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ABSTRACT

With the advent and improvement of ontological dictionaries (WordNet, Babelnet),
the use of synsets-based text representations is gaining popularity in classification
tasks. More recently, ontological dictionaries were used for reducing dimensionality in
this kind of representation (e.g., Semantic Dimensionality Reduction System (SDRS)
(Vélez de Mendizabal et al., 2020)). These approaches are based on the combination of
semantically related columns by taking advantage of semantic information extracted
from ontological dictionaries. Their main advantage is that they not only eliminate
features but can also combine them, minimizing (low-loss) or avoiding (lossless)
the loss of information. The most recent (and accurate) techniques included in this
group are based on using evolutionary algorithms to find how many features can be
grouped to reduce false positive (FP) and false negative (FN) errors obtained. The
main limitation of these evolutionary-based schemes is the computational requirements
derived from the use of optimization algorithms. The contribution of this study is a new
lossless feature reduction scheme exploiting information from ontological dictionaries,
which achieves slightly better accuracy (specially in FP errors) than optimization-
based approaches but using far fewer computational resources. Instead of using
computationally expensive evolutionary algorithms, our proposal determines whether
two columns (synsets) can be combined by observing whether the instances included
in a dataset (e.g., training dataset) containing these synsets are mostly of the same class.
The study includes experiments using three datasets and a detailed comparison with
two previous optimization-based approaches.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning

Keywords Semantic information, Dimensionality reduction, Ontological dictionary, Supervised
classification, Text classification

INTRODUCTION

Automatic supervised text classification consists of assigning a text document to one (or
more) predefined categories. These techniques have been successfully applied to solve
a wide variety of problems with specific constraints including spam filtering, language
detection, and news categorization (Kowsari et al., 2019). The main steps involved in a
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generic strategy for text classification are (i) document representation, (ii) document
pre-processing, (iii) feature extraction/selection, (iv) model selection, (v) training the
classifier and (vi) executing the classifier on input tests to guess category/categories of each
text (Kowsari et al., 2019).

Moreover, text classification problems are often divided into three types: (i) binary,
which involves the use of two mutually exclusive categories (such as spam filtering), (i7)
multi-class using multiple mutually exclusive categories (language detection), and (iii)
multi-label where a document can be assigned to zero or several categories from a set of
multiple documents (news categorization).

In order to improve text classification accuracy, researchers have studied the use
of multiple representation forms (Bag of Words (BoW), character n-grams, word n-
grams, efc.), text pre-processing techniques (noise removal, spelling correction, stemming,
lemmatization, efc.), dimensionality reduction schemes (principal component analysis,
linear discriminant analysis, evolutionary algorithms, efc.) and classification algorithms
(Rocchio, Boosting, Bagging, Logistic Regression, etc.) (Kowsari et al., 2019). However, the
introduction of semantic knowledge to aid in the process of automatically classifying texts
(Altinel & Ganiz, 2018) has significantly contributed to achieving a performance increase in
these tasks. Particularly, although the semantic information can be automatically compiled
from large collections of documents (topic-based models (Li ef al., 2011), word embedding
(Wang et al., 2016)), the use of large ontological dictionaries made by human experts (as
WordNet, Babelnet (Almeida et al., 2016)) to improve text classification (synset-based
representations) has gained popularity (Sanchez-Pi, Marti ¢ Bicharra Garcia, 2016; Lytvyn
et al., 2017; Ul haq Dar & Dorn, 2018; Shanavas et al., 2020)). Synsets (synonym sets) are
groups of words/n-grams with exactly the same meaning which are usually represented by
an identifier (e.g., in Babelnet, bn:00008364n ={“bank”, "depository financial institution”,
“banking company”, “banking concern’}). In synset-based representations, synsets are used
as features.

The identification of the right synset when typos are found is a limitation of synset-based
representations (Ruas, Grosky ¢ Aizawa, 2019). However, the classification models achieve
a suitable performance with these kinds of representations. Additionally, researchers
have introduced some interesting methods to improve early stages of text classification
(representation or dimensionality reduction) by incorporating semantic information
from ontologies (information fusion). Many recent works have successfully addressed
the reduction of the dimensionality using semantic information achieving (under
certain circumstances) an improved performance on classification tasks (Bahgat et al.,
2018; Méndez, Cotos-Yaiiez ¢ Ruano-Ordds, 2019; Vélez de Mendizabal et al., 2020). These
schemes are based on grouping features using hypernymy relations extracted from an
ontology (Babelnet or WordNet) and are able to link synsets with similar meanings. Often,
certain synsets are not included in any text of the training dataset, thus reducing the
performance of models. However, by taking advantage of taxonomic relations these
approaches bring together these and other semantically similar synsets (which are
included in the training dataset) to create a new representation of the dataset, which
is semantically richer and, therefore, usually makes classifiers perform better. Additionally,
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these approaches keep all knowledge included in the original training datasets (lossless)
because their operation is based on combining semantically similar synsets. Hence, the
goal of traditional dimensionality reduction methods is to preserve the performance of
classifiers while in semantic dimensionality reduction is to improve the accuracy of models.

One of the most important limitations of semantic dimensionality reduction schemes
is the time required to achieve a reduction. The work of Vélez de Mendizabal et al. (2020)
particularly uses MOEA Multi-Objective Evolutionary Algorithms (MOEA) for the
identification of feature groups. The authors reported the need for using more than a
week to obtain a set of solutions. Therefore, the use of MOEA algorithms to reduce the
dimensionality of large datasets is completely unfeasible because the computational
requirements increase exponentially. Recently, the same researchers introduced an
improvement of the original MOEA algorithm (SDRS low-loss) that was able to slightly
increase performance but having the same weaknesses of the original proposal (excessive
computational resource consumption) (Vélez de Mendizabal et al., 2023).

