid quantum genetic algorithm

INTRODUCTION
Genetic algorithms (GAs) represent a widely used heuristic method for search and
optimization problems inspired by evolutionary theory (Spector, 2004; Matoušek, 2009).
In their simplest form—without losing generality—individuals’ chromosomes encode
candidate solutions as binary arrays. The GA has four phases: initialization, selection,
reproduction & mutation, and termination (After initialization, the selection and
reproduction & mutation phases are repeated in a loop until some condition is met,
and the algorithm enters the termination phase.) In the initialization phase, the GA begins
with a randomly generated population of chromosomes; the population evolves over
multiple generations (each performing selection and reproduction) in search of an optimal

How to cite this article Ardelean SM, Udrescu M. 2024. Hybrid quantum search with genetic algorithm optimization. PeerJ Comput. Sci.
10:e2210 http://doi.org/10.7717/peerj-cs.2210

https://peerj.com/computer-science
mailto:mudrescu@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2210
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2210

solution (Lahoz-Beltra, 2016). Accordingly, each generation’s chromosomes are evaluated
on the basis of the fitness function to select the best individuals. A new generation evolves
from the previous one by recombining and mutating selected individuals’ chromosomes.
Consequently, individuals with higher quality have a higher probability of being copied by
the next generation, hence improving the population’s average fitness.

However, even with sophisticated GA search strategies such as elitism or adaptive
parameter control, or dedicated hardware to parallelize and accelerate GAs, classical
computation often achieves only marginal performance improvements over deterministic
approaches (Spector, 2004; Udrescu, Prodan & Vlăduţiu, 2006). To further pursue
performance, quantum computation emerges as one of the possible GA implementation
solutions due to its specific features, such as entanglement, interference, and exponential
parallelism (Nielsen & Chuang, 2002; Spector, 2004). The general approach in trying to
combine genetic algorithms with quantum computing is to optimize genetic operators
using quantum features (Lahoz-Beltra, 2023); in this article, we turn the tables by proposing
a classical (i.e., genetic algorithm) optimization of a purely quantum search (i.e., the RQGA
algorithm (Udrescu, Prodan & Vlăduţiu, 2006)).

The remainder of this article is organized as follows: section State of the Art surveys
the similar solutions to combining GAs with quantum computing, section Background
describes the purely quantum RQGA search algorithm that we optimize with a genetic
algorithm, section Algorithm Design details our proposed HQAGO solution to fixing
qubits in the RQGA individual register and analyzes its time complexity, section Results
show the results obtained by simulating HQAGO in the context of concrete optimization
problems (knapsack and graph coloring), and section Conclusions discusses our findings,
their implications, and potential impact. Portions of this text describing the algorithm were
previously published as part of a preprint (https://doi.org/10.21203/rs.3.rs-3009060/v1).

STATE OF THE ART
The literature proposes several quantum-implemented GAs—mostly algorithms that
combine classical and quantum operators (Lahoz-Beltra, 2016). GAs have also been
used for quantum circuit synthesis, as presented in Ruican et al. (2007) and Ruican et
al. (2008), and as evolutionary strategies that can evolve and scale up small quantum
algorithms (Gepp & Stocks, 2009). From an implementation perspective, these trends are
assembled under the term Quantum Evolutionary Programming (QEP), which largely
consists of Quantum-Inspired Genetic Algorithms (QIGA) or Hybrid Genetic Algorithms
(HGA). QIGAs and HGAs are algorithms that mix classical computation with quantum
operators, using qubits for chromosome representations and quantum gates for operators.
We have just a few examples of fully Quantum Genetic Algorithms (QGA), which focus
on implementing genetic algorithms searches on quantum hardware (Giraldi, Portugal &
Thess, 2004; Lahoz-Beltra, 2016).

In addition to these developments, recent optimization strategies offer promising
avenues for enhancing QEP methodologies. For instance, Escobar-Cuevas et al. (2024b)
introduces a novel method that leverages evolutionary game theory for optimization.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 2/27

https://peerj.com
https://doi.org/10.21203/rs.3.rs-3009060/v1
http://dx.doi.org/10.7717/peerj-cs.2210

The proposed method initializes all individuals using the Metropolis-Hasting technique.
The algorithm continuously adapts and refines the strategies of each individual based
on performance—based on the interactions and the competition between individuals—
in search of the global optimum or near-optimal solution. Similarly, Escobar-Cuevas
et al. (2024a) presents a method that combines a hybrid search mechanism with the
fuzzy optimization approach that shows improvements in terms of solution quality,
dimensionality, similarity, and convergence criteria (Escobar-Cuevas et al., 2024a).

QIGAs start with generating an initial population of n-qubit chromosomes; then, the
best solution is selected and stored by observing and evaluating the chromosomes. The
algorithm evolves by performing a classical evaluation of individual chromosomes and
generating a new population, using classical and quantum operators (Giraldi, Portugal
& Thess, 2004; Lahoz-Beltra, 2016). QGAs also start with a population of qubit-encoded
chromosomes, but the following steps use only quantum operators. A QIGA consisting of a
classical genetic algorithm with quantum crossover operation applied on all chromosomes
in parallel can achieve quadratic speedup over its conventional counterpart; the complexity
of such a QIGA is O(Ñ poly(log Ñ logN)) where Ñ ≤N , Ñ is the number of individuals
in a generation and N is the total number of individual chromosomes (SaiToh, Rahimi
& Nakahara, 2014). Quantum Genetic Optimization Algorithm (QGOA) is a QIGA that
combines quantum selection with classical operations performing crossover, mutation, and
substitution (Malossini, Blanzieri & Calarco, 2008). Another QIGA approach introduces a
new way of implementing GA operators on quantum hardware to aim for better runtimes;
however, the proposed QIGA only converges towards suboptimal solutions, and its
complexity is uncertain (Acampora & Vitiello, 2021).

RQGA is a fully quantum genetic algorithm based on Grover’s quantum search, which
does not have genetic operators such as mutation and crossover. Compared to the 4-phases
(initialization, fitness assessment, variation, and selection) QIGAs, the RQGA performs
only initialization, fitness assessment, and selection. There is no need for a variation stage
in RQGA since the individuals’ register encodes the entire search space as a superposition
of chromosome codes. Therefore, in the initialization phase, the population is generated
as a basis-state superposition of all possible binary combinations (Udrescu, Prodan &
Vlăduţiu, 2006). In this way, RQGA provides a solution that consists in finding the
best individual/chromosome with a specially designed oracle that works with a modified
version of the maximum finding algorithm (Ahuja & Kapoor, 1999). Overarchingly, RQGA
represents a method that reduces any Quantum Genetic Algorithm (QGA) to a Grover
search (Grover, 1996). Therefore, the complexity of RQGA is O

(√
ni
)
Grover iterations

(where ni is the number of items) in a search space with ni = 2n items (where n is the
number of qubits in the search register), or O

(
2n/2

)
.

The main objective of this article is to reduce the complexity of the RQGA search by
using classical optimization approaches. Consequently, the main contributions of this
article are:

• A novel GA-based method of reducing the number of qubits required in the individuals’
register of the RQGA. Our classical GA, combined with RQGA, or HQAGO, fixes the

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

 Hybrid Quantum Algorithm with
Genetic Optimization

(HQAGO)

Reduced Quantum Genetic Algorithm
(RQGA)

Very high Exponential with the
number of qubits

Uncertain, limited by the
number of generations

Probability of
best solutions

Complexity

Classical Genetic Algorithm
(CGA)

Moderate

High
Exponential relative to a
limited number of qubits

Figure 1 The main achievement of our HQAGO approach is that it allows for scanning the space be-
tween a pure classical GA (i.e., all positions in the individuals’ register are classical bits, ‘0’ or ‘1’) and
RQGA (where the individuals’ register has only qubits). Pure classical GA has a moderate probability of
finding the best solutions; however, their complexity can be restricted by the termination condition that
limits the number of generations. The pure-quantum RQGA has a very high probability of finding the
best solutions (according to Grover’s algorithm); their complexity is exponential with the number n of
qubits in the individuals’ register. HQAGO maintains RQGA’s high probability of finding the best solu-
tions while significantly reducing the search complexity by limiting the number of qubits in the individu-
als’ register.

