
Submitted 2 July 2019
Accepted 28 August 2019
Published 30 September 2019

Corresponding author
Mauro Birattari, mbiro@ulb.ac.be

Academic editor
José Manuel Galán

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.221

Copyright
2019 Salman et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Concurrent design of control software
and configuration of hardware for robot
swarms under economic constraints
Muhammad Salman, Antoine Ligot and Mauro Birattari
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

ABSTRACT
Designing a robot swarm is challenging due to its self-organized and distributed nature:
complex relations exist between the behavior of the individual robots and the collective
behavior that results from their interactions. In this paper, we study the concurrent
automatic design of control software and the automatic configuration of the hardware
of robot swarms. We introduce Waffle, a new instance of the AutoMoDe family of
automatic design methods that produces control software in the form of a probabilistic
finite state machine, configures the robot hardware, and selects the number of robots
in the swarm. We test Waffle under economic constraints on the total monetary
budget available and on the battery capacity of each individual robot comprised in
the swarm. Experimental results obtained via realistic computer-based simulation on
three collective missions indicate that different missions require different hardware and
software configuration, and that Waffle is able to produce effective and meaningful
solutions under all the experimental conditions considered.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Artificial
Intelligence, Robotics
Keywords Swarm robotics, Automatic design, Collective behaviors, Concurrent design

INTRODUCTION
In this paper, we make a two-fold contribution: (i) we address the concurrent automatic
design of control software and the automatic configuration of the hardware; and (ii) we
study an automatic design problem that is subject to economic constraints.

In swarm robotics (Şahin, 2004), a group of robots coordinate to accomplish missions
that a single robot cannot accomplish. In a swarm, robots do not have predefined
roles, neither do they possess any global information, nor do they rely on external
infrastructures (Dorigo, Birattari & Brambilla, 2014). They operate in a decentralized
and self-organized manner, relying only on local information gathered through their
sensors or communicated by their neighboring peers. A robot swarm is a collective entity
and cannot be programmed directly: the designer must program the individual robots
so that, together, they perform the desired mission. The design process is laborious due
to the complex relation existing between the behavior of the individual robots and the
collective behavior that results from their interactions (Brambilla et al., 2013). The most
common approach to designing a robot swarm is trial-and-error: a time consuming
approach in which individual-level behaviors are implemented, tested, and modified until

How to cite this article Salman M, Ligot A, Birattari M. 2019. Concurrent design of control software and configuration of hardware for
robot swarms under economic constraints. PeerJ Comput. Sci. 5:e221 http://doi.org/10.7717/peerj-cs.221

mailto:mbiro@ulb.ac.be
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.221


the desired swarm-level behavior is obtained. Although a number of swarms have been
successfully designed with this approach, it heavily depends on the experience of designer,
it is error-prone, and its results are not reproducible. To overcome these issues, a number
of principled manual design methods have been proposed. However, these methods are
limited in scope: a universal swarm design methodology does not exist, yet (Hamann &
Wörn, 2008; Lopes et al., 2016; Brambilla et al., 2015). Automatic design is an alternative
approach to designing a swarm. In automatic design, the design problem is formulated as
an optimization problem that is then solved with an optimization algorithm (Birattari et
al., 2019). A design problem of a collective mission is expressed as an objective function, a
mathematical equation thatmeasures the performance of the robot swarm. An optimization
algorithm steers the search for a control software of an individual-robot that maximizes
the performance of the swarm, taking into account the constraints such as hardware
limitations of the robots or other environmental restrictions, that are encoded in the form
of additional (in)equalities. Neuro-evolutionary robotics is the most studied among the
existing automatic design approaches to design a swarm (Trianni, 2008). This approach
uses an evolutionary algorithm to optimize the control software of robots that, in this case,
is represented by an artificial neural network (Nolfi & Floreano, 2000). Recently, a number
of automatic design approaches have been proposed that use different control software
structures and optimization algorithms than those typically adopted in evolutionary swarm
robotics (Francesca et al., 2014).

The concurrent development of control software and hardware is a further step to
reduce the human involvement in the design process. A number of concurrent design
methods have been proposed for single-robot applications: in addition to designing
the control software, they select and configure sensors and actuators and/or the robot’s
morphology (Sims, 1994; Lipson & Pollack, 2000). These concurrent design methods have
significantly increased the performance and versatility of the designed robots. In swarm
robotics, only a few research articles have been published that studied the concurrent
automatic design of control software and configuration of the hardware (Watson &
Nitschke, 2015). Details are provided in the STATEOF THE ART section.

In general, designing implies solving trade-offs, that is, balancing multiple, possibly
conflicting factors (Pahl et al., 2007). In swarm robotics, a characterizing example of a
trade-off to be handled is the one between the number of robots comprised in the swarm
and the capabilities of each individual robot. The designer must decide whether, for the
specific mission at hand, they should use (i) few highly capable robots or (ii) many relatively
incapable ones. This trade-off originates from the constraint of a limited monetary budget.
Indeed, it is reasonable to assume that highly capable robots are more expensive than
relatively incapable ones. Another example of a design trade-off originates if the designer is
given the constraint of adopting a battery of a predefined capacity. Under this constraint,
the designer might chose to adopt (i) robots with powerful sensors and actuators that can
achieve relatively more per unit time, but have a high power consumption and therefore
can operate for a relatively short amount of time; or (ii) simpler robots that can achieve
relatively less per unit time but have a low power consumption and therefore can operate

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


for a relatively long amount of time. It is reasonable to expect that the choice might depend
on the specific mission at hand.