However, we find that the labelled training dataset contains valuable information which
indicates whether two semantically similar synsets (features s; and s,) can be combined
in the same feature s; , avoiding the need of executing training/testing of a classifier.

In particular, features s; and s, can be safely grouped if the categories of documents
containing s; and s, are mainly the same. Based on this idea, we introduce a new efficient
semantic-based dimensionality reduction algorithm for binary classification problems
(e-SDRS). The algorithm has been implemented and included in our NLPA software
(Novo-Lourés et al., 2020) and we shared an example of how to use it (Novo-Lourés, 2022).
We find experimentally that using our dimensionality reduction algorithm, classifiers
achieve better accuracy, and their computational requirements are lower. Therefore, our
contribution is two-fold: (i) the e-SDRS algorithm and (ii) an experimental evaluation of
its performance and computational resource consumption.

The remainder of the study is structured as follows: ‘State of the Art’ presents the
state of the art in the context of synset-based dimensionality reduction highlighting the
limitations of current schemes. ‘Enhanced Semantic-based Feature Reduction’ introduces
our proposal to efficiently address the dimensionality reduction for text classification
problems. ‘Experimental Evaluation’ contains the experimentation made to validate the
proposal and finally, ‘Conclusions and Future Work’ describes the main conclusions and
outlines future work.

STATE OF THE ART

A common problem for text representations to be processed by a classification algorithm
is dimensionality. High dimensionality implies an increase in computational costs and
resources, as well as a decrease in performance and accuracy due to the inclusion of
irrelevant, redundant, and inconsistent information. To solve this problem, different
feature selection methods have emerged as alternatives to find the subset of input variables
that best describe the collected information (Kalousis, Prados ¢ Hilario, 2007). Previous
works (Chandrashekar & Sahin, 2014; Deng et al., 2019), suggest that the classical schemes
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used for feature reduction can be classified into three main categories: (i) filter methods,
(11) wrapper methods, and (iii) embedded methods.

Filter methods evaluate the relevance of features present in the input data, usually based
on the correlation between the feature and the target variable. Highly ranked features are
then selected according to a defined threshold or by setting a maximum number of features.
The main advantage of filters is their simplicity; however, they are incapable of selecting
independent variables and cannot prevent duplication of information. Examples of filter
methods (Salcedo-Sanz et al., 2004) include the chi-square test, principal/independent
component analysis, mutual information techniques, correlation criteria, and Fisher’s
discriminant scores.

Wrapper methods use the performance of a classification algorithm to evaluate the
amount of relevant information provided by a subset of features. Each subset of features is
scored based on its classification performance and the best of them is selected. The main
drawback is that it can result in overfitting phenomena.

Embedded methods are those feature selection methods incorporated into specific
classifiers and executed during the learning process. The main disadvantage of them lies in
their dependency of the learning model.

In contrast to these blind dimensionality reduction mechanisms, recent studies in
text classification have shown the utility of taking advantage of semantic information
to reduce the dimensionality of input data. The use of semantic information extracted
from ontologies (information fusion) for dimensionality reduction is an idea that emerged
during the last decade and only a few approaches are available. The first attempt of reducing
the dimensionality was introduced in the study of Bahgat ¢ Moawad (2017) and it consists
of simply using a synset-based representation for the messages. As a synset brings together
different terms with the same meaning, this representation implies the realization of a
reduction of dimensionality. Although this study is an interesting starting point and helps
to connect different texts with similar meanings (I am selling my car, VW Golf for sale,
etc.), the dimensionality reduction achieved with this technique is very limited. In fact,
the process defined by this approach fits the process of translating words to synsets using
a word sense disambiguation (WSD) scheme. Bahgat et al. (2018) have released a new
approach of feature reduction in which two synsets can be merged if they have a parent
or child in common and use different weighting schemes based on the ontology relations
to decide if more synsets can be merged into the same feature. However, this solution
does not adequately evaluate the relevance of the semantic information extracted with and
without synsets merging.

The work of Abiramasundari, Ramaswamy & Sangeetha (2021) which also focuses on
feature reduction, takes advantage of semantic information to decrease the number of
words/tokens required for representing messages. Their approach consists of querying a
semantic dictionary to check the meaning of each identified word/token. Words/tokens
that do not have meaning are removed, resulting in a reduction in the number of features.

In parallel, the study of Méndez, Cotos-Yariez & Ruano-Ordds (2019) uses WordNet to
reduce the dimensionality of a dataset according to the hierarchical level specified by the
user. They select all synsets of WordNet having a distance less than or equal to 1 from the
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synset “entity” (the root of the ontological dictionary) as features by using only hypernym
relations. Additionally, they provide extensive experimentation using level four of the
hierarchy (181 features) achieving quite good classification results. The main limitation of
this approach is the lack of using a WSD technique to adequately overcome the problem
of polysemy (one word having many distinct meanings). Moreover, this proposal does not
consider the class of each text and, therefore, it is not possible to identify those synsets that
are relevant for the classification to avoid generalization.

After that, Vélez de Mendizabal et al. (2020) used Babelfy to disambiguate the sense
of words and raised the reduction of dimensionality as an optimization problem whose
main goals were minimising both the number of features and the percentages of FP/FN
errors in the classification stage. Then, they took advantage of the Non-dominated Sorting
Genetic Algorithm (NSGA-II) (Deb et al., 2000) to compute a solution set (Pareto front)
and selected the solution achieving the lowest FP/EN errors. Known as SDRS, this approach
achieved a significant improvement in the reduction of dimensionality and in the number
of errors obtained in the classification process. The main limitation of this approach is
the computational requirements of the process. In particularly, the evaluation of each
candidate solution implied the execution of a 10-fold cross-validation experiment with a
naive Bayes algorithm. This complexity led to the need for weeks of processing to compute
interesting solutions.