Full-size DOI: 10.7717/peerjcs.2210/fig-1

value of k bits in the n-qubit individuals’ register as classical ‘0’ or ‘1’, while the
other register positions remain quantum (i.e., qubits). Therefore, considering that
Grover’s algorithm delivers the complexity of the search, our HQGAO is O

(
2(n−k)/2

)
.

By controlling k, we can control the complexity of the search so that the probability of
finding a solution remains high; however, the number of required Grover iterations is
reduced because a limited number of qubits means a reduced search space (see Fig. 1).
• A new method to discard unfit solutions and bound the search only in the area of valid
individuals. This way, we reduce the number of Grover algorithm runs to find the best
fitness value.
• Series of Qiskit simulations of HQAGO implementations for solving the knapsack
optimization and graph coloring problems that show that best search solutions can be
found even for relatively large k values, which consequently entail a drastically reduced
search space and a much lower computational complexity.

BACKGROUND
Since HQAGO builds upon the pure-quantum RQGA, this section details the RQGA
implementation and analyzes its complexity. RQGA takes a superposition of all possible
individual chromosomes (representing potential solutions for the search problem) in the
individuals’ register |u 〉ind and computes the corresponding fitness values in the fitness
register |f (u) 〉fit . RQGA uses Grover’s algorithm (Grover, 1996) to augment the quantum

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 4/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-1
http://dx.doi.org/10.7717/peerj-cs.2210

amplitude of the basis state in |u 〉ind that corresponds to the best fitness values. Thus,
when we measure the fitness register |f (u) 〉fit , we get the best fitness value (or one of the
best fitness values) with a high probability. The post-measurement state will have only the
individual code (or a superposition of individual codes) that produces the best fitness. In
any of these cases, measuring the individuals’ register will return the solution.

RQGA is a framework built around a modified version of the quantum maximum
finding algorithm proposed byAhuja & Kapoor (1999). This approach reduces the problem
of finding themaximum fitness individual to a Grover search (Udrescu, Prodan & Vlăduţiu,
2006), which requiresO

(√
N
)
Grover iterations (Nielsen & Chuang, 2002). RQGAencodes

the search space on n qubits; therefore, in our case, N = 2n. Accordingly, as RQGA
maintains the number of oracle queries of the quantum maximum finding algorithm,
namely O

(√
N
)
, RQGA’s complexity becomes O

(
2n/2

)
. In Algorithm 1, we present the

main steps of RQGA.
RQGA’s worth is that it uses Grover’s and maximum finding algorithms to simplify

QGAs. However, its main drawback is that it still requires an exponential runtime; for
a search space of size 2n, its complexity is O

(
2n/2

)
Grover iterations (Udrescu, Prodan &

Vlăduţiu, 2006). This situation calls for a solution to reduce or control the algorithm’s
complexity.

Algorithm 1 The main steps of RQGA (Udrescu, Prodan & Vlăduţiu, 2006)
1: Prepare |ψ 〉1 as a superposition of all individual–fitness register pairs (|u 〉ind⊗|0 〉fit),

as presented in Equation 1.
2: Choosemax ∈ [2m+1,2m+2−1) randomly, wherem is the number of qubits in the fit-

ness register.
3: Appy the unitary operation corresponding to the fitness function f : |ψ 〉2 =

Ufit |ψ 〉1=
1
√
2n
∑2n−1

u=0 |u 〉ind⊗|f (u) 〉fit
4: repeat
5: Use the oracleO to mark (i.e., change to a negative phase) all basis states in the

fitness register that correspond to f (u)>max.(|ψ 〉3=O|ψ 〉2)
6: Use Grover iterations to augment the quantum amplitude corresponding to the

marked fitness values. Then measure the fitness register, obtaining |ψ 〉4 = |u 〉ind ⊗
|f (u) 〉fit , with f (u)>max .

7: max := f (u).
8: untilmax value is not improved.
9: Return the chromosome value umax (corresponding tomax), namely |umax 〉ind ⊗

|f (umax) 〉fit , with f (umax)=max . Therefore, umax represents the individual/chromo-
some that generates the highest fitness.

ALGORITHM DESIGN
In this article, we reduce the RQGA exponential runtime by limiting the number of qubits
in the search register. Our novel Hybrid Quantum Algorithm with Genetic Optimization

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 5/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

ൿห𝑢0 ൿห𝑢1 ۧȁ1 ۧȁ0 ۧȁ1 ൿห𝑢5 ൿ⋯ ۧȁ1 ۧȁ0 ห𝑢𝑛−1

⊗

ൿห𝑓0 ൿห𝑓1 ൿห𝑓2 ൿห𝑓3 ൿห𝑓4 ൿ⋯ ൿห𝑓𝑚−2 ห𝑓𝑚−1

individual
register

fitness
register

Reduced Quantum Genetic Algorithm

Conventional Genetic
Algorithm

determines the fixed qubits positions and values

measured fitness register

⋯

Figure 2 The overview of applying genetic algorithm optimization to reduce the number of Grover it-
erations entailed by running the RQGA algorithm. The conventional genetic algorithm determines the
fixed qubits’ positions (presented with gray background) and their binary values in the individuals’ reg-
ister of the Reduced Quantum Genetic Algorithm, thus controlling the number of qubits in the individu-
al/chromosome quantum register and reducing the number of Grover iterations required.

Full-size DOI: 10.7717/peerjcs.2210/fig-2

(HQAGO) algorithm selects a bounded number of qubits in the individuals’ register and
fixes the remaining ones as classical values of ‘0’ and ‘1’; a classical genetic optimization
algorithm selects the qubits’ positions and determines the values of the fixed bits. Compared
to RQGA, where the population contains both valid and non-valid individuals, HQAGO
also modifies the initialization step to search only in the valid individuals’ space. (An
individual chromosome is valid if it meets a condition specific to the search or optimization
problem; it is non-valid otherwise.) With the HQAGO procedure presented in Fig. 2, we
reduce the number of Grover iterations, thus improving the algorithm’s performance, at
the cost of adding complexity—entailed by genetic optimization—to the RQGA design.

Like RQGA, the HQAGO starts by initializing a superposition of all individual-fitness
register pairs as

|ψ 〉1=
1
√
2n

2n−1∑
u=0

|u 〉ind⊗|0 〉fit , (1)

where |u 〉ind⊗|0 〉fit is the individual-fitness register pair and n is the number of qubits
in the individuals’ quantum register. The individual is encoded on n-qubits; therefore we
have 2n basis states in the superposition.

Given the individual quantum register |u 〉ind we apply the classical GA to fix a subset
of k qubits (i.e., assign them classical values of 0 and 1), 0≤ k ≤ n. Before fixing qubits in
the individuals’ register, in Equation Eq. (1) we have |u 〉 ∈ S={0,1,2,...,2n−1}; u∈N is

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 6/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-2
http://dx.doi.org/10.7717/peerj-cs.2210

binary-encoded (u= b0b1 ...bn−1 where bi ∈B= {0,1}, i= 0,n−1). When we assign the
classical binary values to k bis, |u 〉 ∈ Sk ⊆ S; the cardinality of Sk is |Sk | = 2n−k elements.
For example, for n= 4 and k = 2, we have u= b0b1b2b3, and fix b1= 1 and b2= 0; in this
case, Sk ={4,5,12,13} (in binary, {0100,0101,1100,1101}, where the circled bits are fixed).
Thus, we obtain the next state

|ψ 〉2=GA|ψ 〉1 7−→
1

√
2n−k

∑
u∈Sk

|u 〉ind⊗|0 〉fit . (2)

We present the complete initialization phase in Algorithm 2, and the conventional GA
chromosome initialization in Algorithm 3.

