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ABSTRACT
The exponential progress of image editing software has contributed to a rapid rise in
the production of fake images. Consequently, various techniques and approaches
have been developed to detect manipulated images. These methods aim to discern
between genuine and altered images, effectively combating the proliferation of
deceptive visual content. However, additional advancements are necessary to
enhance their accuracy and precision. Therefore, this research proposes an image
forgery algorithm that integrates error level analysis (ELA) and a convolutional
neural network (CNN) to detect the manipulation. The system primarily focuses on
detecting copy-move and splicing forgeries in images. The input image is fed to the
ELA algorithm to identify regions within the image that have different compression
levels. Afterward, the created ELA images are used as input to train the proposed
CNN model. The CNN model is constructed from two consecutive convolution
layers, followed by one max pooling layer and two dense layers. Two dropout layers
are inserted between the layers to improve model generalization. The experiments are
applied to the CASIA 2 dataset, and the simulation results show that the proposed
algorithm demonstrates remarkable performance metrics, including a training
accuracy of 99.05%, testing accuracy of 94.14%, precision of 94.1%, and recall of
94.07%. Notably, it outperforms state-of-the-art techniques in both accuracy and
precision.

Subjects Algorithms andAnalysis of Algorithms, DataMining andMachine Learning, Security and
Privacy, Neural Networks
Keywords Tampering, Forgery, Image splicing, Copy-move, CNN, ELA

INTRODUCTION
It has never been easy to create fake images or videos. In the contemporary era, the
widespread availability of image processing tools has made image editing much easier for

How to cite this article Nagm AM, Moussa MM, Shoitan R, Ali A, Mashhour M, Salama AS, AbdulWakel HI. 2024. Detecting image
manipulation with ELA-CNN integration: a powerful framework for authenticity verification. PeerJ Comput. Sci. 10:e2205 DOI 10.7717/
peerj-cs.2205

Submitted 28 February 2024
Accepted 26 June 2024
Published 7 August 2024

Corresponding author
Ahmed Ali,
a.abdalrahman@psau.edu.sa

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.2205

Copyright
2024 Nagm et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2205
http://dx.doi.org/10.7717/peerj-cs.2205
mailto:a.�abdalrahman@�psau.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2205
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


individuals without extensive technical expertise. These range from conventional tools
such as Photoshop to advanced neural network-based tools such as DeepFakes, which led
to a rise in crimes such as identity theft, privacy invasion, and the spread of fake news.
Copy-move and image splicing are considered the most common and significant
techniques for image manipulation. In copy-move, a small portion of an image is copied
and pasted into different areas within the same image. On the other hand, image splicing
entails selecting a region from one image and pasting it into another where it appears
suitable. Addressing copy-move and splicing forgeries is of the utmost significance in
digital images, as these manipulations significantly impact numerous real-world settings. A
manipulated image in the news media could influence public opinion regarding an event.
Also, the manipulated image may be utilized to fabricate evidence for legal objectives. A
fabricated image can potentially propagate false information or harm an individual’s
reputation, even in routine circumstances (Jain & Goel, 2021; Machado et al., 2019; Maji
et al., 2020). Hence, detecting these types of manipulation is critical for establishing the
credibility of digital images in the current day. It is nearly impossible for a person to always
determine whether digital content is unaltered or altered. Thus, exploring more effective
methods for identifying manipulated or fraudulent images is crucial (Fu, Zhang & Wang,
2023; Hosny et al., 2023; Nagm & Elwan, 2021).

The detection of copy-move forgery poses a significant challenge due to the inherent
difficulty of distinguishing the forged region from the original image. This is primarily
attributed to the fact that the statistical distribution of the image pixels remains largely
similar, further complicating the identification process. Furthermore, splice detection
methods involve examining several factors to identify instances of image forgery. These
factors include the analysis of changes in the statistical distribution of pixels, variations in
the compression level, and the examination of various features associated with the camera
used to capture the image (Ghannad & Passi, 2023). Several researchers have suggested
algorithms designed to identify copy-move and image splicing, progressing from
traditional approaches to more advanced technologies like deep learning. Traditional
methods often depend on manually designed features and rules to detect anomalies that
suggest manipulation (Alahmadi et al., 2013; He et al., 2012; Gani & Qadir, 2020).
However, modern approaches utilize deep learning techniques to automatically acquire
and extract complex patterns and representations from extensive image datasets (Meena &
Tyagi, 2021; Tyagi & Yadav, 2023a).