Additionally, Saidani, Adi ¢ Allili (2020) proposed a two-stage semantic analysis-based
method to detect domain-specific irrelevant messages. First stage allows grouping the
emails according to specific topics to enable a global topic-based conceptual view of spam
messages. Following, the second stage then uses rules to identify the semantic meaning of
each feature based on the presence of each of the previously specified topics. Authors use
six machine learning algorithms to test the performance of the proposed approach.

In early 2023, Vélez de Mendizabal et al. (2023) published a new study identifying new
dimensionality reduction strategies based on the use of evolutionary computation. This
new work introduces a new formulation of the problem in SDRS that can be used for
implementing lossless, lossy, and low-loss strategies. The first of them corresponds to
the strategy implemented in the original algorithm (SDRS) and allows the evolutionary
algorithm group semantically similar synsets with the objectives of reducing classification
errors (both FP and FN) and dimensionality. Following the second approach (lossy) the
algorithm cannot combine columns, but it is allowed to decide whether to eliminate or
keep each column (synset) with the same objectives. Finally, in the low-loss strategy, the
evolutionary algorithm has again the same objectives and can achieve them by performing
both column combination and deletion operations. Through an experimental analysis, the
study concludes that the latter strategy is slightly better than the original SDRS-lossless,
but its computational requirements are also excessive.

We carefully studied these algorithms and found that they can improve classification
results. The connection of semantic similar synsets helps to slightly generalize knowledge
by finding broader features. However, bringing together several synsets should imply
that messages containing these synsets are similarly classified. Therefore, supervised
dimensionality reduction methods (those that analyse the classifications of a set of
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documents) can achieve better results in comparison with other approaches that do
not take this information into consideration, such as earlier proposals (Bahgat ¢ Moawad,
2017). Moreover, we find that two synsets (s1,s,) can be grouped together whenever: (1)
their semantic distance is short; and (ii) most of the documents containing s1 and/or s2
belong to the same class. As long as this condition is very easy to compute, the use of high
demanding computational algorithms (such as the above-mentioned SDRS variants) can
be avoided.

Finally, a synset-grouping scheme can take advantage of the similarity between two or
more synsets (s;,s,,...,5,) to create a synset group even when there is no information
about some of the grouped synsets in the training dataset. As an example, and in the
context of spam filtering, if the training dataset contains some ham (legitimate) documents
with the synset bn:00016606n (cat) and others with bn:00010309n (big cat), the process
could include the original synsets (bn:00016606n and bn:00010309n) in the same group.
However, the synset bn:00033982n (feline), which is semantically connected with the
original symbols (is hypernym for both), should also be included in the group even if there
is no training document containing this synset. Reducing the dimensionality with this kind
of techniques could successfully minimize the computational requirements of previous
approaches and provide enhanced data to improve the classification.

These ideas, which can be easily deduced from observing the operation of previous
successful schemes, have been modelled into our proposal (Enhanced Semantic-Based
Dimensionality Reduction System, e-SDRS) described in the next section.

ENHANCED SEMANTIC-BASED FEATURE REDUCTION

This section shows a detailed description of the e-SDRS approach. Our proposal is able
to reduce the dimensionality of datasets, which are represented using synset features.
It takes advantage of taxonomic relations between synsets (hypernymy and hyponymy)
to group similar synsets. Hypernymy/hyponymy relations are included in ontological
dictionaries (e.g., Wordnet or Babelnet). Despite any source of information containing
hypernymy/hyponymy relations can be used to find these relations, in this work we used
Babelnet because it includes Wordnet and Open Multilingual Wordnet (https:/omwn.org).
Moreover, each synset included in Babelnet has been translated into 520 languages ensuring
the same algorithm can be applied with no modifications to datasets written in a large
collection of languages.

e-SDRS can be applied only with binary classification. For this purpose, landlas
exclusive categories for documents. To group synsets, an e-SDRS operation is configured
using two parameters: (i) MD (max distance) and (i7) RS (required similarity). The former
is used to limit the number of taxonomic relations (distance) between two synsets, allowing
them to belong to the same group. The latter is used to determine whether the classification
for documents that contain two synsets is sufficiently similar (and therefore synsets can be
safely grouped or not). Common values for MD are included in the interval [2—4] while
RS values are usually in the range [0.8-0.95].

Let T a set of documents that is being used for training purposes and docs(S,T) a
function that computes the collection of documents from T containing any of the synsets
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included in the set of synsets S={s1,s,,...,s,}. Considering two different synsets s; and s,
that are present in the set of training documents (docs({s1}, T) # @) A (docs({s,}, T) # 9),
they are indicative of the same label (denoted as iol) when documents in which they are
contained mainly belong to the same class I; (see Eq. (1)). Otherwise, when one or both
synsets are not included in T, we can consider both synsets to be indicative of the same
label.

ratio(docs({s1},T),l) > RS/\ratio (docs({s2},T), 1)) = RS
( /\ratio(docs({sl,sz},T),ll) > RS )
iol(sy,s2) = \/ . (1)
<rati0 (docs({s1},T), L) > RS/\ratio (docs({s:},T),b) > RS)
/\ratio(docs({sl,sz},T),lz) > RS

where ratio(DS, 1) stands for the ratio of the documents categorized as I in the document
set DS.

e-SDRS algorithm is able to create groups of synsets SG = {s1,s,,...,s,} that match the
following two constraints (Eqs. (C1) and (C2)).