Algorithm 2HQAGO initialization, identical with RQGA
1: Initialize the n-qubits individual quantum register |u 〉= |0 〉⊗n

2: Initialize the (m+1)-qubits fitness quantum register |fitnessu 〉= |0 〉⊗(m+1)

3: Initialize the oracle workspace 1-qubit quantum register |ws 〉= |0 〉
4: Create the quantum circuit QC
5: Apply conventional GA such that GAsolution = GA(|u 〉), where GAsolution encodes the

values and the positions of the fixed k qubits.
6: |u 〉=H⊗n|0 〉⊗n 7−→ 1

√
2n
∑2n−1

u=0 |u 〉

7: |ws 〉=H |0 〉 7−→ 1
√
2
(|0 〉+|1 〉)

Algorithm 3 Conventional genetic algorithm individual initialization
1: while gene is not generated do
2: Generate a random value that represents the gene value.
3: if gene is not already generated then
4: Randomly generate the sign of the gene.
5: if sign is 0 then
6: Gene value is negated.
7: end if
8: Append gene value.
9: end if
10: end while

The conventional GA searches for the optimal configurations that maximize the fitness,
given the search space limitations dictated by fixing qubits in the individuals’ register.
The GA is a classical (i.e., non-quantum) algorithm that starts by generating an initial
population according to Algorithm 3 and then calculates the fitness for each chromosome.
To define a format that encodes each fixed qubit’s value and position in the register, we
define a constraint on the chromosome format. As such, we consider that the absolute
value of the gene v encodes the position of the fixed qubit; the sign of the gene encodes the
fixed qubit’s value. Therefore, a negative v means ‘0’ on position/index v in the individual

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

Figure 3 An example of chromosome encoding. The absolute value of the gene v encodes the position
of the fixed qubit while the gene encodes the fixed qubit’s value.−vi, i = 0,k−1 means ‘0’ on position vi
in the individual quantum register, while+vi means ‘1’ on position vi in the individual quantum register.
NGA is the number of individuals in the conventional GA’s population.

Full-size DOI: 10.7717/peerjcs.2210/fig-3

quantum register (bv = 0), while a positive v means ‘1’ on position v in the individual
quantum register (bv = 1). In Fig. 3 we present an example of chromosome encoding in
the conventional GA’s population.

The classical GA evolves the population of chromosomes across multiple generations
in search of the maximum fitness (which corresponds to the solution). Each generation of
chromosomes is evaluated to select the fittest individuals; we used a probabilistic method
where the chances of being selected are proportional to the respective fitness values
(Spector, 2004). The percentage of the population selected for crossover is 32% (similar
to other classical GA approaches) (Stanhope & Daida, 1998). Then, we perform fixed
point crossover and random mutation (with an adaptive mutation rate) to obtain a new
generation of offspring chromosomes. (We did not use elitism for the fittest individuals.)
The termination conditions are met when, as shown in Algorithm 4, we find an optimal
solution (corresponding to the maximum fitness) or the number of generations exceeds a
maximum number (which is given as a parameter). In Fig. 4A, we present the conventional
GA operator symbol that we integrate in the HQAGO design, while Fig. 4B presents the
circuit implementation of the operator.

The next step in HQAGO is to calculate the superposed fitness values of all individuals
in the fitness register. Such a quantum fitness function maintains the correlation
between each individual and its corresponding fitness value; it is applied to valid and
non-valid individuals. Thus, as presented in Udrescu, Prodan & Vlăduţiu (2006) the

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 8/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-3
http://dx.doi.org/10.7717/peerj-cs.2210

(a) (b)

Figure 4 Classical GA circuit applied on the individuals’ quantum register. (A) We present the GA op-
erator symbol while in (B) we present the gate-level implementation of the circuit.

Full-size DOI: 10.7717/peerjcs.2210/fig-4

Algorithm 4 Conventional Genetic Algorithm optimization
1: for each individual in population do
2: Initialize individual .
3: Calculate fitness.
4: end for
5: Select fittest individuals from population.
6: while fitness<maximum fitness and maximum number of generations not exceeded

do
7: Save the fittest individuals (selection) in order to form the new population.
8: Apply crossover operation on selected individuals and save the offsprings.
9: Mutate the new population resulting from the fittest individuals and offsprings.
10: Select the fittest individuals from the new population.
11: end while

assessment operator Ufit , is a unitary operator characterized by a Boolean fitness function
ffit : {0,1}n→{0,1}m+1,

ffit (x)=

{
0×{0,1}m, x is a non-valid individual
1×{0,1}m, otherwise,

(3)

where m represents the number of qubits in the fitness register.
The fitness value is encoded using (m+1)-qubits with themost significant one indicating

the validity of the individual; when the most significant bit is ‘0’, it means a non-valid

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 9/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-4
http://dx.doi.org/10.7717/peerj-cs.2210

individual; when ‘1’, it means a valid one. As such, the values returned by ffit represented
in two’s complement belong to distinct fitness areas corresponding to valid and non-valid
individuals (a non-valid chromosome configuration represents a combination that does
not satisfy some given conditions) (Udrescu, Prodan & Vlăduţiu, 2006). Naturally, Ufit

characterized by the fitness function f is an unitary operator,

Ufit : |u 〉ind⊗|0 〉fit 7−→ |u 〉ind⊗|ffit (u) 〉, (4)

where |u 〉ind⊗|• 〉fit is the individual-fitness value quantum pair register(| • 〉 stands for
either |0 〉 or |ffit (u) 〉).

Explicitly applying the Ufit operator on all superposed individuals means

|ψ 〉3=Ufit |ψ 〉2=Ufit :
1

√
2n−k

∑
u∈Sk

|u 〉ind⊗|0 〉fit 7−→
1

√
2n−k

∑
u∈Sk

|u 〉ind⊗|ffit (u) 〉fit . (5)

In Fig. 5, we present the symbol of theUfit operator, with input and output qubits; Fig. 6
shows the gate-level implementation of the operator. Algorithm 5 explains the assessment
by fitness operation.

Algorithm 5 Assessment operation
1: for each individual in population do
2: Calculate fitness
3: Apply Ufit operator
4: if fitness value is valid then
5: Mark individual as valid by setting fM = 1.
6: end if
7: end for

In the next step, we apply the Oracle and Grover diffuser (i.e., the Grover iteration)
O
(√

2(n−k)
)
times. Like in RQGA, we generate a random value max ∈N,max > 0 in the

interval [2m+1,2m+2−1), such that the search for the individual with the highest fitness
will occur in the valid individuals’ area (Udrescu, Prodan & Vlăduţiu, 2006). The oracle O
operates on the fitness quantum register qubits except for the validity qubit v (see Fig. 7),
and uses two’s complement representation for marking the states with a value greater than
max . (By subtracting max from all fitness values, only the fitnesses equal or greater than
max will remain positive and will be marked with a negative phase.)

Accordingly, the oracle Õmax
(
ffit (u)

)
is applied on the register |• 〉fit from state |ψ 〉3,

|ψ 〉4= Õmax |ψ 〉3 7−→ (−1)g (u)
1

√
2n−k

∑
u∈Sk

|u 〉ind⊗|ffit (u) 〉fit , (6)

where

g (u)=

{
1 if |ffit (u) 〉fit >max
0 otherwise.