In this research, we introduce Waffle, a new instance of the AutoMoDe family of
automatic design methods. All previously published instances of AutoMoDe generate
control software for the e-puck platform (Mondada et al., 2009) by selecting, combining,
and fine-tuning predefined, mission-independent software modules (Francesca et al., 2014;
Francesca et al., 2015; Kuckling et al., 2018; Hasselmann, Robert & Birattari, 2018). Waffle
is based on Chocolate (Francesca et al., 2015). Indeed, regarding the conception of control
software, Waffle is identical to Chocolate: the two methods share the same predefined
software modules, they combine these modules into the same control software architecture,
and they use the same optimization algorithm—details are given in the AUTOMODE-
Waffle section. The novelty of Waffle is the concurrent hardware configuration of the
robot swarm: Waffle automatically selects the hardware configuration of the individual
robots and the number of robots within the swarm. The goal of this research is to show
that it is possible to concurrently design the control software and configure the hardware
for robot swarm using the principles of automatic modular design: the idea that control
software and, in our particular case the hardware, can be produced by combining pre-
existing modules that are mission independent and that are assembled and fine tuned
automatically. In this specific study, we consider some hypothetical hardware modules
that enable a robot to detect and locate its neighboring peers. These hypothetical modules
are based on infrared transceivers and are variants of an existing hardware module for
the e-puck platform (Mondada et al., 2009) known as the range-&-bearing (Gutiérrez et
al., 2009). We define the set of these hypothetical modules so that some of them are
more-capable and some are less-capable than the existing one in terms of perception
range and detection abilities. We assume that the more capable hardware modules are
more expensive and consume more power. These hypothetical modules are realistic and
possibly implementable. The fact that they are hypothetical (except one) does not impair
the significance of our research. Indeed, our goal is not to solve a specific design problem
but rather to show that a modular approach to designing by optimization can search
the space of possible hardware configurations concurrently with the automatic design
of control software. We study Waffle under what we shall collectively call economic
constraints, namely, constraints on the total monetary budget available and on the battery
capacity of each individual robot comprised in the swarm. If these constraints were not
included, the study would produce trivial results in many cases. Indeed, in many cases,
the automatic design process would produce swarms comprising the largest number
of robots possible, each equipped with the best performing, most expensive, and most
energy-consuming hardware modules. Besides preventing that the study produces trivial
results, these constraints have a value on their own. Indeed, in a prospective practical
application of automatic design, one will be necessarily faced with economic constraints,
which are an essential, unavoidable element of any real-world design problem. To the best
of our knowledge, this study is the first one in which automatic design of robot swarms
is studied under constraints of economical nature. In this sense, our work contributes to
moving a step in the direction of the practical application of automatic design.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


The main research question that we address in this paper is the following: can Waffle

select mission-specific hardware together with an appropriate control software? To do so,
we test Waffle on three different collective missions: End-Time-Aggregation, Anytime-
Selection, and Foraging. For each mission, we impose constraints to the design process.
Namely, we impose a monetary budget and/or a battery capacity. For each mission, we
perform nine different experiments: (i) one experiment in which both monetary budget
and battery capacity are unconstrained (No-Constraint ), (ii) two experiments with different
levels of the monetary budget and unconstrained battery capacity (Monetary-Constraint ),
(iii) two experiments with different levels of battery capacity and unconstrained monetary
budget (Power-Constraint ), and (iv) four experiments with different levels of monetary
budget and battery capacity (Monetary-&-Power-Constraint ). For each experiment, we
report and discuss (i) a measure of the performance achieved, (ii) the number of robots
comprised in the automatically designed swarm, (iii) which hardware modules have been
automatically selected, and (iv) which software modules were adopted.

STATE OF THE ART
In the literature, a number of approaches have been proposed to address the concurrent
design of single robots. However, only a few preliminary studies have been published that
implement the simultaneous design of hardware and control software for a robot swarm.

In single robot applications, Sims (1994) introduced what he called virtual creatures:
simulated robots whose body and control software are designed simultaneously to perform
different tasks, such as walking, jumping, and swimming. The body of these robots
is composed of solid cuboid segments connected by different joint types, actuators to
simulate muscle force at joints, and various sensors. The body of a robot is represented
as a directed-graph of nodes and connections that contain the connectivity information
and developmental instructions. The control software of the robot is implemented as
an artificial neural network. A genetic algorithm was used to concurrently design the
software and the hardware of a robot for a particular task. The development of virtual
creatures demonstrated the ability of this approach to design complex systems that would
be complicated to design using traditional methods. Lipson & Pollack (2000) took this
concept to a further level by introducing the automatic manufacturing of the concurrently
designed robot. The authors used the rapid prototyping technology to 3D print the robot
once its body (variable-length bars, and ball-and-socket joints) and control software
(artificial neural network) is automatically designed in the simulation. In recent studies,
much work has been conducted using similar approaches that aim to address various
design problems, e.g., robots with insect-like hardware topologies and behaviors (Hornby,
Lipson & Pollack, 2003); visually guided robots (Macinnes, 2003); aquatic robots (Clark et
al., 2012); self-reconfiguring robot (Nygaard et al., 2018).

In swarm robotics, only a couple of studies are available that use concurrent design
methods to design a robot swarm. Watson & Nitschke (2015) studied the impact of the
number of sensors and their position on the robot to select theminimal sensor configuration
of individual robot for a collective construction task. They achieved that by manually

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 4/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


selecting six different sensors configurations and generating six instances of control
software in the form of artificial neural networks using HyperNeat. Hewland & Nitschke
(2015) usedNEAT-M to configure the number and types of sensors simultaneously with the
control software for the robots in a swarm for collective construction task. Moreover, they
also designed the control software for a robot swarm with fixed hardware configuration.
According to the authors, the concurrently designed swarm performed relatively better
than the swarm with fixed hardware configuration. Heinerman, Rango & Eiben (2015)
studied the relationship between individual and social learning in physical robot swarms.
The authors used six Thymio II robots in their experiments. The study shows that the
on-line social learning in a physical robot swarm is possible, the design process is faster
than individual learning, and the performance of the produced control software (artificial
neural networks) is higher. Moreover, the design process also configures a suitable sensory
layout for individual robots.

Various computational models have been proposed to estimate the impact of the
size/density of the robot swarm on its performance (Lerman & Galstyan, 2002; Hamann,
2012). However, we are not aware of any study in which the automatic selection of the
number of robots for a swarm has been attempted. To the best of our knowledge, the
implications of imposing economical constraints to the automatic design of a robot swarm
have never been studied. We are only aware of a single study that goes into that direction:
recently, Carlone & Pinciroli (2019) included some practical constraints in the design of a
robot swarm. They formulate the co-design of a single race-drone and multi-drone system
as a binary optimization problem that allows specifying constraints such as the total design
budget.

AUTOMODE-WAFFLE
As already mentioned above, Waffle belongs to AutoMoDe, a family of off-line automatic
methods for designing the control software of robot swarms (Francesca et al., 2014). In
AutoMoDe, control software is generated by automatically assembling predefined modules
and by fine-tuning their free parameters. A number of methods have been proposed
that belong to AutoMoDe: Vanilla (Francesca et al., 2014), Chocolate (Francesca et al.,
2015), Gianduja (Hasselmann, Robert & Birattari, 2018), and Maple (Kuckling et al., 2018).
Each of these methods is characterized by a specific set of predefined modules, a software
architecture into which these modules can be combined, and an optimization algorithm
that searches the space of the possible ways in which modules can be combined into the
given architecture and the space of the free parameters. All the aforementioned methods
generate control software for a specific version of the e-puck platform (Mondada et al.,
2009). Moreover, they all limit themselves to the generation of control software: the
hardware configuration of the e-puck robot is fixed and the number of robots comprised
in the swarm is given as a requirement of the mission to be performed.