(docs({si}.7) #2) \ (si #)
docs({s;}, T) # @/\EISj e SG /\(dist(si,sj) < MD) (C1)
/\iol(si,sj) —5;€8G

(dOCS({Sj} , T) * @) /\(docs({sk}, T) # 9)
docs({s;}, T) # @/\Els]-,sk e SG /\iOl(Sj,Sk) (C2)
/\ (dist (S]‘, sk) < MD) , withs; € path (sj,sk) —5;€8G

where path(s;,s;) represents the list of synsets linked by hyponym/hypernym relations
which allows the shortest way for connecting s; and s, in the ontological dictionary,
dist (s, s;) is the cardinality of the path(s;,s;) reduced in 1.

Intuitively, each group of synsets represents a collection of semantically connected
synsets. The training dataset (T') contains information for most of them, but the algorithm
allows the existence of some synsets in the group that are not included in any document
of T. However, these will be in the path between two synsets s; and s, when (7) both are
included in one or more documents from T, whose distance is lower than MD, and (ii) the
similarity of the labels of documents containing them is greater than RS. An example of
this situation in the problem of spam filtering is included in Fig. 1.

Figure 1 contains a small subset of synsets included in Babelnet and their
hyponym/hypernym relations. For each synset, we represent the information from the
training dataset T as percentages (the ratio of documents containing the synset labelled as
spam or ham). The training dataset contains documents with synsets drug (95% spam and
5% ham), viagra (98% spam and 2% ham), cialis (91% spam and 9% ham), medicine (9%
spam and 91% ham), chloroquine (92% spam and 8% ham), and mepacrine (8% spam and
92% ham).
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Figure 1 Example of synsets that can be grouped together.
Full-size Gal DOI: 10.7717/peerjcs.2206/fig-1

In the left side of Fig. 1, a group is created with synsets viagra, cialis, drug, and virility_drug
(represented using brown rectangles). The first three can be successfully grouped with
parameters (MD = 2 and RS = 0.9) since the distance between them, considering the
taxonomic relations, is two and more than the 90% of the documents containing them are
spam (they fit the constraint (C1)). Moreover, virility_drug is not included in any document
from T, but is present in the path that connects at least two of the synsets (in fact, it is in
all paths between the other synsets) so it is also included in the group (satisfies constraint
(C2)). However, generic_drug is not included in the group because it is not included in
any path between synsets viagra, cialis and drug. Finally, synsets chloroquine and mepacrine
(included at the bottom right of Fig. 1) cannot be grouped because they are included
in documents with considerable dissimilar labelling. However, mepacrine, medicine, and
antimalarial (represented using cyan rectangles) could be successfully grouped because
they fit the constraints Eqs. (C1) and (C2).

To implement this grouping strategy, e-SDRS comprises two ways of grouping synsets:
(i) horizontal grouping (denoted as hg) and (ii) vertical grouping (represented as vg).
Horizontal grouping allows finding synsets that have a common hypernym whilst vertical
grouping includes searching synsets that are connected using generalization (hypernymy)
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relations. Figure 2 shows two examples of both kinds of grouping forms on the assumption
that all documents containing the represented synsets are labelled in the same category.
As shown in Fig. 2, synsets can be grouped by (i) using only hypernym relations (vertical
grouping) or (ii) through the combination of hypernym and hyponym relations (horizontal
grouping).
Two synsets sy and s, (n < MD) included in documents of the training dataset
(docs({s0}, T) # D) A (docs(s,, T') # &) can be vertically grouped ( vg(so,s,)) if there
is a path (s1,5,,...,5,—1), which fulfil the constraint (C3).

n—1 n .
(51,52, .+550—1) ’7/\1,:0 hypernym (s;, $i+1), /\j k=0101 (s]-,sk) (C3)

where hypernym (s, s,) verifies if 5; is a hypernym of s,.

Moreover, a synset sy included in the training documents (docs({so}, T) # &) and
another synset s; not present in training documents (docs({sx}, T) = &) can be vertically
grouped if constraint (C4) is verified.

n—1
(50,514 vy SkyersSn) Vg(so,sn) /\i:() hypernym s;, siy1) (C4)

Finally, vertically groupable property (denoted as vg) is transitive and allows creating
large groups (see Eq. (2)).

vg(s0,51) AVg(s1,52) = vg(S0,52) (2)
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Moreover, some synsets can be grouped horizontally (denoted as hg) if they cannot be
grouped vertically as shown in constraint (C5).

vg(s0,51) = —hg(s0,5n). (C5)

Some situations can be considered when grouping synsets horizontally. The first happens
when synsets are included in the training dataset (docs({so}, T) # @) A (docs({s,}, T) # D)
with (n < MD). Two synsets in this situation can be included in the same group (hg (o, sn))
if they match the constraint (C6).

n—1 n
/\i:O (hypernym(si,siH) \/hyponym(si,s,url)) ’/\j,k:oiOI(Sj’sk)' (C6)

3(517527"'551’!—1)

Where hypernym (s;,s;) and hyponym sy, s,) are true when s; is hypernym or hyponym of
s,, respectively.

Additionally, a synset sy included in the training dataset (docs({so}, T) # @) can be
horizontally grouped with another synset s, that is not included in T (docs({s,,},T) = @)
but is included in a vertical group (Elsm | (docs (s, T) # D) AVE(Sm, Sn) ) Constraint (C7)
is required for grouping synsets in such situations (hg(so,s,)) where the labelling of synset
sp 1s guessed by one of the members of the vertical group (s;,).

n—1
/\i:O (hypernym (s;, siy1) V hyponym (s;, siy1))
(51,82, -+, 5u—1) /\:kzoiol(sj,sk) . (C7)

/\iol(so,sm)

A similar situation occurs when none of the synsets sg,s, are included in the
training dataset (docs({so}, T) = @) A (docs({s,, T'}) = @) but are vertically grouped
s, 51 |Vg(sm,50) AVE(s1,sp) A (docs({sm}, T) # D) A (docs({s}, T) # @). As shown in
constraint (C8), the labelling of these synsets is guessed by the members of their vertical
groups (s, 57) to check if these synsets can be horizontally grouped (hg(so,sn)).

