
Submitted 1 March 2024
Accepted 27 June 2024
Published 19 July 2024

Corresponding author
Mengjun Li, lmj@sdtbu.edu.cn

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2208

Distributed under
Creative Commons Public
Domain Dedication

OPEN ACCESS

Single-image super-resolution
reconstruction based on phase-aware
visual multi-layer perceptron (MLP)
Changteng Shi, Mengjun Li and Zhiyong An
Shandong Technology and Business University, Yantai, China

ABSTRACT
Many advanced super-resolution reconstructionmethods have been proposed recently,
but they often require high computational andmemory resources,making them incom-
patible with low-power devices in reality. To address this problem, we propose a simple
yet efficient super-resolution reconstruction method using waveform representation
and multi-layer perceptron (MLP) for image processing. Firstly, we partition the
original image and its down-sampled version into multiple patches and introduce
WaveBlock to process these patches. WaveBlock represents patches as waveform
functions with amplitude and phase and extracts representative feature representations
by dynamically adjusting phase terms between tokens and fixed weights. Next, we
fuse the extracted features through a feature fusion block and finally reconstruct the
image using sub-pixel convolution. Extensive experimental results demonstrate that
SRWave-MLP performs excellently in both quantitative evaluation metrics and visual
quality while having significantly fewer parameters than state-of-the-art efficient super-
resolution methods.

Subjects Artificial Intelligence, Computer Vision
Keywords Super-resolution reconstruction, MLP, Deep learning

INTRODUCTION
Super-resolution reconstruction is a fundamental task in the field of image processing,
aiming to recover high-resolution details from low-resolution ones to enhance image
quality and detail presentation. In practical applications, super-resolution reconstruction
holds significant importance in areas such as image enhancement, video compression,
medical image processing and surveillance.

In recent years, there has been significant progress in super-resolution reconstruction
technology, and researchers have been exploring new methods to enhance the quality of
image reconstruction. Early methods based on convolutional neural networks (Dong et al.,
2014; Kim, Lee & Lee, 2016; Lim et al., 2017; Zhang et al., 2018) used deep convolutional
layers to perform super-resolution tasks, achieving certain results. However, they still have
limitations in capturing details and overall image quality.

With the rise of Transformer architecture (Liang et al., 2021; Liu et al., 2021b), its
powerful self-attention mechanism has provided new insights into super-resolution
reconstruction. The efficiency and flexibility demonstrated by Transformers in handling
sequential data allow them to capture richer contextual information in super-resolution
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tasks. However, the complex network structure of Transformers also brings significant
computational and memory overhead, limiting their application in resource-constrained
scenarios.

To further enhance the perceptual quality of super-resolution reconstruction, some
researchers have proposed perceptually guided optimization objective estimation methods,
such as SROOE (Park, Moon & Cho, 2023). These methods optimize perceptually relevant
loss functions, enabling the generated super-resolution images to maintain clarity while
also exhibiting better perceptual quality. However, there is still room for improvement in
terms of computational efficiency and model complexity for these methods to adapt to a
wider range of application scenarios.

In order to reduce computational burden, researchers have explored various methods,
including efficient block design (Michelini, Lu & Jiang, 2022; Kong et al., 2022; Sun, Pan &
Tang, 2022; Li et al., 2022; Zhao et al., 2020), knowledge distillation (He et al., 2020), neural
architecture search (Chu et al., 2021), and structural re-parameterization (Zhang, Zeng &
Zhang, 2021), to improve the efficiency of super-resolution algorithms. One important
direction is to speed up inference time. Techniques such as sub-pixel convolution andmodel
quantization have significantly accelerated runtime, while structural parameterization
has improved the speed of the model during inference. However, these methods often
sacrifice reconstruction performance for faster runtime. Therefore, there is still room for
further exploration to find a better balance between model efficiency and reconstruction
performance.

To overcome the above problems, we are inspired by the article on WaveMLP (Tang
et al., 2022) and propose a new super-resolution reconstruction method SRWave-
MLP. SRWave-MLP makes full use of the advantages of waveform representation and
multi-layer perceptron, introduces an efficient WaveBlock in the processing process,
and optimizes image feature extraction through the Token Mixing block and channel
attention mechanism. At the same time, we design a downsampling residual mechanism
to supplement some feature details for the model by processing the downsampled image
of the original image. To this end, we also design a feature fusion block to achieve
feature fusion of input data through a gating mechanism, so as to better fuse the original
image features and the downsampled image features. Compared with previous methods,
SRWave-MLP has fewer parameters, higher computational efficiency, and has achieved
significant improvements in image quality.