Waffle is a further step to increase the flexibility of AutoMoDe and to reduce the
human involvement in the design process. Indeed, Waffle concurrently develops the
control software and configures the hardware of the robot swarm—including the number

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Table 1 Low-level behaviors and conditions used in Waffle.

Low-level behaviors

Exploration The robot moves straight. If an obstacle is detected, the
robot rotates in place for a random amount of time before
moving straight again

Stop The robot does not move
Phototaxis The robot moves towards the light, if perceived; otherwise,

it moves straight
Anti-phototaxis The robot moves away from the light, if perceived;

otherwise, it moves straight
Attractiona The robot moves towards peers within its perception range
Repulsiona The robot moves away from peers within its perception

range

Conditions

Black-floor Black floor is detected
Gray-floor Gray floor is detected
White-floor White floor is detected
Neighbor-counta The number of peers in neighborhood is greater than a

parameter
Inverted-neighbor-counta The number of peers in neighborhood is less than a

parameter
Fixed-probability The transition is enabled with a fixed probability

Notes.
aBehaviors and conditions that use the range-&-bearing module.

of robots comprised. Regarding the design of control software, Waffle is identical to
Chocolate (Francesca et al., 2015): the two methods share the same set of pre-defined
software modules; generate control software in the form of probabilistic finite state
machines; and use the Iterated F-race optimization algorithm (López-Ibáñez et al., 2016)
to select, combine, and fine-tune the software modules. The set of software modules is
composed of six low-level behaviors and six conditions (Francesca et al., 2015). A behavior
is an operation or action that a robot can perform, while a condition is a criterion to switch
from one behavior to another. Behaviors and conditions have parameters that impact their
internal functioning: AutoMoDe fine-tunes these parameters to the specific mission to
be performed. Multiple instances of the same behavior might coexist in a probabilistic
finite state machine, possibly with different values of the parameters. In Waffle (as
in Chocolate), states and edges of a probabilistic finite state machine are instances of
behaviors and conditions, respectively. The design process can include a maximum of
four states and each state can have at most four outgoing edges. A brief description of the
softwaremodules is given in Table 1 and a typical probabilistic finite state machine is shown
in Fig. 1. Regarding the hardware, Waffle uses Iterated F-race to define the configuration
of the individual e-puck robots and their number within the swarm.

The e-puck is a differential drive robot that is widely used in swarm robotics research
(Mondada et al., 2009). Waffle and all previous instances of AutoMoDe operate with an
extended version of the e-puck robot, which adopts: (i) the Overo Gumstix, to run Linux

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Figure 1 A typical probabilistic finite state machine automatically designed by Waffle: states and
conditions are represented by circles and diamonds, respectively. Initially the robot moves towards its
neighboring peers (attraction state)—the robot follows a direction vector and att = 4.81 is the attraction
parameter that defines the magnitude of the vector. When it detects the black floor, it stops. The param-
eter p is the probability of transition from one state to another when the condition is true. We refer the
reader to Francesca et al. (2014) for further details.

Full-size DOI: 10.7717/peerjcs.221/fig-1

on the robot, (ii) three ground sensors, located under its body, to detect the gray-level
color of the floor beneath it, and (iii) a range-&-bearing module (Gutiérrez et al., 2009) to
detect neighboring peers and have knowledge of their relative position. We simulate the
e-puck robots using ARGoS (Pinciroli et al., 2012; Garattoni et al., 2015), an open source
multi-engine simulator for robot swarm. We use ARGoS’ 2D dynamic physics engine to
simulate the robots and the environment.

Here, we assume that e-puck robots are formally described by reference model RM 1.1
(Hasselmann et al., 2018), which defines the input and output variables of corresponding
sensors and actuators—see Table 2. These variables can be read/written by the control
software at every control step, that is, every 100 ms. The control software detects the
obstacles (prox i) and the presence and relative position of a light source (light i) using eight
infrared transceivers. It also detects the gray-level color of the floor (ground j) beneath the
robot using ground sensors. At every control step, all robots in the swarm broadcast a
‘‘heartbeat’’ signal using their range-&-bearing module. This signal encodes the sender’s
unique ID. Every robot receives the heartbeat signals of the peers that are in its perception
range and has therefore knowledge of their number (n), and of their aggregate relative
position (V ) which is defined as:

V =


n∑

m=1

(
1

1+ rm
, 6 bm

)
, if robots are perceived;

(1, 6 0), otherwise.

(1)

Here, rm and bm are the range and bearing of the mth neighboring peer, respectively. For
a detailed description of the vector V and of how it is computed, see Salman, Ligot &
Birattari (2019). Eventually, the control software actuates the wheels of the robot by setting
the right and left wheel velocity (vr and vl).

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 7/21

https://peerj.com
https://doi.org/10.7717/peerjcs.221/fig-1
http://dx.doi.org/10.7717/peerj-cs.221


Table 2 Reference model RM 1.1.

Sensor Input Value Description

Proximity prox i∈{1,...,8} [0,1] reading of proximity sensor i
Light light i∈{1,...,8} [0,1] reading of light sensor i
Ground ground j∈{1,2,3} {black,gray,white} reading of ground sensor j
Range-&-Bearing n [0,29] number of neighboring robots perceived

V ([0.5,30],[0,2π]) their aggregate position

Actuator Output Value Description

Motors vk∈{l,r} [−0.12,0.12] ms−1 target linear wheel velocity

As mentioned above, the goal of this research is to concurrently develop the control
software and configure the hardware for the robot swarm. Concerning the hardware
configuration, Waffle configures the range-&-bearing transceiver modules of e-puck
robots. To do so, we simulate six range-&-bearing receivers and two range-&-bearing
transmitters as listed in Table 3. These range-&-bearing modules are hypothetical but
are variants of one that actually exists (Gutiérrez et al., 2009): receiver R3

rb coupled with
transmitter T 1

rb, as defined in Table 3. Each hypothetical range-&-bearing receiver and
transmitter has distinct characteristics. A receiver is characterized by an error modeled as
white noise in the estimation of the angle of a broadcasting peer (bearing error), and a
probability to fail to receive the signal broadcast by a robot in its perception range (loss
probability). The bearing error is sampled at every time step from a uniform distribution.
The loss probability is a function of the number of neighboring peers—details are given as
supplementary material (Salman, Ligot & Birattari, 2019). A range-&-bearing transmitter
is characterized by a tunable infra-red transmission range (R)—see Table 3. If the design
process finds the range-&-bearing necessary for a mission, it can equip all the robots with
one of the receiver and of the transmitter configurations listed in Table 3. In configuring the
hardware of the robot swarm, the design process must also respect the available monetary
budget and/or a battery capacity. Indeed, the range-&-bearing receivers and transmitters
are also characterized by price and current rating—see Table 3.