-1
/\7 (hypernym (s;, si41)) V hyponym (s;. sit1)
.
(51,52, .-4551—1) /\j k_olol(sj,sk) . (C8)
n—1
/\,_ docs({s,}. T) # 2 — (iol(sy.51) Aol sy 5))

Considering a synset s not included in the training dataset (docs({sx},T) = @) and
not included in vertical relations, and another synset sy (docs({so},T) # &), both can be
horizontally grouped if s is in the path between sy and s,;, and these synsets are horizontally
groupable (constraint (C9)).

n—1
hg(s0,51) /\i:O (hypernym (s;, si+1) V hyponym (s;, siy1)) - (C9)

El(so,sl,...,sk,...,s,,)

Finally, hg (horizontally groupable property) satisfies transitive property, which
guarantees the condition expressed in (3) and ensures the generation of large groups.

hg(so,s1) Ahg(si,s2) — hg(so,s2). (3)
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Figure 3 Using e-SDRS algorithm. Icons from Noun Project (CCBY3.0): https:/thenounproject.com/
icons/.
Full-size 4 DOT: 10.7717/peerjcs.2206/fig-3

The use of e-SDRS algorithm (which uses the concept of vertical and horizontal
grouping) is represented in Fig. 3.

As shown in Fig. 3, before using the e-SDRS algorithm, the original dataset should
be represented using synset-based properties (stage 1). During stage 2, each of the
synsets (columns) identified are stored in a tree structure according to Babelnet
hypernym/hyponym relations (see Tree Manager on Fig. 3). The identification of groups
starts from leaf nodes having the largest distance from root to build larger synset groups
and avoid removing relations caused by grouping nodes at higher layers. In this manner,
each synset is compared with the remaining ones to identify whether vertical grouping
can be applied. Then, a similar process is carried out to discover horizontal grouping
opportunities. The process is repeated until no grouping is found. Once dimensionality of
the training dataset has been reduced, each test instance (or an entire test dataset) can be
minimized following the scheme found for the training dataset (Dataset Creator in Fig. 3).
Finally, we would point out that, depending on the information included for each column
for documents (frequency/presence or absence, efc.), the grouping of columns should be
implemented in a different form (i.e., using a numerical sum or logical OR operator).

The algorithm has been implemented and included in our NLPA software (Novo-
Lourés et al., 2020). Using this software, we designed an experimental evaluation protocol
to test the suitability of e-SDRS. ‘Experimental Evaluation’ includes the details of our
experimentation.
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Table 1 Available datasets.

Type Dataset name Number of entries Spam ratio References
Ling-Spam 2.893 17% Sakkis et al. (2003)
Enron Spam 36.715 45% Metsis, Androutsopoulos &
Paliouras (2006)
PU1 1.099 44%
PU2 721 20% Androutsopoulos et al.
PU3 4.139 44% (2000)
PUA datasets 1.142 50%
Spambase Dataset 4.601 39% Newman & Merz (1998)
E-mail SpamAssassin 6.047 31% Apache SpamAssassin
Project (2005) and Pérez-
Diaz et al. (2012)
CSDMC2010 SPAM corpus 4.307 32% CSMINING Group (2010)
TREC 2005 92.189 57%
TREC 2006 37.822 66% NIST (2007)
TREC 2007 spam corpus 75.419 67%
SMS Spam collection 5.574 13% Almeida, Hidalgo & Ya-
makami (2011)
SMS British English SMS corpora 875 49% Nuruzzaman, Lee & Choi
(2011)
. Youtube Spam Collection 1.956 51% Almeida et al. (2016)
Social TAMU Social Honeypot Dataset 22.223 42% Lee, Eoff & Carvelee (2011)
UK-2006 7.473 20%
UK-2007 6.479 6% Castillo (2007) and
Wahsheh et al. (2012)
UK-2011 Web Spam Dataset 3.700 23%
Web ClueWeb09 1.040.809.705 18% Croft & Callan (2016)
ClueWeb12 2.820.500 11%
Webb spam 2011 350.000 100% Wang, Irani & Pu (2012)
ECML/PKDD 2010 DiCDS 191.388 8% Bencziir et al. (2010)

EXPERIMENTAL EVALUATION

In this section we analyse the performance achieved by using our proposal (e-SDRS) and
compare it with those achieved by using lossless and low-loss SDRS optimization-based
variants. We discarded the use of older simple approaches (e.g., the studies by Bahgat et
al., 2018 and Méndez, Cotos-Yaiiez ¢» Ruano-Ordds, 2019) because they present a lot of
limitations that have already been discussed in ‘State of the Art’. The original e-SDRS
implementation has been designed for its use in binary classification problems. One of the
better-known problems in this domain is the filtering of spam messages, which we selected
for the experiment. Table 1 compiles a list of available corpora in the problem of spam
filtering.

We have used the YouTube Spam Collection and SpamAssassin corpus datasets to
experimentally determine the best configuration values for the MD and RS parameters.
Combining the results obtained with a small and a large dataset may be suitable for finding
the appropriate values for these parameters. Then, the Ling-Spam dataset was used to test
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the performance of e-SDRS using the previously determined configuration parameters.
This is a medium-sized dataset widely used for testing spam filtering techniques. Finally,
we have also used the YouTube Spam Collection dataset to compare the performance
obtained in this study and previous (computationally intensive) approaches.