Experimental results show that SRWave-MLP performs well in image super-resolution
reconstruction tasks. Compared with other methods, SRWave-MLP is not only more
efficient in computing resources, but also has achieved significant improvements in image
quality. In addition, the SRWave-MLP model contains only 254K parameters and achieves
relatively excellent super-resolution reconstruction results. We find that the SRWave-MLP
model can achieve a better trade-off between SR performance and model complexity, as
shown in Fig. 1.

The SRWave-MLP method has obtained superior performance in the field of super-
resolution reconstruction. By taking full advantage of waveform representation and multi-
layer perception to optimize the process of image feature extraction and reconstruction,
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Figure 1 Model complexity and structural similarity index measure (SSIM) comparison between our
proposed SRWave-MLPmodel and other methods on BSDS100 for×4 SR. Circle sizes indicate the num-
ber of parameters. The proposed method achieves a better trade-off between model complexity and recon-
struction performance.

Full-size DOI: 10.7717/peerjcs.2208/fig-1

SRWave-MLP brings a new solution for super-resolution reconstruction tasks. It provided
a valuable reference for subsequent research in terms of image reconstruction quality and
detail retention.

In summary, our contributions are as follows:

• Optimization of the WaveBlock was performed. Utilizing Token Mixing Blocks and
channel attention mechanism enhanced the extraction of image features.
• The down-sampling residual is introduced to further improve the reconstruction quality
by better recovering the lost detail information in the low-resolution image during the
reconstruction process.
• A feature fusion block is designed to realize feature fusion and reconstruction of input
data, thus improving the performance of image processing tasks.
• We quantitatively and qualitatively evaluate the proposed method on benchmark
datasets and show that our SRWave-MLP achieves a good trade-off between accuracy
and model complexity.
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RELATED WORKS
CNN
In the super-resolution domain, convolutional neural network (CNN) is an important
deep learning model that has made remarkable progress. Since the proposal of super-
resolution convolutional neural network (SRCNN) (Dong et al., 2014), many CNN-based
super-resolution methods have emerged. These methods mainly focus on three aspects:
network structure design, loss function design and optimization strategy design.

In terms of network structure design, researchers have proposed many deep network
architectures to improve the quality of super-resolution reconstruction. VDSR (Kim, Lee &
Lee, 2016) uses a deeper network to enhance the representation ability of the model. EDSR
(Lim et al., 2017) and RCAN (Zhang et al., 2018) introduce residual blocks and attention
mechanisms to capture more important feature information.

In order to improve the perception quality of reconstructed images, the researchers
introduced the perception loss function. ESRGAN (Wang et al., 2018b) uses a training
method that combines perceptual loss and adversarial loss to produce more realistic
reconstruction results.

In terms of optimization strategies, the researchers also explored different methods
to improve training efficiency and model stability. For example, using gradient clipping
and learning rate preheating in network training can accelerate convergence and improve
generalization ability.

Overall, CNN’s research in the field of super-resolution shows that deep learning
brought breakthrough performance improvements to image super-resolution tasks.
With the continuous progress of technology, we can foresee that more innovative CNN
architectures and optimization strategies will be proposed in the future to promote the
development of super-resolution reconstruction.

Transformer
Transformer (Vaswani et al., 2017) is a model widely used in natural language processing
and computer vision tasks, In recent years, many Transformer-based methods have
been developed for advanced visual tasks such as image classification (Liu et al., 2021b;
Ramachandran et al., 2019; Dosovitskiy et al., 2020; Wu et al., 2020; Li et al., 2021b; Liu
et al., 2021a; Vaswani et al., 2021), object detection (Liu et al., 2021b; Carion et al., 2020;
Liu et al., 2020; Touvron et al., 2021), and segmentation (Liu et al., 2021b; Wu et al., 2020;
Zheng et al., 2021; Cao et al., 2022). Although visual Transformer has demonstrated the
ability to model remote dependencies (Dosovitskiy et al., 2020; Raghu et al., 2021), studies
have shown that combining convolution operations with Transformer can lead to better
visual representations (Li et al., 2023; Wu et al., 2021; Xiao et al., 2021; Yuan et al., 2021a;
Yuan et al., 2021b).