(7)

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 10/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

individual
register

fitness
register

Figure 5 The symbol of theUfit circuit, its inputs and outputs.
Full-size DOI: 10.7717/peerjcs.2210/fig-5

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 11/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-5
http://dx.doi.org/10.7717/peerj-cs.2210

Figure 6 The gate-level implementation of theUfit sub-circuit utilizes n-qubit Controlled-not gates
(Nielsen & Chuang, 2002). The qubits from the individuals’ register are control qubits, and the qubits
from the fitness registers are target qubits. v is the valid qubit that indicates the validity of the correspond-
ing chromosome.

Full-size DOI: 10.7717/peerjcs.2210/fig-6

fitness
register

max
value
register

Figure 7 Grover circuit. The oracle uses 2 two’s complement quantum adders, 2 Hadamard gates, and 1
n-qubit Controlled-not gate.Max value register is the quantum register storing themax value, while c0 and
c1 are the carry qubits used in the subtraction and addition circuits; v is the valid qubit that indicates the
validity of the corresponding chromosome; ws is the oracle workspace qubit (Udrescu, Prodan & Vlăduţiu,
2006). The diffuser utilizes Hadamard, Pauli-X, and n-qubit Controlled-not gates.

Full-size DOI: 10.7717/peerjcs.2210/fig-7

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 12/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-6
https://doi.org/10.7717/peerjcs.2210/fig-7
http://dx.doi.org/10.7717/peerj-cs.2210

Figure 8 Quantum subtractor design on 8-qubit numbers using QRCA as in (Cuccaro et al., 2004),
where a0,a1,...,a7 represent the first operand and b0,b1,...,b7 encode the second operand.

Full-size DOI: 10.7717/peerjcs.2210/fig-8

The oracle O is implemented using two’s complement quantum adders and subtractors
(Udrescu, Prodan & Vlăduţiu, 2006); it is applied on the entire fitness register, except for the
validity qubit. Using two’s complement addition does not affect the correlation between
the individual and its corresponding fitness value since addition is a pseudo-classical
permutation function. Hence, by subtracting and addingmax+1 to the fitness register, all
basis states for which the fitness value is greater than max+1 are marked by multiplying
their amplitudes with−1. (In other words, marking a superposed state means its amplitude
becomes negative.)

We may consider Quantum Carry Look-Ahead Adder (QCLAA), as presented in Cheng
& Tseng (2002), or Quantum Ripple Carry Adder (QRCA), see Cuccaro et al. (2004),
as possible implementations for the quantum adders. Figure 8 presents the gate-level
implementation of the subtractor using QRCA. We opted for a ripple-carry adder because
it offers an advantage over the Quantum Carry Look-Ahead Adder (QCLAA) in terms of
the number of qubits used. For an n-qubits individuals’ register and O

(√
2n−k

)
Grover

iterations, using the QRCA circuit requires 2
√
2n−k+1 carry qubits (1 carry-in qubit and

2 qubits for carry-out in each iteration—1 carry-out qubit for each adder). The QCLAA
requires a total of 2(n−k+1) carry qubits in each iteration, namely n−k+1 carry qubits
for each adder. Therefore, from the perspective of the additional required qubits, using
QCLAA is not an acceptable solution for our implementation.

Next, we iterate the Grover diffuser
√
2n−k times, to augment the amplitudes of the

marked states |ψ 〉i= |ffit (u) 〉i with ffit (u)>max in the fitness register; thus, the resulting

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 13/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-8
http://dx.doi.org/10.7717/peerj-cs.2210

population becomes

|ψ 〉5=G|ψ 〉4 . (8)

In Algorithm 6 we present the effects of using the Grover circuit implemented according
to Fig. 7, where |ws 〉 represents the workspace.

Algorithm 6 Grover algorithm
1: Subtractmax value from the fitness values
2: |ws 〉=H |ws 〉
3: |ws 〉=CNOT (|fitnessu 〉,|ws 〉)
4: |ws 〉=H |ws 〉
5: Addmax value to the fitness value
6: Use Grover iteration to find the marked states, |ψ 〉 = |ffit (u) 〉i with ffit (u)>max , in

the fitness register.

After iterating the Grover diffuser
√
2n−k times, we measure the fitness register | • 〉

to obtain (with a high probability) a fitness value ≥max in | • 〉; thus, in the individual
register, we get a superposition of individuals that generate fitness values ≥max . We
then update the max value with the measured fitness value. The entire Grover algorithm
procedure is applied multiple times until the max value is no longer improved, and the
measured fitness value corresponds to the solution (or one of the solutions). To find the
solution that solves our problem, we need to measure the individual register (in this state,
the individual register is a superposition of individuals that generate the highest fitness).
Algorithm 7 presents the entire implementation of our HQAGO method, and in Fig. 9 the
circuit implementation. (In Supplemental Information, Knapsack problem example, we
present a step-by-step example of how Algorithm 7 works on an instance of the Knapsack
problem.)

Space complexity
Solving real-world problems using quantum algorithms requires large numbers of qubits
when accounting for error correction. As mentioned in (Tănăsescu, Constantinescu &
Popescu, 2022), factoring a 2,048-bit number using Shor’s algorithm (Shor, 1994) requires
400,000 qubits when error correction is accounted for. In our previous work, see (Ardelean
& Udrescu, 2022a), we showed that for solving the knapsack problem, the total number of
qubits required by RQGA grows exponentially as the number of qubits used for individual
representation grows. Thus, for solving real-world problems using error-corrected qubits
is necessary to implement hybrid solutions that capitalize on the quantum speed advantage
and reduce the number of required logical qubits.

Our HQAGO requires n qubits to encode the individuals’ register, m+1 qubits for the
fitness register, andm qubits for themax value representation. Additionally, the algorithm
requires 2 · r + 1 carry-qubits in the oracle architecture and one qubit for the Oracle
workspace. Altogether, the space complexity of the algorithm is 2 · (m+1+ r)+n+1.

In Fig. 10, we compare the pure quantum configuration of HQAGO (i.e., no fixed
qubits) with the algorithm configurations with 2 and 3 fixed qubits. The circuit’s critical

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210

individual
register

fitness
register

max
value
register

Figure 9 Hybrid quantum algorithmwith genetic optimization circuit implementation. The u qubits
make out the individuals’ quantum register, f qubits represent the fitness quantum register, while v is the
valid qubit; the val qubits represent themax value (Udrescu, Prodan & Vlăduţiu, 2006). The carry-in and
carry-out qubits used by adder sub-circuits are c0 and c1. For simplicity, we represent only one Grover It-
eration and one maximum finding iteration.

Full-size DOI: 10.7717/peerjcs.2210/fig-9

Algorithm 7Hybrid Quantum Algorithm with Genetic Optimization

1: |ψ 〉1=
1
√
2n
∑2n−1

u=0 |u 〉ind⊗|0 〉fit .
2: Apply conventional Genetic Algorithm outcome outcome, |ψ 〉2=GA|ψ 〉1.
3: Apply unitary operation Ufit corresponding to fitness computation, |ψ 〉3=Ufit |ψ 〉2

4: Randomly generate the real valuemax ∈ [2m+1,2m+2−1)
5: repeat F Iterates Nmf times, where Nmf represents the number of iterations of the

maximum finding algorithm.
6: Apply the oracleO on the entire fitness register except for the validity qubit.
|ffit (u) 〉fit basis states are marked if |ffit (u) 〉fit >max .

7: Use Grover iteration to find the marked states, |ψ 〉 = |ffit (u) 〉fit with ffit (u) >
max , in the fitness register.

8: max = |ψ 〉.
9: until untilmax no longer improves.
10: Measure |u 〉ind register in order to obtain the corresponding individual which repre-

sents the solution.

path length is the same in all three setups. As shown, the complexity of the quantum circuit
decreases as we increase the number of fixed qubits.