EXPERIMENTAL SETUP
In this section, we describe the three collective missions, the experiments we perform for
each mission, and the protocol we follow to test Waffle.

Missions
We test Waffle on three missions: Anytime-Selection, End-time-Aggregation, and
Foraging. All three missions are to be performed in a dodecagonal arena of 4.91 m2.
The arena is divided into different zones according to the requirements of a mission.
Anytime-Selection and End-time-Aggregation are performed in the same arena—as
shown in Fig. 2A. At the beginning of every experimental run, we randomly position the
robots everywhere in the arena.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 8/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Table 3 Extended range-&-bearing receiver and transmitter modules. The bearing error is modeled as
white noise in the estimation of the bearing of a broadcasting peer and is sampled from a uniform proba-
bility distribution, of which we list here the extremes of the support. The loss probability is a function of
the number of neighboring peers, of which we list here the minimum, average, and maximum values.

Range-&-bearing Bearing error Loss probability Price Current rating
Receivers Rx

rb ± deg min−avg −max Px (€) Ix (mA)

∅ − − 0 0
R1
rb 45 0.75−0.84−0.95 500 10

R2
rb 30 0.75−0.85−0.90 600 15

R3
rb 25 0.75−0.80−0.93 700 20

R4
rb 20 0.70−0.78−0.85 800 25

R5
rb 15 0.50−0.64−0.75 900 30

R6
rb 5 0.40−0.57−0.70 1,000 35

Range-&-bearing Range Price Current rating
Transmitters T y

rb R (m) Py (€) Iy(R) (mA)

∅ − 0 0
T 1
rb {0.6,0.7,0.8} 400 {20, 30, 40}

T 2
rb {0.9,1.0} 600 {50, 60}

Figure 2 ARGoS representation of arenas with dimensions and positions of different zones: (A) End-
time-Aggregation and Anytime-Selection, and (B) Foraging. Measurements are expressed in me-
ters. In Foraging, L represents a light source.

Full-size DOI: 10.7717/peerjcs.221/fig-2

Anytime-Selection
The robot swarm must aggregate in one of the two circular black zones. The size of two
black zones and their position in the arena are given in Fig. 2A. The performance of the
swarm is measured by the following objective function:

FA=
T∑
t=1

∣∣(Na(t )−Nb(t ))
∣∣, (2)

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 9/21

https://peerj.com
https://doi.org/10.7717/peerjcs.221/fig-2
http://dx.doi.org/10.7717/peerj-cs.221


where Na(t ) and Nb(t ) are the number of robots in zone a and b at any time t ; T is the
total duration of the experiment.

In Anytime-Selection, the performance is measured at every control step. Due to this
reason, the robots are expected to promptly aggregate in one of the black zones and stay
there until the end of the experiment.

End-time-Aggregation
The robots must aggregate in one of the two black zones. The dimensions of two black
zones and their position in the arena are given in Fig. 2A. The performance of the robot
swarm is measured with the following objective function:

FE =
∣∣Na(T )−Nb(T )

∣∣, (3)

where T is the duration of an experiment and Na(T ) and Nb(T ) are the number of robots
in zone a and zone b at time T .

Unlike Anytime-Selection, the performance in End-time-Aggregation is computed
at the end of the experiment. Due to this reason, the robots can take some time to explore
the arena and converge in a black zone: the experiment duration is not a significant
constraint in this mission. However, the real challenge is to keep the robots assembled in a
zone until the end of the experiment.

Foraging
The swarm must collect a maximum number of objects from two sources and drop them
in the nest. We abstract the Foraging experiment by considering that an object is retrieved
when an individual robot visits a source, and an object is dropped when a robot visits
the nest. The two sources in the arena are represented as two black zones, while the nest
is represented as a white zone. A light is also placed behind the nest as a cue for robots.
The dimensions and position of the two source zones and nest are given in Fig. 2B. The
performance of the robot swam, the number of objects (No) retrieved by the swarm, is
expressed by the following objective function:

FF =No. (4)

In Foraging, an individual robot can retrieve a single object at a time. Therefore, the
performance of the swarm heavily rely on the number of robots and on the duration of the
experiment.

Experiments
We perform nine different experiments for each mission. In these experiments, we impose
a monetary budget and/or a battery capacity constraints to the design process. Depending
on the type of constraint, an experiment can be classified as belonging to one of four
categories: No-Constraint, Monetary-Constraint, Power-Constraint, and Monetary-&-
Power-Constraint. The levels of the monetary constraint, levels of battery capacity, and
duration of the experiments are listed in Table 4. For each experiment, the design process
is free to choose any number of robots between 15 and 30.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 10/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Table 4 Monetary budget levels, battery capacity levels and duration of all nine experiments of four
categories. The duration of an experiment, T , from categories Power-Constraint andMonetary-&-Power-
Constraint is not fixed. The experiment terminates, when all robots are out of battery—as defined in
Eq. (7).

Experiment Category Monetary budget Battery capacity Duration

NC No-Constraint unconstrained unconstrained 500 s
M80 80,000€ unconstrained 500 s
M60

Monetary
constraint 60,000€ unconstrained 500 s

P20 unconstrained 20 mAh T
P15

Power
constraint unconstrained 15 mAh T

M80P20 80,000€ 20 mAh T
M80P15 80,000€ 15 mAh T
M60P20 60,000€ 20 mAh T
M60P15

Monetary
&
power
constraint 60,000€ 15 mAh T

No-constraint
This experiment (NC) is performed without any constraint: the monetary resources and
battery capacity are unconstrained.

Monetary-constraint
In these experiments, the limited resource is the monetary budget, Mlimit , available to
purchase the robots and range-&-bearing modules. The design process only considers the
combinations of hardware modules that keep the total cost of the swarm, Pswarm, equal or
below the available monetary budget—i.e, Pswarm≤Mlimit . The total swarm cost, Pswarm, is
computed with the following equation:

Pswarm=N ×
(
Pr+Px+Py

)
, (5)

here N is the total number of robots in swarm, that is, 15 to 30 robots; Pr is the price
of extended version of e-puck without range-&-bearing modules, that is, 2,000€; Px
and Py are the prices of a range-&-bearing receiver and a range-&-bearing transmitter
respectively—see Table 3.