The Transformer architecture is also used for low-level visual tasks (Chen et al., 2021; Li
et al., 2021a; Liang et al., 2022; Liang et al., 2021; Tu et al., 2022; Wang et al., 2022; Zamir
et al., 2022). For example, IPT (Chen et al., 2021) introduced VIT-style networking and
image processing through multi-task pre-training. Inspired by other studies, SwinIR
(Liang et al., 2021), proposed an image recovery Transformer. VRT (Liang et al., 2022)
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applied Transformer-based networking to video recovery tasks. EDT (Li et al., 2021a) used
self-attention mechanism and multi-related task pre-training strategy to further promotes
the latest technology of super-resolution reconstruction.

In this article, our approach differs from the previous Transformer-based approach in
that it employed phase-aware vision multi-layer perceptron (MLP) as the basic network
structure and utilized waveform representation and multi-layer perceptron network
for image processing. This approach based on phase-aware vision can capture spatial
information of imagesmore comprehensively and learn complex patterns and relationships,
resulting in better performance and results in super-resolution reconstruction tasks. By
introducing phase-aware vision MLP in the field of super resolution, we aim to provide
an entirely new solution for image reconstruction and achieve greater breakthroughs in
performance and efficiency.

Multi-layer perceptron
In recent years, with the rapid development of deep learning technology, the research and
application of MLP has attracted more and more attention in the field of image super-
resolution. The traditional super resolution method mainly uses interpolation algorithm
or simple linear model, which is difficult to recover the complex high-frequency details
in the image, resulting in the lack of realism and clarity in the reconstruction results. In
contrast, MLP-based methods have powerful nonlinear mapping and learning capabilities,
and are better able to capture rich texture and detail information in images, resulting in
higher-quality super-resolution reconstructions.

Many researches have shown that MLP is no longer confined to simple encode-decode
structure, but involve more complex network architecture in the field of super-resolution
reconstruction. For example, ESPCN (Shi et al., 2016) used MLP layers for sub-pixel
convolution. It mapped a low-resolution image to a higher-resolution space, the clarity
and realism of the reconstruction are improved while preserving the image structure.
This MLP architecture of WAN (Yu et al., 2018) enables efficient and accurate image
super-resolution reconstruction through special activation functions, emphasizing the
potential of MLPs in capturing image features. The CARN (Ahn, Kang & Sohn, 2018)
model, which used a series of cascaded residual blocks (similar to MLP structures) to
achieve fast image super-resolution reconstruction.

However, MLP still faces some challenges in the field of super resolution. Due to the
large number of parameter requirements, the model is larger and the computing resource
consumption is higher. At the same time, how to further improve the MLP network
structure to increase performance while striking a balance between preserving detail and
perceived quality is still worthy of in-depth study. In this study, we combined waveform
representation and multi-layer perceptron networks to address the challenges of MLP
in super-resolution reconstruction. Compared to previous MLP-based approaches, our
approach has more advantages and innovation.
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Figure 2 SRWave-MLP structure.
Full-size DOI: 10.7717/peerjcs.2208/fig-2

METHODOLOGY
SRWave-MLP model structure
The SRWave-MLP model is shown in Fig. 2. The model consists of three parts: feature
extraction, feature mixing, and image reconstruction.

Specifically, we first perform a bilinear downsampling operation on the low-resolution

image ILR ∈RH×W×3 to obtain the downsampled image
∼

I LR ∈R
H
2 ×

W
2 ×3. To make the

model more compatible with computer vision tasks, we decided to use a feature map of
shape H×W ×C to preserve the 2D spatial shape of the input image, where H ,W , and C
represent the height, width, and number of channels, respectively. Therefore, we input ILR
and

∼

I LR into the Patch Embedding block respectively to obtain feature mapsM ∈RH×W×C

and
∼

M ∈RH
2 ×

W
2 ×C . Then,WaveBlock is used to process them separately to extract features.

The formula for the whole process is as follows:

M = Patch(ILR),
∼

M = Patch(
∼

I LR) (1)

I ′LR=WaveBlock(M ),
∼

I ′LR=WaveBlock(
∼

M ). (2)

Here I ′LR ∈RH×W×C and
∼

I ′LR ∈R
H
2 ×

W
2 ×C represent the processedM and

∼

M respectively.

Afterward, we process I ′LR and
∼

I ′LR separately. For I ′LR, we further process it using

a 3× 3 convolution to extract more representative features. For
∼

I ′LR, we first perform
upsampling using an upsampling block. Then, we double its channel number to 2C using
a 1×1 convolution. Next, we perform upsampling using sub-pixel convolution. Finally,
we concatenate it with the features simply extracted by a 3×3 convolution from ILR to
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further supplement the lost details. The formula for the whole process is as follows:

I
′′

LR=Conv3×3(I ′LR) (3)

∼

I
′′

LR=Cat (Pixel(Conv1×1(
∼

I ′LR)),Conv3×3(ILR)) (4)

Here I
′′

LR ∈RH×W×C ,
∼

I ′′LR ∈RH×W×C .