To carry out the experimentation, the YouTube Spam Collection, SpamAssassin corpus
and Ling-Spam datasets were represented using synsets. Following this representation,
the dimensionalities achieved for these datasets are 1656 (using traditional token-based
representations, 1950 tokens/words), 39,435 (57,117 tokens/words) and 39,174 (60962
tokens/words) synset features, respectively. The preprocessing was executed using NLPA
software (Novo-Lourés et al., 2020) and include the following steps: (i) strip HTML tags,
(ii) expand contractions, (iii) expand acronyms, (iv) translate slang terms, (v) remove
interjections, (vi) remove emojis, (vii) remove emoticons, (viii) remove stopwords (and
words having 3 or less characters), (ix) transform text to lowercase, (x) transform text to
synset sequences and (xi) build feature vectors using frequency (number of occurrences of
the synset divided by total number of synsets found in document).

To adequately test the performance achieved by the e-SDRS algorithm, we designed the
experimental protocol shown in Fig. 4.

As shown in Fig. 4, the experimental protocol measures the theoretical performance
that can be achieved and the performance in a production environment. The theoretical
evaluation was included to determine the maximum achievable performance of each feature
selection scheme. This efficiency could only be achieved when all instances (including those
reserved for testing purposes) are available during feature selection. Therefore, in this ideal
scenario, we used 100% of the instances for feature selection and after that, the dataset is split
into two parts (75% and 25%) which were used training and testing purposes, respectively.
Because this ideal situation could not be achieved in practice (know all instances during
feature selection), we simulated a real scenario by dividing the dataset before the feature
selection stage into the same parts (75% and 25%). Then, 75% of the instances were used
for both dimensionality reduction and training purposes. The remaining instances (25%)
were transformed according to the results of the feature selection scheme and used for
testing purposes. Using instance identifiers, we kept the same distribution of instances when
splitting the dataset (75%/25%) in theoretical and real scenarios. To ensure comparability
of results, the outcomes in the theoretical and real scenarios were compared with those
from a baseline scenario, where no dimensionality reduction scheme was used.

The experiment included the use of several classification schemes including nb (a
naive Bayes classifier provided in klaR R package (Weihs et al., 2005)), ranger (a fast
implementation of random forests particularly suited for high dimensional data (Wright ¢
Ziegler, 2017)), rpart (Recursive partitioning for classification?), Support Vector Machines
with polynomial kernels (implemented in kernlab R package), and treebag (Bagging
of Classification and Trees) (Sutton, 2005). To facilitate the experimentation, we took
advantage of the functions provided by caret R package (Kuhn, 2008). Additionally, the
parameters used for classifiers were optimized by using caret functionalities. We discarded
the usage Deep Learning-based schemes in the experimentation because they require the
use of word-embedding representations which are incompatible with synset-based ones.
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Different values of RS were used for the experiment, including 0.95, 0.90, 0.85, and

0.80.

The MD parameter was set to values 2, 3 and 4. Our first experiment was aimed at evaluating
the effectiveness of the different configurations (RS and MD) of the e-SDRS algorithm
using Kappa coefticient (Cohen, 1968) to select the most suitable configuration for these

parameters. For comparison purposes, the results obtained with e-SDRS were compared

with those obtained without using any dimensionality reduction scheme (baseline). Table 2

presents the results achieved using the theoretical scenario with YouTube Comments and

SpamAssassin datasets. We also measured the percentage of features reduced in each

configuration and represented them inside square brackets.

As shown, the classification accuracy improved when using most e-SDRS configurations.

However, although the theoretical scenario allows seeing the maximum capacity of the
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Table 2 Evaluation of e-SDRS performance in a theoretical scenario.

(a) Youtube Comments Dataset.

MD2 MD3 MD4
RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95
[5.92%] [5.92%] [5.8%] [5.68%] [12.6%] [12.68%] [12.44%] [12.38%] [14.01%] [13.95%) [13.04%) [13.04%]
nb +0.0506 +0.0506 +0.0506 +0.0255 +0.2129 +0.1825 +0.1941 +0.1825 +0.2055 +0.1825 +0.1593 +0.1593
ranger +0.0681 +0.0590 +0.0787 +0.0376 +0.1862 +0.1714 +0.1714 +0.1623 +0.1813 +0.1913 +0.1822 +0.1913
rpart +0.0808 +0.0471 +0.0778 +0.0128 +0.0432 +0.2089 +0.1778 +0.2089 —0.0222 —0.0340 +0.0918 +0.0696
svmPoly —0.5036 —0.5036 +0.0938 +0.0618 +0.2503 —0.0578 +0.1297 +0.2203 +0.2499 +0.2396 +0.2421 —0.5674
treebag —+0.0521 —+0.0874 +0.0712 +0.0641 +0.2088 +0.1806 +0.2177 +0.1874 —+0.2016 —+0.2105 +0.2006 —+0.2006
(b) SpamAssassin Dataset
MD2 MD3 MD4
RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95
[7.38%] [5.45%] [4.42%) [3.21%] [7.82%] [5.85%] [4.7%] [3.44%)] [8.08%] [6.11%] [4.8%] [3.49%]
nb +0.0686 +0.0541 +0.0415 +0.0229 +0.1588 +0.0563 +0.0499 +0.0394 +0.0788 +0.0644 +0.0537 +0.0394
ranger +0.0158 —0.0038 —0.0127 +0.0209 +0.0317 —0.0100 —0.0251 +0.0164 +0.0096 +0.0237 —0.0021 +0.0238
rpart —+0.0564 +0.0246 +0.0440 +0.0411 +0.0706 +0.0372 +0.0485 +0.0460 +0.0625 +0.0444 —+0.0451 +0.0407
svmPoly —0.3724 +0.1374 +0.1234 +0.1307 +0.1898 —0.7733 —0.7733 —0.0429 +0.1526 +0.1712 +0.0103 —0.7733
treebag +0.0182 +0.0062 —0.0029 +0.0142 +0.0349 +0.0051 +0.0003 +0.0148 +0.0196 +0.0156 =+0.0095 +0.0101
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technique, it does not fully represent a real content filtering environment where the
messages to be classified are unknown at the time of deciding the attributes (synsets) to
be used for message representation. The comparison of e-SDRS configurations in a real
scenario is shown in Table 3.