The minimum cost of a swarm is 43,500€, when the minimum number of 15 robots
are equipped with the least-capable range-&-bearing receiver and transmitter modules.
The maximum cost of a swarm is 108,000€, when the maximum number of 30 robots are
equipped with the most-capable range-&-bearing receiver and transmitter modules.

For each mission, we perform two experiments, M80 and M60, where the monetary
budget is 80,000€ and 60,000€ respectively—see Table 4.

Power-constraint
In these experiments, the limited resource is the battery capacity, Pbc . There is no constraint
on the monetary resources: the design process can choose any combination of the range-&-
bearing modules and the number of robots between 15 and 30—see Table 4. The operation
time, Tr , of each robot in the swarm depends on its hardware configuration, available
battery capacity, and the execution of the individual-level behaviors. The operation time

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


of a robot can be computed by the following equation:

Tr =
(Pbc×3600)

(Icpu+ Ilm+ Irm+ Iy(R)+ Ix)
, (6)

where Icpu is the current rating of robot’s cpu and other fixed sensors, that is, 100 mA.
The CPU and other fixed hardware modules will always consume the same power. Ilm
and Irm are the current ratings of the left and the right motors of the robot, that is, 150
mA at maximum speed. Ix and Iy(R) are the current ratings of range-&-bearing receiver
and transmitter modules respectively. R is the range of range-&-bearing transmitter—see
Table 3. The experiment terminates, when every robot in the swarm consumes its battery
power. The total experiment time, T , is expressed as:

T =max
(
Tr∈{1,2,3,...,N }

)
. (7)

For each mission, we perform two experiments with different levels of battery capacities:
P20 and P15—see Table 4.

Monetary-&-Power-Constraint
In these experiments, both monetary budget and battery capacity are limited. The design
process is required to choose the hardware modules that are not only affordable but also
allow robots to operate for a sufficient amount of time. For each mission, we perform four
experiments with dual constraints:M80P20, M80P15,M60P20, and M60P15—see Table 4.

Protocol
The experiments are performed without any human intervention. The design of control
software and the configuration of hardware is the result of an automatic design process. For
each experiment, we run 20 independent design processes to get 20 hardware configurations
and their respective control software in the form of a finite state machine. Each design
process is run with the design budget of 50,000 simulations. The performance of the
designs are evaluated via a single run of each design. For each experiment, we report (i) the
performance achieved by the swarm, the number of robots comprised in the automatically
designed swarm, the hardware modules that have been automatically selected, and the
adopted software modules.

RESULTS
In this section, we present the results on a per-mission basis. The instances of control
software generated, the data collected, and videos of the experiments are available as online
supplementary material (Salman, Ligot & Birattari, 2019).

Anytime-Selection
The performance of an automatically designed swarm depends on the number of robots
that reach the black zone and on the moment in which each of them does so: the longer
a robot remains on the black zone, the higher the contribution it makes to the score. As a
result, the duration of the experiment has an impact on the performance: the longer the
experiment, the longer the robot can remain on the black zone and contribute to the score.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


When economical constraints are imposed, the design process tends to select low-tier
hardware; and designs the control software such that the robots move less and save battery
life for a longer experiment duration.

No-constraint
Waffle tends to configure robot swarms whose total cost is close to the maximum
possible—see Fig. 3D. Indeed, the robot swarms comprise 25 to 30 robots—see Fig. 3G—
equipped with high-tier range-&-bearing receivers and transmitters—see Fig. 4. At visual
inspection, the robots first form clusters and then slowly converge on a black zone: when
the robots find a black zone, they spin in place and block the way for the remaining
robots, which are therefore unable to enter the zone. This behavior is obtained with
Exploration, Stop, and Attraction—see Fig. 5A. As expected, the performance of the swarm
is considerably better than the one achieved when constraints are imposed—see Fig. 3A.

Monetary-constraint
Under the constraints imposed by M80 and M60, Waffle tends to configure the robot
swarm so that the total cost is close to the maximum available budget—see Fig. 3D. The
number of robots in the swarm decreases proportionally to the monetary budget—see
Fig. 3G. The robots are equipped with high-tier range-&-bearing receivers and long-range
range-&-bearing transmitters. In M60, however, Waffle also selects two low-tier range-&-
bearing receivers—see Fig. 4. The robot swarms designed under NC and M80 behave in a
similar way. In M60, however, the robots prefer to use the Attraction low-level behavior
to remain in a black zone, but as the robots are equipped with low-tier range-&-bearing
receivers, they often leave the black zone: due to the high loss-probability of low-tier
range-&-bearing receivers, the robots often fail to perceive the presence of their peers
in their neighborhood. The performance of the swarms designed under M80 and M60 is
considerably lower than the one achieved underNC : inM80 andM60, the swarm comprises
fewer robots as compared to NC—see Fig. 3A.

Power-constraint
In contrast to NC , the swarms configured under P20 and P15 have a total cost that is
noticeably lower than the maximum possible—see Fig. 3D. This is because the robots are
equipped with low-price range-&-bearing transmitters, which reduces the overall cost of
the swarm—see Fig. 3D. Cheaper range-&-bearing transmitters have a shorter transmission
range but have low power consumption, which allows a longer battery life. We observe a
major shift in the dominant individual-level behaviors in the produced instances of control
software. The robots stop in the first black zone they encounter and limit their movement
to save energy—see Fig. 5A. Consequently, the swarm splits and becomes unable to gather
on the same zone. As a result, the performance drops by approximately 50% as compared
to the performance achieved under NC—see Fig. 3A.

Monetary-&-power-constraint
In all experiments, Waffle tends to use all the available monetary budget—see Fig. 3D. In
M80P20 andM80P15, Waffle designs swarms that comprise 23 to 24 robots—see Fig. 3G—
equipped with any of the range-&-bearing receivers and low-range transmitters. InM60P20

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


(A) Anytime-Selection (B) End-Time-Aggregation (C) Foraging

1
0
0

2
0
0

0
5

1
0

1
5

2
0

0
2
5
k

5
0
k

7
5
k

1
0
0
k

P
e
r
fo
r
m
a
n
c
e

(D) Anytime-Selection (E) End-Time-Aggregation (F) Foraging

4
3
.5
k

6
0
k

8
0
k

1
0
8
k

C
o
s
t
o
f
a
S
w
a
r
m

(G) Anytime-Selection (H) End-Time-Aggregation (I) Foraging

NC M80 M60 P20 P15
M80

P20

M80

P15

M60

P20

M60

P15
NC M80 M60 P20 P15

M80

P20

M80

P15

M60

P20

M60

P15
NC M80 M60 P20 P15

M80

P20

M80

P15

M60

P20

M60

P15

1
5

2
0

2
5

3
0

Experiments

N
o
.
o
f
R
o
b
o
ts

Figure 3 The performance in all nine experiments on eachmission is shown at the top. Performance
of Waffle in all nine experiments for each mission: ANYTIME-SELECTION (A), END-TIME-
AGGREGATION (B), and FORAGING (C). Total cost of the swarms configured by Waffle for each
mission (D–F): 43.5k and 108k are the minimum and maximum possible cost (in €) of a swarm,
respectively. Number of robots selected by Waffle for each mission (G–I).