The feature
∼

I
′′

LR we extracted from the downsampled image can effectively make up
for the missing details in I

′′

LR. We send them to the feature fusion block for feature fusion
to obtain FLR ∈RH×W×C . The feature fusion block can adaptively select and fuse the key
information in the input data, thereby achieving more accurate feature extraction and
better image reconstruction. Finally, the upsampling block composed of convolution and
PixelShuffle layers is used to reconstruct the image, and the residual connection is made
with the image upsampled by billinear to obtain the final reconstructed image ISR. The
formula for the whole process is as follows:

FLR= Fusion(I
′′

LR,

∼

I
′′

LR) (5)

ISR= billinear(ILR)+Pixel(Conv3×3(FLR)) (6)

Algorithm 1 Super-Resolution Reconstruction using SRWave-MLP
1: function SRWave-MLP(x);
2: Input: Low-resolution image ILR, model parameters
3: Output: Super-resolution image ISR
4:
∼

I LR←Bilinear(ILR)

5: M ,
∼

M← PatchEmbedding (ILR,
∼

I LR)
6: for i← 1 to n= 2 do
7: I ′LR,

∼

I ′LR←WaveBlock(M ,
∼

M )
8: end for
9: I ′′LR←Conv3×3(I ′LR)

10:
∼

I ′′LR←Concatenate(Pixle(Conv1×1(
∼

I ′LR)),Conv3×3(ILR))

11: FLR← Fusion(I ′′LR,
∼

I ′′LR)
12: ISR←Billinear(ILR)+Pixel(Conv3×3(FLR))
13: return ISR

WaveBlock
WaveBlock is a block we introduced from WaveMLP (Tang et al., 2022). We have made
some improvements to it to make it suitable for super-resolution reconstruction of images.
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Figure 3 WaveBlock.
Full-size DOI: 10.7717/peerjcs.2208/fig-3

As shown in Fig. 3, we introduced the channel attention mechanism and removed the
downsampling block in the original model. The channel attention mechanism allows the
model to automatically learn the importance between different channels, thereby improving
the ability of feature representation. Removing the downsampling block avoids excessively
reducing the resolution of the feature map, thereby avoiding the loss of more detailed
information. Such modifications may help improve the efficiency and performance of the
model.

In addition to channel attention, WaveBlock also contains two other important parts:
Channel MLP and Token Mixing blocks. Channel MLP is composed of a simple stack of
FC layers and nonlinear activation functions. Token Mixing consists of two phase-aware
token mixing modules (PATMs), which use amplitude and phase information to aggregate
information between different tokens.

PATM uses a phase-aware mechanism to enhance the representation ability of features.
First, through phase-aware convolution, the model can extract position information from
the input features, so that the model has a better understanding of the spatial structure of
the input. The formula is as follows:

θh=Convphase(x),θw =Convphase(x) (7)
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Next, FC is used to extract the feature representations of height, width, and channel
respectively. The formula is as follows:

xh= FCh(x),xw = FCw(x),xc = FCc(x) (8)

Then, the cosine and sine functions are used to modulate the features and fuse the
features with the position information to enhance the model’s sensitivity to position. The
formula is as follows:

x ′h=Cat (xh · cosθh,xh · sinθh) (9)

x ′w =Cat (xw · cosθw ,xw · sinθw) (10)

Next, the modulated features are processed using the FC layer to obtain phase-aware
features in height and width. The formula is as follows:

h= FCh(x ′h),w = FCw(x ′w) (11)

Subsequently, the features in height, width, and channel are adaptively fused through
adaptive average pooling and multi-layer perceptrons, and the attention weights are
calculated. The formula is as follows:

a=AvgPool(h+w+xc) (12)

α= reshapeB,C,3(MLP(a)) (13)

Finally, the model performs weighted fusion of the features according to the attention
weights to obtain the final feature representation. The formula is as follows:

x ′=α[0] ·h+α[1] ·w+α[2] · c (14)

Algorithm 2 PATM
1: function PATM(x);
2: Input: feature tensor x
3: Output: feature tensor x
4: θh←Conv1×1(x)
5: θw←Conv1×1(x)
6: xh← FCh(x),xw← FCw(x)
7: x ′h←Concatenate(xh ∗cos(θh),xh ∗ sin(θh))
8: x ′w←Concatenate(xw ∗cos(θw),xw ∗ sin(θw))
9: h← FC(x ′h),w← FC(x ′w),c← FC(x)
10: a←AvgPool2d(h+w+ c)
11: a←MLP(a)
12: a← reshapeB,C,3(a)
13: x← h∗a[0]+w ∗a[1]+ c ∗a[2]
14: return x
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Figure 4 Feature fusion block.
Full-size DOI: 10.7717/peerjcs.2208/fig-4

Feature fusion block
The feature fusion block is a key component of our neural network model. The key
components of the neural network model are shown in Fig. 4.