Summarizing information from Table 2, 103 out of 120 total e-SDRS configurations in
the theoretical scenario (five algorithms, three different values of MD, four different values
of RS and two datasets) were useful to improve the classifier performance. Furthermore, as
shown in Table 3, the ratio of configurations improving or maintaining the performance
was reduced to 71/120. The best parameters found in the above experiments was MD =
3 RS = 80, which were useful to improve the results in 10 of 10 analysed classifiers and
datasets in the theoretical scenario and 8 of 10 in the real scenario. Using this configuration
was useful to run the additional performance analyses presented below.

After this, we measured the ratios of correctly classified messages (OK), FP and FN
errors. The measurements were made using the best configuration detected in the previous
step for theoretical and real scenarios. These scenarios were compared with another one
in which the e-SDRS feature reduction scheme was not used (baseline). Results for both
selected datasets were plotted in Fig. 5.

As shown, the error ratios (especially FP ones) slightly decrease when using e-SDRS in
almost all situations due to the successful incorporation of semantic information from
Babelnet. As an exception, the SVM classifier evaluated in the real scenario with YouTube
Comments dataset achieves poor performance. Although SVM classifiers can achieve high
accuracy levels, their performance could decrease when the data used for training is too
sparse (Yang et al., 2017). Due to the small length of YouTube Comments, most of the
columns of each sample (comment) are set to zero conforming to a sparse dataset.

To compare the performance of models in different scenarios, we ran scenario pairwise
comparison (theoretical—real/real—baseline) using Kappa and f-score measures. The
comparison of theoretical and real scenarios is shown in Fig. 6 and allows measuring the
impact of the quality and completeness of the data used to run e-SDRS on the effectiveness
of the algorithms.

As shown in Fig. 6A, the use of sparse data (YouTube dataset) greatly affects the
performance. However, when the dataset used for training is larger and its data are of
higher quality (SpamAssassin dataset), the differences in the performance achieved in
both scenarios are narrower (see Fig. 6B). The comparison between the real and baseline
scenarios is shown in Fig. 7 and allows us to observe the impact in the performance of
using e-SDRS.

As seen in Figs. 7A and 7B, the application of the e-SDRS algorithm is, in many cases,
worthwhile (there is a small increase in performance). In some cases, there may be a small
impact on some of the measurements performed. As an exception, we should mention the
case of SVM used in conjunction with the YouTube Comments dataset. In this situation,
we achieved relevant performance loss due to the sparsity of the instances included in it.

Using the optimal configuration settings for the e-SDRS algorithm (MD =3, RS =80),
identified with the SpamAssassin and the YouTube corpora, we conducted an independent
experiment using the Ling-Spam dataset. The train/test configuration is the same used in
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Table 3 Evaluation of e-SDRS performance in a real scenario.

(a) Youtube Comments Dataset

MD2 MD3 MD4

RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95

[3.08%] [3.02%] (3.02%) [2.96%] [6.76%] [6.7%] [6.64%] 6.58% [11.05%] [10.57%] [10.27%] [10.21%]
nb 0.0000 0.0000 0.0000 0.0000 +0.0227 0.0000 0.0000 0.0000 +0.0971 +0.1059 +0.0786 +0.0786
ranger —0.0275 —0.0088 +0.0178 —0.0306 +0.0046 +0.0158 —0.0416 +0.0267 +0.0411 +0.0411 +0.0197 +0.0088
rpart —0.1122 —0.0123 ~0.0911 ~0.0062 +0.0127 ~0.0062 ~0.0229 ~0.1033 +0.0296 +0.0426 +0.0089 +0.0162
svmPoly +0.0873 +0.0699 —0.5674 —0.3527 —0.2548 +0.0589 +0.0675 —0.5674 —0.5674 —0.4655 +0.0515 —0.5674
treebag —0.0213 —0.0176 +0.0135 —0.0088 +0.0100 —0.0314 400024 —0.0515 +0.0503 400115 +0.0201 +0.0157
(b) SpamAssassin Dataset

MD2 MD3 MD4

RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95 RS80 RS85 RS90 RS95

[6.42%] [4.69%] [3.95%] [2.91%] [6.87%] [5.11%] [4.28%] [3.18%] [7.14%] [5.38%] [4.48%] [3.26%]
nb +0.0861 +0.0821 +0.0676 +0.0378 +0.1447 +0.0902 +0.0711 +0.0361 +0.0888 +0.0924 +0.0757 +0.0524
ranger +0.0147 —0.0393 —0.0304 —0.0561 +0.0116 —0.0023 +0.0144 —0.0486 —0.0320 +0.0114 —0.0177 +0.0161
rpart +0.0203 +0.0002 —0.0188 —0.0045 +0.0359 +0.0031 +0.0161 +0.0014 +0.0252 +0.0209 +0.0147 +0.0049
svmPoly —1.0833 +0.0360 +0.1278 +0.1573 +0.0977 +0.0569 07733 +0.0522 —0.7733 ~0.3860 +0.1417 —0.1378
treebag —0.0203 —0.0283 —0.0376 —0.0237 —0.0001 —0.0260 —0.0406 —0.0327 —0.0045 —0.0314 —0.0406 —0.0343
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the previous experiments (75%/25%). As the theoretical scenario has been designed for
parameter optimization purposes, it has not been included in this experimental state. The
evaluation metrics included the ratio of correctly classified messages (OK), error ratios (FP,
FN), and f-score. Table 4 shows the performance of classifiers when using both the original
dataset (baseline scenario) and the dataset reduced by using e-SDRS (real scenario).