Time complexity
HQAGO fixes k qubits, meaning that the time complexity of the quantum part isNgi×Nmf ,
where Ngi=

√
2n−k is the number of Grover iterations and Nmf is a linear function of n

that represents the number of iterations of the maximum finding algorithm (Ahuja &
Kapoor, 1999). This way, we control the time complexity of HQAGO by increasing k.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 15/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-9
http://dx.doi.org/10.7717/peerj-cs.2210

Figure 10 Comparison between the pure quantumHQAGO (equivalent to RQGA) and the HQAGO
with 2 and 3 fixed qubits, from the perspective of circuit complexity. (The critical path length is the
maximum number of gates between the input and the output in the quantum circuit.).

Full-size DOI: 10.7717/peerjcs.2210/fig-10

However, the total time complexity of HQAGO comprises both the quantum and the
classical GA parts. The time performance of the classical GA depends on the application
domain and implementation parameters (Ankenbrandt, 1991); it can be predicted as a
function of the population size, cardinality of the representation, the complexity of the
evaluation function, and the fitness ratio. Nonetheless, the assessment of convergence in
the classical GA is beyond the scope of this study. Still, we note that bounding the number
of generations controls the classical GA runtime.

Indeed, HQAGO aims to reduce the algorithm’s complexity by reducing the number of
Grover iterations, thus improving the performance at the cost of adding the classical GA.
For the individual quantum register |u 〉ind ∈ S,|S| = 2n we fix a subset of k qubits—using
classical GA—such that |u 〉ind ∈ Sk ⊆ S,|Sk | = 2n−k . Therefore, we employ Grover’s
search algorithm (Grover, 1996) on a reduced search space Sk , so that HQAGO requires
O
(√

2n−k
)
oracle queries for NP-hard problems with unique solution (global optimum),

and O
(√

2n−k
M

)
for problems with M solutions (Nielsen & Chuang, 2002). The best

performance of HQAGO is determined experimentally by finding the ’’sweet spot’’ in
which the number of classical GA generations and the number of Grover iterations is
minimized. In Fig. 11 we present the complexity reduction both theoretical (according to
the O notation functions) and simulated. As shown, the algorithm’s complexity decreases
exponentially as the number of fixed qubits increases.

RESULTS
We use the Qiskit toolchain (Javadi-Abhari et al., 2024) to analyze the conventional GA’s
convergence and measure the quantum algorithm’s performance. Qiskit is an open-source
library for quantum computing that enables interaction with the IBM Q hardware and

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 16/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-10
http://dx.doi.org/10.7717/peerj-cs.2210

1 2 3 4
Number of fixed qubits, k

0

10

20

30

40

Nu
m

be
r o

f G
ro

ve
r q

ue
rie

s,
r

(a)

Simulated complexity reduction
Maximum number
of iterations
Minimum number
of iterations

1 2 3 4
Number of fixed qubits, k

0

5

10

15

20

25

30

Nu
m

be
r o

f G
ro

ve
r q

ue
rie

s,
r

(b)

Theoretical complexity reduction
One maximum
finding iteration
All maximum
finding iterations

Figure 11 (A) Presents the theoretical complexity reduction of HQAGO according to the calculated
O-notation formulas. We calculate the number of iterations for the maximum finding algorithm (
Nmf) using a linear functionNmf (x)= a · x + bwhere x is the number of qubits, and a= 1 and b= 0.3
are the fixed-values parameters approximated after multiple experiments. In (B) we present the com-
plexity reduction of the algorithm determined after simulating the knapsack problem.

Full-size DOI: 10.7717/peerjcs.2210/fig-11

fosters the development and simulation of quantum algorithms (Wille, Van Meter &
Naveh, 2019). We instantiated HQAGO, as presented in Fig. 9, using the IBMQ back
end, simulator_mps (version 0.1.547 with a configuration of 16 shots) from the ibm-q
provider. The simulator is a tensor-network simulator that uses Matrix Product State
representation—limited to 100-qubit circuits. The following basic gates are available on
simulator_mps: U1, U2, U3, U, P, CP, CX, CZ, ID, X, Y, Z, H, S, SDG, SX, T, TDG, SWAP,
CCX, UNITARY, ROERROR, DELAY.

To assessHQAGOperformance, we propose two applications representing instantiations
of the algorithm: one that solves the knapsack problem and the second one solves
graph coloring problems. We also compare the outcome of the graph Coloring problem
simulation with our previous results (Ardelean & Udrescu, 2022b).

Knapsack problem
The knapsack problem is defined as the task to efficiently fill a fixed capacity knapsack with
items from a finite set. LetW denote the maximumweight the knapsack can accommodate
and T the total number of available items; wi represents the weight of the i-th item, and
pi represents its value. The goal is to load the knapsack in a way that maximizes the total
value of the items while keeping the weight within the capacity limit.

The knapsack problem is a well-studiedNP-hard problemwith numerous applications in
fields such as machine scheduling, space allocation, asset optimization, financial modeling,
production and inventory management, design of network models, and traffic overload
control in telecommunication systems (Badiru, 2009; Bretthauer & Shetty, 2002). Other

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 17/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-11
http://dx.doi.org/10.7717/peerj-cs.2210

applications focus on scheduling hard real-time tasks and deterministic cache memory
utilization (Nawrocki et al., 2009).

We consider a knapsack with a maximum capacityW = 20 kilograms and the following
T = 5 items: Item0 has 3 kg and a value of 3$, Item1 has 2 kg and a value of 5$, Item2 has 4
kg and a value of 10$, Item3 has 7 kg and a value of 5$, and Item4 has 9 kg and a value of 15$.
Therefore, we define a search space of 5 qubits, each representing an individual. We then
variate the number of fixed individuals: from 0 (representing a pure quantum solution) to 5
(representing a classical GA).We perform each simulation 100 times and record the number
of solutions found—in terms of local and global maximums—and the average number
of Grover iterations and classical GA generations. Under these experimental conditions,
we performed 3 types of experiments, implementing distinct strategies for mutation in
the conventional GA that fixes qubits in the individuals’ register: GA with non-adaptive
mutation, GA with adaptive mutation probability, and GA with the adaptive percentage of
the mutated genes. In Supplementary Information, Knapsack problem example, we present
an example of how to apply HQAGO to solve the Knapsack problem.

We configured the classical GA algorithm to use roulette-wheel selection, single-point
crossover, and random mutation. The crossover probability is 0.6, 2 parents are involved
in the crossover, and the mutation rate for the non-adaptive mutation is 0.00002. We
configured a population of 100 individuals that would evolve over 100 generations, with
the possibility to stop the evolution after a saturation point of 30 generations. For the
experiments in which we use adaptive mutation probability, the individual with the worst
fitness has a 0.15 probability of mutation; in contrast, the individual with the best fitness
has a probability of 0.005. We mutate 21% of the genes of the individual with the worst
fitness and 13% of the genes of the individual with the best fitness in the simulations in
which we use mutation with the adaptive percentage of the mutated genes. (We adopted
these GA parameter values inspired by previous approaches in using GAs for quantum
circuit synthesis (Ruican et al., 2008).)

In Supplemental Information, Conventional GA with non-adaptive mutation, Fig. S1,
the pure quantumHQAGO finds the best solution after 8 RQGA iterations, while in Figs S2
and S3, S4, and S5 we notice that the number of iterations decreases. Thus, using classical
GA to fix genes reduces the number of RQGA (HQAGO with no fixed qubits) iterations
because non-valid solutions are discarded. In Fig. S6 from Supplemental Information,
Conventional GA with non-adaptive mutation, we present the results—in terms of best
and valid solutions—of the HQAGO with all the genes fixed (representing a classic GA).
As presented, the best outcome is achieved after 21 classical GA generations.