Full-size DOI: 10.7717/peerjcs.221/fig-3

and M60P15; however, the number of robots decrease considerably, and the robots are
equipped with low-tier range-&-bearing receivers and low-range transmitters—see Figs. 3G
and 4. The control software generated under the Monetary-&-Power-Constraint behave
similarly to those of the Power-Constraint experiments—see Fig. 5A. Due to the increased
battery capacity, the swarms produced under M80P20 and M60P20 perform slightly better
than the ones produced under P15,M80P15, andM60P15—see Fig. 3A.

End-time-Aggregation
The performance of a designed swarm depends solely on the number of robots that are on
the black zone at the end of an experiment. Contrary to Anytime-Selection, if economical

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 14/21

https://peerj.com
https://doi.org/10.7717/peerjcs.221/fig-3
http://dx.doi.org/10.7717/peerj-cs.221


Figure 4 The number of instances of a specific hardware combination selected in each experiment is
shown here. The horizontal axis represents the possible configurations of the range-&-bearing receivers
Rx
rb; the vertical one represents the possible rangesR of the range-&-bearing transmitters T y

rb. Here, ∅ rep-
resents the case in which the design process does not select any range-&-bearing receiver or transmitter,
x ∈ {∅,1,2,3,4,5,6}, and y ∈ {∅,1,2} as shown in Table 3.

Full-size DOI: 10.7717/peerjcs.221/fig-4

(A) Anytime-Selection (B) End-Time-Aggregation (C) Foraging

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

NC

M80

M60

P20

P15

M80P20

M80P15

M60P20

M60P15

Experiment-Time (%)

Behaviors: Anti-Phototaxis Attraction Exploration Phototaxis Repulsion Stop

Figure 5 Behaviors adopted by the robots in the experiments for the three missions considered:
ANYTIME-SELECTION (A), END-TIME-AGGREGATION (B), and FORAGING (C). Each color
represents a behavior. The videos of all experiments are available as online supplementary material
(Salman, Ligot & Birattari, 2019).

Full-size DOI: 10.7717/peerjcs.221/fig-5

constraints are applied, the design process tends to select high-tier hardware; and the
control software is composed of individual-level behaviors that keep robots assembled on
a black zone.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 15/21

https://peerj.com
https://doi.org/10.7717/peerjcs.221/fig-4
https://doi.org/10.7717/peerjcs.221/fig-5
http://dx.doi.org/10.7717/peerj-cs.221


No-constraint
Waffle tends to configure robot swarms whose total cost is close to the maximum
possible—see Fig. 3E. The hardware configuration is similar to the one generated under
NC for Anytime-Selection. Indeed, the robot swarms comprise 28 to 30 robots—see
Fig. 3H—equipped with high-tier range-&-bearing receivers and transmitters—see Fig. 4.
At visual inspection, the robots first form clusters and then converge on a black zone:
robots tend to remain there by spinning in place until the end of the experiment. This
behavior is obtained with Exploration, Attraction, and Stop—see Fig. 5B. The performance
of the swarm is considerably better than those achieved when constraints are imposed—see
Fig. 3B.

Monetary-constraint
Under the constraints imposed byM80 andM60, Waffle tends to configure the robot swarm
so that the total cost is close to the maximum available budget—see Fig. 3E. The number
of robots in the swarm decreases proportionally to the monetary budget—see Fig. 3H. The
robots are equipped with long-range range-&-bearing transmitters and high-tier receivers,
except a small minority of configurations in which the robots are equipped with low-tier
receivers—see Fig. 4. At visual inspection, in M80 and M60 the robots converge on a black
zone and stay there until the end of the experiments. Contrary to NC , the robots stop
on the black zone instead of spinning in place: dominant individual-level behaviors are
Exploration, Attraction, and Stop—see Fig. 5B. The amount of available monetary budget
has a direct impact on the performance of a swarm. Indeed, due to the limited monetary
budget, the number of robots decreases in the swarms designed underM80 andM60, which
results in a considerable performances drop as compared to the performance achieved
under NC—see Fig. 3B.

Power-constraint
Similar to NC , under the constraints imposed by P20 and P15, Waffle tends to configure
the robot swarm so that the total cost is close to the maximum possible—see Fig. 3E.
Indeed, the robot swarms comprise 28 to 29 robots—see Fig. 3H—equipped with high-tier
range-&-bearing receivers and long-range transmitters—see Fig. 4. However, this selection
of hardware has a direct impact on the duration of the experiments due to its high current
rating. As the maximum power is consumed by the motors, the designed control software
skips the Exploration behavior to move robots in the arena. In some instances of control
software, the robots use Phototaxis and Anti-Phototaxis individual-level behaviors to move
straight and avoid obstacles. Moreover, the most dominant individual-level behavior is
Attraction which is used to keep the robots assembled on one zone—see Fig. 5B. The
performance achieved under P20 is relatively higher than the one achieved under P15. Due
to the limited battery capacity, which affects the total experiment duration, the swarms
designed under P20 and P15 have a lower performance than those designed under NC—see
Fig. 3B.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 16/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Monetary-&-power-constraint
In all experiments, Waffle tends to use all the available monetary budget—see Fig. 3E. In
M80P20 andM80P15, Waffle designs swarms that comprise 22 to 24 robots—see Fig. 3H—
equipped with high-tier range-&-bearing receivers and long-range transmitters—see Fig. 4.
In M60P20 and M60P15, the number of robots decreases considerably, and the robots are
equipped with high-tier range-&-bearing receivers and long-range transmitters, except a
small minority of configurations in which robots are equipped with low-tier receivers—see
Fig. 4. The instances of control software produced are similar to those produced under
Power-Constraint : the movement of robots in the arena is identical and the prominent
individual-level behavior is Attraction—see Fig. 5B. The performance achieved under
M80P20 and M80P15 is slightly better than the one achieved under M60P20 and M60P15: the
level of monetary budget is the key factor that determines whether Waffle selects few or
more robots—see Fig. 3B.