Some results included in Table 4 (rpart and treebag algorithms in the baseline scenario)
could not be computed due to the high dimensionality of the experiment. However,
results support the observations of previous experiments. e-SDRS can be used to reduce
dimensionality in datasets without losing performance or even slightly improving the
accuracy of the algorithms. In addition, using the optimal parameters, e-SDRS was able to
reduce the dimensionality from the original 39,174 synsets to 29,557 (24.5% of reduction).
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Table 4 Evaluation of e-SDRS performance in a real scenario for LingSpam dataset.

Baseline Real
OK FN FP f-score OK FN FP f-score
nb 0.9549 0.0239 0.0211 0.8655 0.9986 0.0014 0 0.9958
ranger 0.9704 0.0183 0.0113 0.9106 1.0000 0 0 1.0000
rpart - - - 0.9577 0.0211 0.0211 0.8750
svmPoly 0.9577 0.0211 0.0211 0.8750 0.9648 0.0211 0.0141 0.8936
treebag — — — 0.9972 0 0.0028 0.9917

Finally, we compared the performance of e-SDRS with the original and the best SDRS
variants (lossless and low-loss) (Vélez de Mendizabal et al., 2023). Similarly to the previous
experimentation, the execution of SDRS was made using the 75% of the messages, while
the remaining 25% ones were used for evaluation purposes. The comparison was made
using accuracy and total cost ratio (TCR) (Phuoc et al., 2009) with different cost factors
(A=1, =9, L =999) measures. It is shown in Fig. 8. Due to the high computational
requirements of SDRS variants (10 days), only the YouTube Comments dataset could be
used in the evaluation. The analysis was carried out by comparing the best configuration
achieved by both proposals.

As shown in Fig. 8, the performance achieved by lossless and low-loss SDRS variants
are quite poor compared to our proposal. One of the most important benefits reported
by the authors of SDRS is the ability to reduce FP errors. However, as seen in all the TCR
measurements, the number of FP-type errors achieved by e-SDRS is considerably lower.

Finally, we also compared the computational requirements of both feature reduction
schemes. SDRS variants were executed in a high-performance computer (4x4 Intel Xeon
E7-8890 and 1 TB of RAM) while e-SDRS was executed in a lower-capacity one (Intel
Core i7-6700 CPU 3.40 GHz x 8 and 64 GB of RAM). The average time required for
executing e-SDRS with each configuration in YouTube Comments and SpamAssassin
datasets were 9.62s and 2 h 52m, respectively (SDRS take 10 days when used to reduce
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the dimensionality of YouTube Comments dataset). Finally, e-SDRS executed the feature
reduction of Ling-Spam corpus in 2 h and 44 min.

Considering the above results, we believe that the e-SDRS method is a reliable solution
for rapidly reducing dimensionality. The next section shows the main conclusions and
outlines the directions of future research.

CONCLUSIONS AND FUTURE WORK

This work introduces a novel information fusion approach for the reduction of
dimensionality in synset-based representations of data called e-SDRS. The proposal is based
on combining some semantically related features (synsets). The identification features that
can be combined are guided by hyponymy/hypernymy relations between synsets (achieved
from an ontological dictionary, Babelnet) and the classes of the instances containing such
features. In summary, two synsets could be combined when they are semantically close
(there is a small path between them in Babelnet using taxonomic relations) and most
documents containing any of them are included in the same category. In this study, we
have analysed the performance of the method and compared it with two variants of a
previous approach called SDRS, which is based on MOEA.

For the experiment, we selected three different datasets and analysed the performance
of five well-known classifiers in three scenarios (theoretical, real and baseline). In the
baseline scenario, e-SDRS was not applied. Moreover, the theoretical scenario is designed
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to estimate the maximum capacity that the e-SDRS algorithm could have when the input
dataset is particularly good. The real scenario tries to show the accuracy of the proposal
in a normal situation. The selected corpora are SpamAssassin, YouTube Comments
dataset and Ling-Spam. The second is a sparse dataset, a feature that severely affects the
performance of e-SDRS and classification algorithms. Although e-SDRS showed adequate
performance for all datasets, the experimentation allowed the differences between the
maximum performance reachable by e-SDRS (assessed in theoretical scenario) and its
performance in a real situation (real scenario) to be closer when using a better input
dataset (SpamAssassin).

Although the application of e-SDRS requires the definition of some mathematical
restrictions (condition for establishing whether two synsets are semantically related,
criterion of whether two synsets appear mainly in documents of the same category), its
application is computationally simple. As the combination of features in e-SDRS is guided
by semantic information extracted from an ontological dictionary, some classifiers may
perform slightly better. In the same vein as the SDRS approach, our proposal can be
categorized as a lossless feature reduction schemes.

Although e-SDRS has provided improvements in lossless feature reduction schemes,
some challenges in this area remain unaddressed. In particular, (i) the extension of
the algorithm for addressing multiclass or multilabel classification problems and (ii) the
exploration of non-taxonomic semantic relationships to improve dimensionality reduction,
have not yet been contemplated. We believe that this is a promising direction in which
we should move forward to find new mechanisms to reduce dimensionality and add
useful semantic information in the classification process. Finally, there are some minor
adaptations that would be interesting for e-SDRS, such as its adjustment to be used in
multi-class and multi-label classification problems.
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