Until now, image manipulation research has remained open to developing models with
high accuracy to detect copy-move and image splicing. Therefore, this research proposes a
CNN-based approach for detecting image manipulations, specifically targeting splicing
and copy-move forgeries. The proposed method combines error level analysis (ELA) with
a CNN to effectively extract features that reflect the modified regions of the image. First,
the ELA is employed to identify areas in the input image that have been tampered with,
and then the ELA output is fed into the proposed CNN model to recognize the
manipulations automatically. The proposed method utilizes a CNN model with specific
components. It includes two convolutional layers, a max pooling layer, two dropout layers,
and two fully connected layers. The contributions of this article are as follows:
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. A novel image forgery detection algorithm that integrates ELA and CNN is proposed to
detect copy-move and splicing forgeries in images.

. ELA is used as a preprocessing step to extract the tampering artifacts to improve CNN
classification accuracy.

. A novel CNN model with two convolutional layers, one max-pooling layer, two dropout
layers, and two fully connected layers is proposed for detecting image forgery.

. Extensive comparisons between the proposed model’s results and existing models are
made on the CASIA 2.0 dataset (Dong, Wang & Tan, 2013).

The subsequent sections of this research article are organized as follows: “Literature
Review” presents an extensive review of prior studies. “Methodology” introduces the
proposed framework architecture. “Experimental Results” outlines the dataset, evaluation
metrics, experimental tests conducted, and a comparative analysis between the proposed
model and state-of-the-art techniques. “Discussion” provides an ablation study for the
model architecture, and “Conclusion” summarizes this research and its findings.

LITERATURE REVIEW
Different hand-crafted and deep learning-based methods are proposed for detecting copy-
move and image splicing. Hand-crafted methods utilize specialized forgery detection
algorithms designed for copy-move detection. These algorithms employ various
techniques, including block-based analysis (Dua, Singh & Parthasarathy, 2020; Armas
Vega et al., 2021; Meena & Tyagi, 2020), keypoint analysis (Badr, Youssif & Wafi, 2020;
Alberry, Hegazy & Salama, 2018), and noise or ELA (Abd Warif et al., 2015) to identify
manipulated regions. While for image splicing, some of the most famous handcrafted
features are discrete wavelet transform (DWT) (He et al., 2012), contourlet transform (CT)
(Zhang, Lu & Weng, 2016), and discrete cosine transform (DCT) (Alahmadi et al., 2013;
Zhang et al., 2015). Khudhair et al. (2023) present an approach for copy-move forgery
detection that depends on partitioning an image equally into blocks. Singular value
decomposition (SVD) is applied to each block, and a norm is selected to represent a scaling
factor for the SVD of each block. The similar norms are then grouped, and according to the
weight value, the image is classified as original or forgery. Umamaheswari & Karthikeyan
(2022) detect tampered images by extracting many features from these images using
Speeded Up Robust Features (SURF), Local Binary Pattern (LBP), enhanced LBP, and
enhanced SURF. Particle Swarm Optimization (PSO) is introduced to combine all these
features to select only the most significant features. Finally, the classification stage is
performed using a combination of three classification techniques: support vector machine
(SVM), back propagation neural networks (BPNN), and Ensemble. Alahmadi et al. (2017)
present a system to detect copy–move and splicing forgeries based on local binary pattern
(LBP) and discrete cosine transform (DCT). Initially, the RGB images are transformed to
YCbCr form to get the chroma channels that hold most of the tampering traces undetected
by the naked eye. The image is divided into overlapping blocks, and then a local binary
pattern (LBP) and a 2D discrete cosine transform are employed to model the tampering
traces and extract discriminative features. In the end, a support vector machine is used for
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classification. Saeed, Hamid & Ahmed (2023) propose a copy-move recognition technique
based on dividing the image into blocks and extracting features from each block using the
Gabor filter. Principal component analysis is utilized after that to reduce the features.
Finally, a matching step is performed to detect duplicated blocks.