Foraging
Similar to Anytime-Selection, the performance of swarms designed in the Foraging
experiments depends on the experiment duration, but it also depends on the total number
of robots. Contrary to both Anytime-Selection and End-time-Aggregation, the
individual robots do not rely on the range-&-bearing hardware. The control software
produced enables an effective movement between source and nest.

All categories of constraints
Under all the categories of constraints considered, Waffle produced robot swarms sharing
the same hardware configuration. This because, in Foraging, the robots do not rely on
local communication. As a result, the selected hardware configuration typically does not
include range-&-bearing transmitter and receiver—see Fig. 4. The total cost of a swarm
is between 80,000€ and 60,000€—see Fig. 3F. The swarm comprises the largest possible
number of robots—see Fig. 3I.

All instances of control software that are produced in all experiments have an unexpected
behavior. Although in all experiments of Foraging, the robots are not equipped with
range-&-bearing modules, the most prominent individual-level behaviors are Attraction
andRepulsion, which the robots use to explore the arena—see Fig. 5C. The swarmuses these
behaviors in a way that is completely different from the one originally intended (Francesca
et al., 2014). The reason behind this anomaly is that the individual-level behaviors in
the design space are not strictly associated with the related hardware. In the absence
of range-&-bearing receivers and transmitters, the Attraction and Repulsion behaviors
are actuating robots to move straight using proximity sensors to avoid obstacles. In all
Foraging experiments, Waffle selects the Phototaxis individual-level behavior to locate
the nest in the arena, as shown in Fig. 5C.

There is no prominent performance difference between the experiments under the
No-Constraint and Monetary-Constraint categories—see Fig. 3C. However, we observe a
considerable performance drop by the swarms designed under categories of experiments
that have limited battery capacity—that is, Power-Constraint and Monetary-&-Power-
Constraint. Indeed, the performance achieved in experiments with 20 mAh battery

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 17/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


capacity—i.e., P20, M80P20, and M60P20—is considerably better than the performance
achieved under experiments with 15mAh battery capacity—i.e., P15,M80P15, andM60P15—
see Fig. 3C.

CONCLUSIONS
In this paper, we studied the concurrent automatic design of control software and the
automatic configuration of the hardware of robot swarms. In particular, we showed that it
is possible to concurrently design control software and hardware for a robot swarm using
the principles of automatic modular design. We introduced Waffle, a new instance of
the AutoMoDe family of automatic design methods that configures the robot hardware,
selects the number of robots in the swarm, and produces control software in the form of
a probabilistic finite state machine by combining pre-existing modules that are mission
independent.We studied Waffle under economic constraints on the total monetary budget
available and on the battery capacity of each individual robot comprised in the swarm.
We tested Waffle on three different collective missions. In the experiments presented
in the paper, Waffle was able to concurrently design the control software and configure
the hardware of a robot swarm. The results suggest that the hardware configuration of
the individual robots, the design of control software, and the number of robots highly
depend on the nature of the collective mission and the economical constraints imposed.
In the paper, we only considered the automatic configuration of one type of hardware
module, future studies will focus on extending the automatic design to other sensors and
actuators. The range-&-bearing receivers and transmitters proposed in the paper can be
manufactured and real-robot experiments can be performed to assess the robustness of the
selected configuration to the reality gap.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 681872). Mauro Birattari received support from the Belgian Fonds de la Recherche
Scientifique – FNRS. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
European Research Council (ERC): 681872.
Belgian Fonds de la Recherche Scientifique – FNRS.

Competing Interests
Mauro Birattari is an Academic Editor for PeerJ.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 18/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.221


Author Contributions
• Muhammad Salman conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, performed the
computation work, authored or reviewed drafts of the paper, approved the final draft.

• Antoine Ligot performed the computation work, authored or reviewed drafts of the
paper, approved the final draft.

• Mauro Birattari contributed reagents/materials/analysis tools, conceived and designed
the experiments, analyzed the data, directed the research, authored or reviewed drafts of
the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at IRIDIA - Supplementary Information, ID: IridiaSupp2019-001:
http://iridia.ulb.ac.be/supp/IridiaSupp2019-001/.

REFERENCES
Birattari M, Ligot A, Bozhinoski D, Brambilla M, Francesca G, Garattoni L,

Garzón Ramos D, Hasselmann K, Kegeleirs M, Kuckling J, Pagnozzi F, Roli A,
SalmanM, Stützle T. 2019. Automatic off-line design of robot swarms: a manifesto.
Frontiers in Robotics and AI 6:Article 59 DOI 10.3389/frobt.2019.00059.

Brambilla M, Brutschy A, DorigoM, Birattari M. 2015. Property-driven design for
swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Transactions on Autonomous and Adaptive Systems 9(4):17.1–17.28
DOI 10.1145/2700318.

Brambilla M, Ferrante E, Birattari M, DorigoM. 2013. Swarm robotics: a re-
view from the swarm engineering perspective. Swarm Intelligence 7(1):1–41
DOI 10.1007/s11721-012-0075-2.

Carlone L, Pinciroli C. 2019. Robot co-design: beyond the monotone case. ArXiv
preprint. arXiv:1902.05880v1.

Clark AJ, Moore JM,Wang J, Tan X, McKinley PK. 2012. Evolutionary design and
experimental validation of a flexible caudal fin for robotic fish. In: Artificial life
conference proceedings 12. Cambridge: MIT press, 325–332.

DorigoM, Birattari M, Brambilla M. 2014. Swarm robotics. Scholarpedia 9(1):Article
1463 DOI 10.4249/scholarpedia.1463.

Francesca G, Brambilla M, Brutschy A, Garattoni L, Miletitch R, Podevijn G, Reina
A, Soleymani T, SalvaroM, Pinciroli C, Birattari M. 2015. AutoMoDe-Chocolate:
Automatic design of control software for robot swarms. Swarm Intelligence
9(2/3):125–152 DOI 10.1007/s11721-015-0107-9.