We achieved the same expected outcome after using adaptive mutation for the classical
GA. In Figs. S7, S8, and S9 from Supplemental Information, Conventional GA with
adaptive mutation probabilities, we show that HQAGO finds the best outcome after eight
RQGA iterations. Moreover, by fixing more genes, we significantly decrease the number of
iterations, as presented in Figs. S10 and S11. As illustrated in Fig. S12, the classic HQAGO
(i.e., all qubits in the individuals’ register are fixed) requires 25 classical GA generations to
find the best outcome.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 18/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210

Table 1 Summary of results from the plots presented in the Supplemental Information, Knapsack problem. The table shows the number of
fixed qubits, GA generations, RQGA generations, best solutions (global maximums), and valid solutions (local maximums) for different ga configu-
rations.

Number of
fixed qubits

Number of
GA generations

Number of
RQGA generations

Number of
valid solutions

Number of
best solutions

0 fixed qubits
(pure quantum
solution)

0 8 79 19

1 fixed qubit 10 8 78 21
2 fixed qubits 10 8 52 43
3 fixed qubits 10 6 53 34
4 fixed qubits 10 2 62 28

Conventional GA
with non-adaptive
mutation

5 fixed qubits
(classical GA)

21 0 62 38

0 fixed qubits
(pure quantum
solution)

0 8 79 19

1 fixed qubit 10 8 74 25
2 fixed qubits 10 8 59 36
3 fixed qubits 10 6 48 43
4 fixed qubits 10 2 64 29

Conventional GA
with adaptive
mutation
probabilities

5 fixed qubits
(classical GA)

22 0 56 41

0 fixed qubits
(pure quantum
solution)

0 8 80 20

1 fixed qubit 10 8 82 16
2 fixed qubits 10 8 56 41
3 fixed qubits 10 6 37 46
4 fixed qubits 10 2 65 24

Conventional GA
with adaptive
percentage of
mutated genes

5 fixed qubits
(classical GA)

21 0 61 35

Changing the percentage of the mutated genes adaptively, the algorithm (as presented
in Figs. S14, S15, S16, and S17 from the Supplemental Information, Conventional GA
with adaptive percentage of the mutated genes) requires fewer RQGA iterations than the
pure quantum solution (see Fig. S13) or the classic HQAGO (all individual qubits fixed,
see Fig. S18). In Table 1 we show a summary of the results presented in Supplemental
Information, Knapsack Problem.

As presented in Figs. 12A, 12C, and 12E, the average number of Grover iterations
decreases as we increase the number of fixed qubits. The experiment confirms our
expectations that, by using classical GA to fix genes, the search space size is reduced (our
search space is represented only by valid solutions while non-valid ones are discarded).
Therefore, our approach reduces the complexity of the quantum search algorithm. The
average number of Grover iterations—calculated as the product between the number

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210

(a) (b)

(c) (d)

(e) (f)

Figure 12 (A, C, and E) show the number of Grover iterations to find the solution for the Knapsack
problem withm = 8 and n = 5 while in (B, D, and F) we present the relationship between the average
number of Grover iterations and the average number of GA generations. (A, B) The conventional GA
has non-adaptive mutation. In (C, D) the conventional GA has adaptive mutation probability, while (E, F)
have adaptive percentages of the mutated genes.

Full-size DOI: 10.7717/peerjcs.2210/fig-12

of Grover iterations per RQGA iteration and the average number of RQGA iterations—
decreases as the search space is reduced by fixing genes. In Table 2 we summarize the results
presented in Figs. 12A, 12C, and 12E.

In Figs. 12B, 12D, and 12F we present the relationship between the average number
of Grover iterations and the average number of classical GA generations. By variating
the number of fixed qubits, we observe a sweet spot in which both the average number
of Grover iterations and the average number of classical GA generations are minimized.
Table 3 summarizes the results presented in Figs. 12B, 12D, and 12F.

Graph coloring problem
Consider an undirected graph G= (V ,E) where V is the set of nodes and E represent
the set of edges. We define C as the set of colors. The graph coloring problem is defined
as finding the best way of assigning the colors in C to nodes from V, such that no two
adjacent nodes, vi,vj ∈V ,eij ∈ E , have the same color (c (vi) 6= c

(
vj
)
. (Titiloye & Crispin,

2011) defines the coloring of G as a mapping c :V→ E , such that c (vi) 6= c
(
vj
)
if ∃eij ∈ E .

The chromatic number of the graph, χ(G) represents the minimum number of colors that
can color the graph G.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 20/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-12
http://dx.doi.org/10.7717/peerj-cs.2210

Table 2 The relation between the number of Grover iterations and the number of fixed qubits. For the
Knapsack problem we defined a search space of five qubits, each representing an individual, and a fitness
register of eight qubits. We variate the number of fixed individuals from 0 (representing a pure quantum
solution) to 5 (representing a classical GA). We performed simulations in which the classical GA is config-
ured to use a non-adaptive mutation, adaptive mutation probability, and adaptive percentage of the mu-
tated genes.

Number of Grover iterations

Number of
fixed qubits

GA with
non-adaptive mutation

GA with adaptive
mutation probability

GA with adaptive
percentage of the
mutated genes

0 11 9 13
1 9 7 11
2 4 3 6
3 4 3 6
4 2 1 2
5 2 1 2

Table 3 The relation between the average number of Grover iterations and the average number of GA
generations. For the Knapsack problem, we defined a search space of five qubits, each representing an in-
dividual, and a fitness register of eight qubits. We varied the number of fixed individuals from 0 (repre-
senting a pure quantum solution) to 5 (representing a classical GA). We performed simulations in which
the classical GA is configured to use a non-adaptive mutation, adaptive mutation probability, and adaptive
percentage of the mutated genes.

Average number of
Grover iterations

Average number of
GA generations

Number of fixed qubits 0 1 2 3 4 5 0 1 2 3 4 5

GA with non-adaptive
mutation

11 9 4 4 3 3 0 10 10 10 10 15

GA with adaptive
mutation probability

9 6 4 4 2 2 0 10 10 11 10 17

GA with adaptive
percentage of the
mutated genes

14 11 6 6 3 3 0 10 10 11 11 18

The graph coloring problem has multiple applications, such as timetabling, scheduling,
radiofrequency assignment, computer register allocation, printed circuit board testing, and
register allocation (Mahmoudi & Lotfi, 2015; Hennessy & Patterson, 2018). Others identify
applications of graph coloring in routing and wavelength assignment, dichotomy-based
constrained encoding, frequency assignment problems, and scheduling (Demange et al.,
2015; Orden et al., 2018).

For the graph coloring problem, an example search space is defined by the graph
presented in Fig. 13A. We variate the number of fixed qubits in the individuals’ register
and perform each simulation 100 times. The classical GA uses non-adaptive mutation with
a rate of 0.00002. We use roulette-wheel selection, single-point crossover, and random
mutation. The crossover probability is 0.6, with 2 parents involved. We evolve a population

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 21/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

a) b)

c)

Figure 13 (A) and (B) show the Erdös-Rényi graph generated with edge probability 0.7 and 5 nodes,
and the solution that colors the graph. (C) Depicts the experimental results; after 3 iterations the algo-
rithm produced 9 valid solutions, of which 2 are the best. Individual’s register size is n= 10 and Fitness
register size ism= 8.

Full-size DOI: 10.7717/peerjcs.2210/fig-13

of 100 individuals over 100 generations. As presented in Fig. 13B, the algorithm solves
the Graph Coloring problem and determines the chromatic number. In Fig. 13C, we
present the relationship between the average number of Grover iterations and the average
number of classical GA generations. As observed, the number of Grover Iterations and GA
generations decrease as the search space is reduced by fixing genes.