Firstly, an intermediate representation Z1 is obtained through the first fully connected
layer, the equation is as follows:

Z1= FC(x) (15)

Then another intermediate representation Z2 is obtained through the second fully
connected layer, the equation is as follows:

Z2= FC(y) (16)

Next, the sum of Z1 and Z2 is input into the Sigmoid function to obtain the fused
intermediate representation Z , the equation is as follows.

Z = Sigmoid(Z1+Z2) (17)

Finally, the input data sum is reconstructed according to the fused intermediate
representation through a linear combination operation. Specifically, by calculating the
element-level product of 1−Z and Z , we get the contribution to x . Meanwhile, by
calculating the element-level product of y and Z , we get the contribution to y . Finally, the
contributions of the two parts are added together to get the output of the feature fusion
block res. The equation is as follows:

res= (1−Z )x+Zy. (18)

The design idea of feature fusion block is to realize the fusion and reconstruction of input
data through the gating mechanism, so as to extract more abundant feature information.
Through the combination of multiple fully connected layers and activation function
Sigmoid, the feature fusion block can learn complex patterns and relationships of input
data to improve the performance of image processing tasks. Through the introduction
of gating mechanism, the feature fusion block can adaptively select and fuse the key
information in the input data, so as to achieve more accurate feature extraction and
reconstruction.
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The parameters and hyperparameters of the block can be adjusted and optimized for
specific tasks. In the experiment, we will verify the performance of the feature fusion block
in image processing tasks and compare it with other methods to verify its effectiveness and
superiority.

Algorithm 3 Feature Fusion
1: function Fusion(x,y);
2: Input: feature tensor x , feature tensor y
3: Output: feature tensor res
4: Z1← FC(x)
5: Z2← FC(y)
6: Z← Sigmoid(Z1+Z2)
7: res← (1−Z )x+Zy
8: return res

EXPERIMENT AND ANALYSIS
Experiment settings
We conduct experiments using DF2K (DIV2K (Agustsson & Timofte, 2017) + Flicker2K
(Timofte et al., 2017)) and DIV2K (Agustsson & Timofte, 2017) datasets, which contain
2,650 and 800 high-quality natural images, respectively. Our test data sets include BSDS100
(Martin et al., 2001), General100 (Dong, Loy & Tang, 2016), Urban100 (Huang, Singh &
Ahuja, 2015), Manga109 (Matsui et al., 2017) and DIV2K (Agustsson & Timofte, 2017)
verification sets, and the image contents are mainly people, animals and natural landscape
images in different scenes. In order to prevent overfitting to some extent, the training image
is enhanced in the process of image preprocessing. Data enhancement can extract more
information from the original data set, thereby narrowing the gap between the training set
and the validation set. The specific operation is to rotate these images randomly 90◦, 180◦,
270◦ and then flip them horizontally to obtain an enhanced dataset. We implemented our
super-resolution reconstruction model based on the PyTorch deep learning framework.
We used a method based on deep convolutional neural networks for reconstruction. We
used the Adam optimizer (Kingma & Ba, 2014) to train the model, and the initial learning
rate was set to 0.01. We used a batch size of 16 and trained 400 epochs during the training
process.
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Algorithm 4 Training
1: function train();
2: Input: Training data (X ,Y ), learning rate η= 0.01, number of epochs N = 400, batch

size B= 16
3: Output: Trained model parameters θ
4: Initialize model parameters θ randomly
5: for epoch← 1 to N do
6: for (xi,yi)∈ (X ,Y ) do
7: Compute model prediction ŷi=Model(xi,θ)
8: Compute loss L= Loss(yi,ŷi)
9: Compute gradients ∇θL
10: Update parameters θ← θ−η ·∇θL
11: end for
12: end for
13: return Trained model parameters θ