Francesca G, Brambilla M, Brutschy A, Trianni V, Birattari M. 2014. AutoMoDe: a
novel approach to the automatic design of control software for robot swarms. Swarm
Intelligence 8(2):89–112 DOI 10.1007/s11721-014-0092-4.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 19/21

https://peerj.com
http://iridia.ulb.ac.be/supp/IridiaSupp2019-001/
http://dx.doi.org/10.3389/frobt.2019.00059
http://dx.doi.org/10.1145/2700318
http://dx.doi.org/10.1007/s11721-012-0075-2
http://arXiv.org/abs/1902.05880v1
http://dx.doi.org/10.4249/scholarpedia.1463
http://dx.doi.org/10.1007/s11721-015-0107-9
http://dx.doi.org/10.1007/s11721-014-0092-4
http://dx.doi.org/10.7717/peerj-cs.221


Garattoni L, Francesca G, Brutschy A, Pinciroli C, Birattari M. 2015. Software Infras-
tructure for E-puck (and TAM). Technical report TR/IRIDIA/2015-004, IRIDIA,
Université libre de Bruxelles, Belgium..

Gutiérrez Á, Campo A, DorigoM, Donate J, Monasterio-Huelin F, Magdalena L. 2009.
Open e-puck range & bearing miniaturized board for local communication in swarm
robotics. In: Kosuge K, ed. IEEE International conference on robotics and automation,
ICRA. Piscataway: IEEE Press, 3111–3116.

HamannH. 2012. Towards swarm calculus: universal properties of swarm performance
and collective decisions. Berlin: Springer, 168–179.

HamannH,Wörn H. 2008. A framework of space–time continuous models for
algorithm design in swarm robotics. Swarm Intelligence 2(2–4):209–239
DOI 10.1007/s11721-008-0015-3.

Hasselmann K, Ligot A, Francesca G, Birattari M. 2018. Reference models for Auto-
MoDe. Technical report TR/IRIDIA/2018-002, IRIDIA. Université libre de Bruxelles,
Belgium.

Hasselmann K, Robert F, Birattari M. 2018. Automatic design of communication-based
behaviors for robot swarms. In: Dorigo M, ed. Swarm intelligence, ANTS, volume
11172 of LNCS. Cham: Springer, 16–29 DOI 10.1007/978-3-030-00533-7_2.

Heinerman J, RangoM, Eiben AE. 2015. Evolution, individual learning, and social
learning in a swarm of real robots. In: 2015 IEEE symposium series on computational
intelligence. Piscataway: IEEE Press, 1055–1062.

Hewland J, Nitschke GS. 2015. The benefits of adaptive behavior and morphology
for cooperation. In: 2015 IEEE symposium series on computational intelligence.
Piscataway: IEEE Press, 1047–1054.

Hornby GS, Lipson H, Pollack JB. 2003. Generative representations for the automated
design of modular physical robots. IEEE Transactions on Robotics and Automation
19(4):703–719 DOI 10.1109/TRA.2003.814502.

Kuckling J, Ligot A, Bozhinoski D, Birattari M. 2018. Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo M,
ed. Swarm intelligence, ANTS, volume 11172 of LNCS. Cham: Springer, 30–43
DOI 10.1007/978-3-030-00533-7_3.

Lerman K, Galstyan A. 2002.Mathematical model of foraging in a group of robots: effect
of interference. Autonomous Robots 13(2):127–141 DOI 10.1023/A:1019633424543.

Lipson H, Pollack JB. 2000. Automatic design and manufacture of robotic lifeforms.
Nature 406:974–978 DOI 10.1038/35023115.

Lopes YK, Trenkwalder SM, Leal AB, Dodd TJ, Groß R. 2016. Supervisory control
theory applied to swarm robotics. Swarm Intelligence 10(1):65–97
DOI 10.1007/s11721-016-0119-0.

López-IbáñezM, Dubois-Lacoste J, Pérez Cáceres L, Birattari M, Stützle T. 2016. The
irace package: iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3:43–58 DOI 10.1016/j.orp.2016.09.002.

Macinnes I. 2003. Visually guided physically simulated agents with evolved morpholo-
gies. In: Advances in artificial life. Berlin: Springer, 821–828.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 20/21

https://peerj.com
http://dx.doi.org/10.1007/s11721-008-0015-3
http://dx.doi.org/10.1007/978-3-030-00533-7_2
http://dx.doi.org/10.1109/TRA.2003.814502
http://dx.doi.org/10.1007/978-3-030-00533-7_3
http://dx.doi.org/10.1023/A:1019633424543
http://dx.doi.org/10.1038/35023115
http://dx.doi.org/10.1007/s11721-016-0119-0
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.7717/peerj-cs.221


Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magnenat S, Zufferey
J-C, Floreano D, Martinoli A. 2009. The e-puck, a robot designed for education in
engineering. In: Gonçalves P, Torres P, Alves C, eds. Proceedings of the 9th conference
on autonomous robot systems and competitions. Portugal: Instituto Politécnico de
Castelo Branco, 59–65.

Nolfi S, Floreano D. 2000. Evolutionary robotics. Cambridge: MIT Press.
Nygaard TF, Martin CP, Samuelsen E, Torresen J, Glette K. 2018. Real-world evolution

adapts robot morphology and control to hardware limitations. In: Proceedings of the
genetic and evolutionary computation conference, GECCO ’18. New York: ACM Press,
125–132 DOI 10.1145/3205455.3205567.

Pahl G, BeitzW, Feldhusen J, Grote K-H. 2007. Engineering design: a systematic ap-
proach. London: Springer.

Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N,
Ferrante E, Di Caro G, Ducatelle F, Birattari M, Gambardella L, DorigoM. 2012.
ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm
Intelligence 6(4):271–295 DOI 10.1007/s11721-012-0072-5.

Şahin E. 2004. Swarm robotics: from sources of inspiration to domains of application.
Berlin: Springer, 10–20.

SalmanM, Ligot A, Birattari M. 2019. Concurrent design of control software and config-
uration of hardware for robot swarms under economic constraints: supplementary
material. Available at http:// iridia.ulb.ac.be/ supp/ IridiaSupp2019-001/ .

Sims K. 1994. Evolving virtual creatures. In: Proceedings of the 21st annual conference on
computer graphics and interactive techniques, SIGGRAPH ’94. New York: ACM Press,
15–22 DOI 10.1145/192161.192167.

Trianni V. 2008. Evolutionary Swarm Robotics. Berlin: Springer.
Watson J, Nitschke G. 2015. Deriving minimal sensory configurations for evolved

cooperative robot teams. In: 2015 IEEE Congress on Evolutionary Computation
(CEC). Piscataway: IEEE Press, 3065–3071.

Salman et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.221 21/21

https://peerj.com
http://dx.doi.org/10.1145/3205455.3205567
http://dx.doi.org/10.1007/s11721-012-0072-5
http://iridia.ulb.ac.be/supp/IridiaSupp2019-001/
http://dx.doi.org/10.1145/192161.192167
http://dx.doi.org/10.7717/peerj-cs.221