In Supplemental Information, Graph coloring problem, Figs. S19A and S19B we present
the graph used for coloring and the solution. In Figs. S20, S21, S22, and S23 we present
the outcome of the HQAGO with different numbers of fixed qubits–from 1 fixed gene in
Fig. S20 to 4 fixed genes in Fig. S23. In Table 4 we show a summary of the results presented
in Supplemental Information, Graph coloring problem.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 22/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2210/fig-13
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supp-1
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210

Table 4 Summary of results from the plots presented in the Supplemental Information, Graph coloring problem. The table shows the number
of fixed qubits, GA generations, RQGA generations, best solutions, and valid solutions for different genetic algorithm (GA) configurations.

Number of
fixed qubits

Number of
GA generations

Number of
RQGA generations

Number of
valid solutions

Number of
best solutions

0 fixed individuals
(pure quantum solution)
(Ardelean & Udrescu, 2022b)

0 3 8 2

1 fixed individual 10 2 8 3
2 fixed individuals 10 2 47 7
3 fixed individuals 10 2 45 15

Conventional GA
with non-adaptive
mutation

4 fixed individuals 10 2 62 10

CONCLUSIONS
This article presents a novel quantum genetic algorithm, based on RQGA, that controls the
algorithm complexity by reducing the search space. Accordingly, the proposed HQAGO
solves NP-hard problems in O

(√
2n−k

)
oracle queries.

Therefore, the main advantage of our approach is that it boosts searches large solution
spaces using a limited number of qubits. More precisely, compared to the state-of-the-art,
our algorithm enables solving complex problems using fewer qubits at the cost of adding
extra circuitry to instantiate the conventional GA.

The limitation of our approach is that—from a theoretical standpoint—by fixing
k individual’s chromosome qubits, the conventional genetic algorithm may exclude
the maximum-fitness solution(s). Dealing with such undesired situations may require
running the HQAGO several times or optimizing the conventional GA part. Even with an
elementary, straightforward approach to designing the conventional GA in this article’s
simulations, we still obtained the best solutions in all HQAGO runs. Further research on
more sophisticated conventional GAmethods, whichmay include combining our approach
with similar ones, should lead to even better performance.

The use cases of the HQAGO are the typical application cases for classical GAs, varying
from scheduling problems to molecular docking and neural network optimizations.
Consequently, HQAGO can be used for register allocation as presented in (Hennessy
& Patterson, 2018), Wi-Fi channel assignment in Orden et al. (2018), and scheduling
applications (e.g., PCBs on a single machine for processing, see Maimon & Braha (1998),
scheduling of hard real-time tasks, see Nawrocki et al. (2009)). HQAGO can also be
used in molecular docking to predict the bound conformations of flexible ligands to
macromolecular targets (Westhead, Clark & Murray, 1997; Morris et al., 1998). Searches
performed with HQAGO can be effectively employed in RNA secondary structure
prediction since GAs are utilized for the simulation of the RNA folding process and
the investigation of possible folding pathways (Van Batenburg, Gultyaev & Pleij, 1995).
Neural network optimization may also apply HQAGO due to its reduced/controlled
algorithm complexity. Indeed, classical GAs are already utilized for the Back-Propagation
(BP) algorithm optimization, see Ding, Su & Yu (2011). (As mentioned by the authors, the
network trained with GA and BP has better generalization ability and good stabilization

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 23/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210

performance.) GAs are also used for tuning the structure and parameters of a neural
network to reduce the fully connected neural network to a partially connected network
(Leung et al., 2003); thus, HQAGO can be beneficial for artificial intelligence applications
as well.

In the mentioned use cases, the search space varies between 225, as shown in Nawrocki
et al. (2009), and 1030 for the RNA folding as inWesthead, Clark & Murray (1997). In such
instances, HQAGO requires runtimes of the ordersO

(√
225
)
, andO

(√
1030

)
. Compared

to a fully-quantum solution, the HQAGO’s convergence requires fewer generations
by marking k-qubits and discarding the less-fit individuals and the circuit complexity
decreases due to a reduced number of quantum gates and qubits.

Acronyms

BP Back-Propagation
GA Genetic Algorithm
HQAGO Hybrid Quantum Algorithm with Genetic Optimization.
QCLAA Quantum Carry Look-Ahead Adder
QGA Quantum Genetic Algorithm
QGOA Quantum Genetic Optimization Algorithm
QIGA Quantum-Inspired Genetic Algorithm
QRCA Quantum Ripple Carry Adder
RQGA Reduced Quantum Genetic Algorithm

ACKNOWLEDGEMENTS
We acknowledge the use of the IBM Q for this work. The views expressed are those of the
authors and do not reflect the official policy or position of IBM or the IBM Q team.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sebastian Mihai Ardelean conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Mihai Udrescu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 24/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2210

Data Availability
The following information was supplied regarding data availability:

The Hybrid quantum search with genetic algorithm optimization is available at Github
and Zenodo:

- https://github.com/sebastianardelean/hqago.
- Sebastian Ardelean, & ars. (2024). sebastianardelean/hqago: HQAGO framework

(hqago). Zenodo. https://doi.org/10.5281/zenodo.12535319.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2210#supplemental-information.

REFERENCES
Acampora G, Vitiello A. 2021. Implementing evolutionary optimization on actual quan-

tum processors. Information Sciences 575:542–562 DOI 10.1016/j.ins.2021.06.049.
Ahuja A, Kapoor S. 1999. A quantum algorithm for finding the maximum. arXiv:quant-

ph/9911082.
Ankenbrandt CA. 1991. An extension to the theory of convergence and a proof of the

time complexity of genetic algorithms. In: Foundations of genetic algorithms. Vol. 1.
organ Kaufmann Publishers, San Mateo, California: Elsevier, 53–68.

Ardelean SM, UdrescuM. 2022a. Circuit level implementation of the reduced quantum
genetic algorithm using qiskit. In: 2022 IEEE 16th international symposium on applied
computational intelligence and informatics (SACI). Piscataway: IEEE, 000155–000160.

Ardelean SM, UdrescuM. 2022b. Graph coloring using the reduced quantum genetic
algorithm. PeerJ Computer Science 8:e836 DOI 10.7717/peerj-cs.836.

Badiru K. 2009. Knapsack problems; methods, models and applications. Norman, Okla-
homa: University of Oklahoma.

Bretthauer KM, Shetty B. 2002. The nonlinear knapsack problem—algorithms
and applications. European Journal of Operational Research 138(3):459–472
DOI 10.1016/S0377-2217(01)00179-5.

Cheng K-W, Tseng C-C. 2002. Quantum plain and carry look-ahead adders.
arXiv:quant-ph/0206028.

Cuccaro SA, Draper TG, Kutin SA, Moulton DP. 2004. A new quantum ripple-carry
addition circuit. arXiv:quant-ph/0410184.

DemangeM, Ekim T, Ries B, Tanasescu C. 2015. On some applications of the selective
graph coloring problem. European Journal of Operational Research 240(2):307–314
DOI 10.1016/j.ejor.2014.05.011.

Ding S, Su C, Yu J. 2011. An optimizing BP neural network algorithm based on genetic
algorithm. Artificial Intelligence Review 36(2):153–162
DOI 10.1007/s10462-011-9208-z.