Result analysis
Peak signal-to-noise (PSNR) and structural similarity index measure (SSIM) were
performed by SRWave-MLP reconstruction algorithm with 10 reconstruction algorithms.
The SRWave-MLP reconstruction algorithm is comparedwith 10 reconstruction algorithms
including SRGAN (Ledig et al., 2017), ESRGAN (Wang et al., 2018b), SFTGAN (Wang et
al., 2018a), RankSRGAN (Zhang et al., 2019), SRFlow (Lugmayr et al., 2020), SPSR (Ma
et al., 2020), FxSR (Park, Moon & Cho, 2022), ShuffleMixer (Sun, Pan & Tang, 2022),
SROOE (Park, Moon & Cho, 2023) and SAFMN (Sun et al., 2023) on the DIV2K (Agustsson
& Timofte, 2017), BSDS100 (Martin et al., 2001), General100 (Dong, Loy & Tang, 2016),
Manga109 (Matsui et al., 2017), and Urban100 (Huang, Singh & Ahuja, 2015) datasets in
terms of PSNR and SSIM. The comparison results are shown in Table 1. With fewer
parameters than other super-resolution methods, the SRWave-MLP reconstruction
algorithm achieves the best results in terms of SSIM and performs well in terms of
PSNR.

In addition to the quantitative metrics, we also compared the visual results of the
reconstructed images of different methods. Figure 5 shows the visual comparison of
low-resolution images of some example images and the reconstructed images of different
methods. We can observe that SRWave-MLP generates more accurate structures and
details.

We compare the parameter sizes of existing super-resolution reconstruction algorithms
and our proposed SRWave-MLP, and conduct a comprehensive analysis of the performance
of these algorithms based on the PSNR and SSIM results on the BSDS100 test set in the
previous experiments. From Table 1 and Fig. 6, we can observe that there are significant
differences in the parameter sizes of different algorithms. In our SRWave-MLP model,
the number of parameters is only 235K, which is much lower than SROOE’s 17500K,
FxSR’s 18300K, SPSR’s 24800K and SRFLOW’s 39500K. Our model is able to achieve
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Table 1 Comparison with state-of-the-art SRmethods on benchmarks. The first and second best results in each group are highlighted in bold.

Model Venue Params (K) DIV2K BSDS100 General100 Manga109 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRGAN CVPR2017 1,500 K 26.63 0.7625 24.13 0.6454 27.54 0.7998 26.26 0.8285 22.84 0.7196

ESRGAN ECCV2018 1,6700 K 26.64 0.7640 23.95 0.6463 27.53 0.7984 26.50 0.8245 22.78 0.7214

SFTGAN CVPR2018 53,700 K 26.56 0.7578 24.09 0.6460 27.04 0.7861 26.07 0.8182 22.74 0.7107

RANKSRGAN ICCV2019 1,600 K 26.51 0.7526 24.09 0.6580 27.31 0.7899 26.04 0.8117 22.93 0.7169

SRFLOW ECCV2020 39,500 K 27.08 0.7558 24.66 0.6531 27.83 0.7951 27.11 0.8244 23.68 0.7316

SPSR CVPR2020 24,800 K 26.71 0.7614 24.16 0.6531 27.65 0.7995 26.74 0.8267 23.24 0.7365

FxSR IEEE Access2022 18,300 K 27.51 0.7890 24.77 0.6871 28.44 0.8229 27.64 0.8440 24.08 0.7641

ShuffleMixer NeurIPS2022 411 K 29.57 0.8507 27.21 0.7706 30.04 0.8734 29.53 0.9036 25.10 0.7914

SROOE (T = 0) CVPR2023 17,500 K 29.33 0.8413 26.45 0.7416 30.08 0.8662 29.36 0.8948 25.21 0.8020

SAFMN ICCV2023 240 K 28.97 0.8182 26.38 0.7125 29.97 0.8707 28.52 0.8772 24.79 0.7811

SRWave-MLP (ours) 235 K 29.02 0.8697 26.84 0.8041 29.34 0.8960 28.03 0.9098 24.22 0.8084

Figure 5 Visual comparison with state-of-the-art SRmethods on the DIV2K dataset.
Full-size DOI: 10.7717/peerjcs.2208/fig-5

good performance while maintaining a small model size. In addition, when the number
of parameters of our model is smaller than that of other lightweight models SAFMN
and ShuffleMixer, the results on the SSIM are optimal and the PSNR performs well. In
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Figure 6 Model complexity and PSNR comparison between our proposed SRWave-MLPmodel and
other methods on BSDS100 for×4 SR. Circle sizes indicate the number of parameters. The proposed
method achieves a better trade-off between model complexity and reconstruction performance.