Escobar-Cuevas H, Cuevas E, Gálvez J, Avila K. 2024a. A novel hybrid search strategy
for evolutionary fuzzy optimization approach. Neural Computing and Applications
36(6):2633–2652 DOI 10.1007/s00521-023-09161-0.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 25/27

https://peerj.com
https://github.com/sebastianardelean/hqago
https://doi.org/10.5281/zenodo.12535319
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2210#supplemental-information
http://dx.doi.org/10.1016/j.ins.2021.06.049
http://dx.doi.org/10.7717/peerj-cs.836
http://dx.doi.org/10.1016/S0377-2217(01)00179-5
http://dx.doi.org/10.1016/j.ejor.2014.05.011
http://dx.doi.org/10.1007/s10462-011-9208-z
http://dx.doi.org/10.1007/s00521-023-09161-0
http://dx.doi.org/10.7717/peerj-cs.2210

Escobar-Cuevas H, Cuevas E, Gálvez J, Toski M. 2024b. A novel optimization approach
based on unstructured evolutionary game theory.Mathematics and Computers in
Simulation 219:454–472 DOI 10.1016/j.matcom.2023.12.027.

Gepp A, Stocks P. 2009. A review of procedures to evolve quantum algorithms. Genetic
Programming and Evolvable Machines 10(2):181–228 DOI 10.1007/s10710-009-9080-7.

Giraldi GA, Portugal R, Thess RN. 2004. Genetic algorithms and quantum computation.
arXiv:cs/0403003.

Grover LK. 1996. A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the twenty-eighth annual ACM symposium on theory of computing. 212–219.

Hennessy JL, Patterson DA. 2018. Computer architecture: a quantitative approach.
Cambridge: Elsevier.

Javadi-Abhari A, TreinishM, Krsulich K,Wood CJ, Lishman J, Gacon J, Martiel S,
Nation PD, Bishop LS, Cross AW, Johnson BR, Gambetta JM. 2024. Quantum
computing with Qiskit. ArXiv arXiv:2405.08810.

Lahoz-Beltra R. 2016. Quantum genetic algorithms for computer scientists. Computers
5(4):24 DOI 10.3390/computers5040024.

Lahoz-Beltra R. 2023. The conquest of quantum genetic algorithms: the adventure to
cross the valley of death. ArXiv arXiv:2401.08631.

Leung FH-F, LamH-K, Ling S-H, Tam PK-S. 2003. Tuning of the structure and param-
eters of a neural network using an improved genetic algorithm. IEEE Transactions on
Neural Networks 14(1):79–88 DOI 10.1109/TNN.2002.804317.

Mahmoudi S, Lotfi S. 2015.Modified cuckoo optimization algorithm (MCOA) to solve
graph coloring problem. Applied Soft Computing 33:48–64
DOI 10.1016/j.asoc.2015.04.020.

Maimon O, Braha D. 1998. A genetic algorithm approach to scheduling PCBs on
a single machine. International Journal of Production Research 36(3):761–784
DOI 10.1080/002075498193688.

Malossini A, Blanzieri E, Calarco T. 2008. Quantum genetic optimization. IEEE Transac-
tions on Evolutionary Computation 12(2):231–241 DOI 10.1109/TEVC.2007.905006.

Matoušek R. 2009. Genetic algorithm and advanced tournament selection concept.
Nature Inspired Cooperative Strategies for Optimization (NICSO 2008) 189–196.

Morris GM, Goodsell DS, Halliday RS, Huey R, HartWE, Belew RK, Olson AJ. 1998.
Automated docking using a Lamarckian genetic algorithm and an empirical binding
free energy function. Journal of Computational Chemistry 19(14):1639–1662
DOI 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

Nawrocki J, Błażewicz J, ComplakW, Kopczyńska S, MaćkowiakM. 2009. The
Knapsack-lightening problem and its application to scheduling HRT tasks. Bulletin
of the Polish Academy of Sciences Technical Sciences 57(1):71–77.

NielsenMA, Chuang I. 2002.Quantum computation and quantum information. Cam-
bridge: American Association of Physics Teachers.

Orden D, Gimenez-Guzman JM,Marsa-Maestre I, De la Hoz E. 2018. Spectrum
graph coloring and applications to Wi-Fi channel assignment. Symmetry 10(3):65
DOI 10.3390/sym10030065.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 26/27

https://peerj.com
http://dx.doi.org/10.1016/j.matcom.2023.12.027
http://dx.doi.org/10.1007/s10710-009-9080-7
http://arXiv.org/abs/2405.08810
http://dx.doi.org/10.3390/computers5040024
http://arXiv.org/abs/2401.08631
http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1016/j.asoc.2015.04.020
http://dx.doi.org/10.1080/002075498193688
http://dx.doi.org/10.1109/TEVC.2007.905006
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
http://dx.doi.org/10.3390/sym10030065
http://dx.doi.org/10.7717/peerj-cs.2210

Ruican C, UdrescuM, Prodan L, VladutiuM. 2007. Automatic synthesis for quantum
circuits using genetic algorithms. In: International conference on adaptive and natural
computing algorithms. 174–183 DOI 10.1007/978-3-540-71618-1_20.

Ruican C, UdrescuM, Prodan L, VladutiuM. 2008. A genetic algorithm framework
applied to quantum circuit synthesis. In: Nature inspired cooperative strategies for
optimization (NICSO 2007). Cham: Springer, 419–429.

SaiToh A, Rahimi R, Nakahara M. 2014. A quantum genetic algorithm with quantum
crossover and mutation operations. Quantum Information Processing 13(3):737–755
DOI 10.1007/s11128-013-0686-6.

Shor PW. 1994. Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th annual symposium on foundations of computer science. 124–134.

Spector L. 2004. Automatic quantum computer programming: a genetic programming
approach. Vol. 7. Cham: Springer Science & Business Media.

Stanhope SA, Daida JM. 1998. Optimal mutation and crossover rates for a genetic
algorithm operating in a dynamic environment. In: Porto VW, Saravanan N,
Waagen D, Eiben AE, eds. Evolutionary programming VII. Cham: Springer Berlin
Heidelberg, 693–702.

Tănăsescu A, Constantinescu D, Popescu PG. 2022. Distribution of controlled unitary
quantum gates towards factoring large numbers on today’s small-register devices.
Scientific Reports 12(1):21310 DOI 10.1038/s41598-022-25812-z.

Titiloye O, Crispin A. 2011. Quantum annealing of the graph coloring problem. Discrete
Optimization 8(2):376–384 DOI 10.1016/j.disopt.2010.12.001.

UdrescuM, Prodan L, VlăduţiuM. 2006. Implementing quantum genetic algorithms:
a solution based on Grover’s algorithm. In: Proceedings of the 3rd conference on
computing frontiers. 71–82 DOI 10.1145/1128022.1128034.

Van Batenburg F, Gultyaev AP, Pleij CW. 1995. An APL-programmed genetic algorithm
for the prediction of RNA secondary structure. Journal of Theoretical Biology
174(3):269–280 DOI 10.1006/jtbi.1995.0098.

Westhead DR, Clark DE, Murray CW. 1997. A comparison of heuristic search al-
gorithms for molecular docking. Journal of Computer-Aided Molecular Design
11(3):209–228 DOI 10.1023/A:1007934310264.

Wille R, VanMeter R, Naveh Y. 2019. IBM’s Qiskit tool chain: working with and
developing for real quantum computers. In: 2019 design, automation & test in Europe
conference & exhibition (DATE). Piscataway: IEEE, 1234–1240.

Ardelean and Udrescu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2210 27/27

https://peerj.com
http://dx.doi.org/10.1007/978-3-540-71618-1_20
http://dx.doi.org/10.1007/s11128-013-0686-6
http://dx.doi.org/10.1038/s41598-022-25812-z
http://dx.doi.org/10.1016/j.disopt.2010.12.001
http://dx.doi.org/10.1145/1128022.1128034
http://dx.doi.org/10.1006/jtbi.1995.0098
http://dx.doi.org/10.1023/A:1007934310264
http://dx.doi.org/10.7717/peerj-cs.2210