Full-size DOI: 10.7717/peerjcs.2208/fig-6

super-resolution reconstruction tasks, there is a trade-off between parameter size and
performance. Larger model parameters may mean more powerful learning capabilities
and better image reconstruction quality, but also bring higher storage requirements and
computational complexity. SRWave-MLP has obvious advantages over large models such
as SROOE in terms of parameter size, and still achieving relatively excellent results in terms
of performance. This makes SRWave-MLP a promising choice both in terms of image
reconstruction quality and model lightweight.

In addition, the comparison results of our super-resolution reconstruction model
SRWave-MLP with two Tranformer-based comparison models SWIR (Liang et al., 2021)
and HAT (Chen et al., 2023) in terms of the number of parameters are shown in Table 2,
combined with the PSNR and SSIM results of the BSDS100 (Martin et al., 2001) test set
in the previous experiment to measure the performance of different models in terms of
reconstructed image quality and structural similarity. Our model SRWave-MLP has the
least number of parameters, only 0.24M, which is much less than the number of parameters
of SWIR and HAT. This shows that our model has an advantage in model lightweight.
Although our model has fewer parameters, it performs better than SWIR and HAT in terms
of SSIM, reaching 0.8048. In terms of PSNR, although SRWave-MLP is slightly inferior to
SWIR and HAT, it is still close to their results.

Our SRWave-MLP model has an advantage in terms of the number of parameters, while
still achieving relatively good results in performance. Our results show that the lightweight
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Table 2 Comparison with SWIR and HAT in terms of parameter count.

Model Parameter count (M) PSNR SSIM

SWIR 12 27.92 0.7489
HAT 20 27.97 0.7505
SRWave-MLP (ours) 0.24 26.84 0.8041

Table 3 Impact of feature fusion block.

Method Fusion Simple residual Concatenation

PSNR 26.84 26.65 26.54
SSIM 0.8041 0.7990 0.7983

Table 4 Impact of subsampling residuals.

Method With subsampling residual Without subsampling residual

PSNR 26.84 25.91
SSIM 0.8041 0.7416

SRWave-MLP model has great application potential in super-resolution reconstruction
tasks, and can achieve excellent image reconstruction results while maintaining small
model parameters.

Ablation experiment
For the ablation study, we train SRWave-MLP on DF2K (Lim et al., 2017) of classical image
SR(×4) and test it on BSDS100 (Martin et al., 2001).

The impact of the feature fusion block: The influence of using mixed block, simple
residual joining, and concatenation of different levels of feature tensors in channel
dimensions on PSNR and SSIM are shown in Table 3. From the table, we can draw
the following observations.

Firstly, the Fusion block is important because it improves by 0.19dB compared to using
a simple residual connection PSNR, which indicates that the feature fusion block helps
to improve the peak signal-to-noise ratio of the reconstructed image to a certain extent,
that is, it increases the clarity and detail retention of the reconstructed image. Secondly,
compared with the splicing of feature tensors of different levels in the channel dimension,
the PSNR improves by 0.30 dB, which further demonstrates the effectiveness of Fusion
block in improving the quality of reconstructed images. Compared with simple feature
stitching, Fusion block can better fuse different levels of feature representation, avoid the
loss of feature information, and thus improve the quality of the reconstructed image.

The impact of downsampled residual operation: The effects on PSNR and SSIM with
and without down-sampled residuals are shown in Table 4. From the table, we can draw
the following observations.

We can see that the PSNR improved by 0.93db with down-sampled residuals compared
to PSNR without down-sampled residuals. The use of down-sampling residuals can bring
significant PSNR improvement in super-resolution reconstruction tasks, while maintaining
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Table 5 Impact of channel attention.

Method Without channel attention With channel attention

PSNR 26.84 26.70
SSIM 0.8041 0.8023

good image structure similarity. This confirms the validity of the down-sampling residual
operation in super-resolution reconstruction tasks and its important role in improving
model performance.

The impact of channel attention inWaveBlock: In this article, we introduced the
channel attention mechanism into the WaveBlock to explore its impact on image
processing. Through experimental comparison, we found that our method performs
better in image reconstruction quality when using channel attention mechanism. As shown
in Table 5, when the channel attention mechanism is used, the PSNR value of our method
reaches 26.84 and the SSIM value reaches 0.8041. When the channel attention mechanism
is not used, the PSNR value is slightly lower, 26.70, and the SSIM value is 0.8023.

The experimental results show that the introduction of channel attention mechanism
can significantly improve the performance of our method in image processing tasks. The
channel attention mechanism can adaptively adjust the weight of different channels, so
that more critical and useful channel information can be more emphasized under a specific
task. Therefore, the channel attention mechanism plays an important role in our approach,
allowing us to capture the detailed features of the image more precisely, resulting in higher
quality image reconstruction results.

The impact of the number of MLP hidden layers inWaveBlock: According to the
experimental results in Table 6, we analyzed the influence of MLP hidden layers in
WaveBlock on image processing tasks. When the number of MLP hiding layers is 2, the
average PSNR of the network in the image reconstruction task is 26.69. This shows that
the reconstruction performance of the network is relatively mediocre in the case of fewer
layers. when we increase the MLP hidden layers to four layers, average PSNR increased to
26.84, shows a certain performance improvements. Increasing the number of hidden layers
enables the network to extract image features at a deeper level, thus improving the PSNR
index. However, as to further increase the number of six layer, the average PSNR decrease
slightly to 26.76. This may indicate that in some cases, too many layers may introduce
some unnecessary complexity, which can affect rebuild performance. In 8th layer, the
average PSNR further reduce to 26.69, close to the initial layer 2 network performance.
This indicates that increasing the number of hidden layers within a certain range can
improve the performance of the network, but too many layers may cause performance
degradation.In addition to PSNR, we also looked at SSIM metrics. When the number of
MLP hidden layers is four, the network performs best and its SSIM value is 0.8041.

In summary, appropriately increasing the number ofMLP hidden layers can improve the
performance of the network, but too many layers may cause performance degradation. In
practical applications, we need to choose the right number of MLP hiding layers according
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Table 6 Impact of number of hidden layers.

Number of layers 2 4 6 8

PSNR 26.69 26.84 26.76 26.69
SSIM 0.8006 0.8041 0.8027 0.7992

Table 7 Impact of number of layers in PATM block.

Number of layers 2 3 4

PSNR 26.72 26.84 26.79
SSIM 0.8021 0.8041 0.8035

to the specific situation, in order to balance performance and complexity, and obtain the
best image reconstruction quality.

The impact of PATM block layers inWaveBlock:According to the experimental results
in Table 7, we analyzed the influence of PATM block layers on image processing tasks.
When the number of PATM block is 2 layers, the average PSNR of the network in the
image reconstruction task is 26.72. This shows that in the case of fewer layers, the network
performs better in terms of reconstruction performance. When we increased the number
of layers of the PATM block to 3, the average PSNR increased to 26.84. This suggests that
increasing the number of layers of PATM block helps improve network performance and
leads to higher rebuild quality. Compared with layer 2, Layer 3 PATM block enables the
network to restore image details more accurately, thus improving the PSNR index. When
the number of layers of PATM block was further increased to 4 layers, the average PSNR
decreased slightly to 26.79. This may indicate that in some cases, too many layers may
introduce some unnecessary complexity, which can affect rebuild performance.

In addition to the PSNR, we also examined the SSIM index. When the number of layers
of PATM block is 3, the network performance is the best, and its SSIM value is 0.8041,
slightly better than that of 2 layers (SSIM =0.8021) and 4 layers (SSIM =0.8035). This
further verifies the effectiveness of the 3-layer PATM block in image processing tasks. To
sum up, the appropriate increase PATM block layer helps to improve the reconstruction
of the network performance, but too many layers may not always lead to better results. In
practical applications, we need to choose the right number of PATM block layers according
to the specific situation, in order to balance performance and complexity, and obtain the
best image reconstruction quality.

CONCLUSION
This article proposes a lightweight super-resolution reconstruction method aimed at
extracting richer detailed features. Through the accurate extraction and reconstruction
of image features through WaveBlock and feature fusion blocks, we are not only more
efficient in computational resources, but also achieve significant improvements in image
quality. Our method is a lightweight perception-oriented model. Compared with other
large-scale models, our method is slightly insufficient in the PSNR evaluation metric, but
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outperforms all others in the structural similarity (SSIM) evaluation metric. At the same
time, our method has a small size and number of parameters, making it highly adaptable
and deployable on devices with limited resources.

Although our model shows good performance in a lightweight model, it may have some
limitations in handling long-distance dependencies compared to large Transformer-based
models, which may cause the PSNR of the reconstructed image to be slightly lower
than expected. To solve this problem, we can consider introducing adversarial training
technology to further optimize the model by introducing adversarial loss functions to
improve the model’s ability to restore image details.
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