The handcrafted methods are computationally efficient but cannot extract the whole
texture features, which yields a misclassification (Nazir et al., 2022). In recent years, deep
learning methods attracted the attention of researchers for detecting copy-move and image
splicing because they extract more details about the images, which improves the
classification accuracy (Nguyen et al., 2022; Chakraborty, Chatterjee & Dey, 2022;Qazi, Zia
& Almorjan, 2022; Ding et al., 2023; Zhuang et al., 2021; Gupta et al., 2022; Ali et al., 2022).
Qazi, Zia & Almorjan (2022) introduce a tampering detection algorithm based on the
state-of-the-art ResNet50v2 that identifies various types of image manipulations. The
algorithm fine-tunes the ResNet50v2 architecture using the weights of a YOLO
convolutional neural network (CNN) to identify manipulated images accurately. Ganguly
et al. (2022) propose a soft attention-based technique that distinguishes original images
from tampered ones where the person’s face is replaced with a different person’s face. The
process starts by extracting the face region using a Multi-Task Cascading Neural Network
(MTCNN) model, and then a sliced Xception model is applied to the extracted faces to
generate the feature maps. Subsequently, a soft attention mechanism declares the relevant
features that discriminate against the properties of a fake face. In the end, a classification
step is added to classify the images as real or fake. Walia et al. (2022) present a system for
detecting manipulated images based on analyzing the difference in JPEG compression
levels and integrating it with the texture information of the image using a LBP. Shapley
additive explanation (SHAP), which is an explainable artificial intelligence (XAI)
approach, is used as a feature selection strategy for the generated feature map from scale-
invariant and direction-invariant LBP (SD-LBP). Finally, a ResNet50 model is fine-tuned
on the forgery datasets using the selected features to classify original and forged images.
Hammad, Ahmed & Jamil (2022) introduce a copy-move forgery detection system that
utilizes the AlexNet deep learning model for feature extraction from suspicious images.
Following feature extraction, a feature selection algorithm called ReliefF is applied to
identify the most significant features. Finally, a logistic classifier is employed to identify
forged images.

Ali et al. (2022) design a CNN-based model to differentiate between genuine and forged
images. The system depends on the fact that the original and the forged regions are from
different sources, so their compression rates differ. The algorithm exploits this point by
recompressing and subtracting the recompressed suspected image from the original
suspected image. The resultant difference trains the CNN model to identify authentic and
forged images. Chaitra & Reddy (2023) propose a copy-move detection approach that first
uses YOLO to detect all objects in an image. Afterward, VGG Net is applied to each object
to extract representative features. These features are then fed to a Deep CNN to identify
multiple forgeries in this image. Besides, a fully convolution neural network called MiniNet
is proposed by Tyagi & Yadav (2023b) to detect splicing and copy-move. The network
consists of four convolutional layers, four max pool layers of size (2 � 2), two fully
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connected layers, a dropout layer, and a classification layer. Moreover, Tyagi & Yadav
(2023a) present a new CNN called ForensicNet designed to identify various types of image
manipulations, such as copy-move, splicing, and retouching. ForensicNet Architecture
uses the inverted bottleneck technique inspired by transformers to improve accuracy and
reduce network parameters. It also utilizes separate downsampling layers inspired by
ResNets for faster network convergence. Mixing information in the spatial dimension is
performed using depth-wise convolutions that depend on MobileNetV2. Mallick et al.
(2022) propose a copy-move and splicing detection algorithm that applies ELA to the
images as a preprocessing step and learns VGG16 and VGG19 models using the ELA
output. Muniappan et al. (2023) build a CNN model consisting of two convolutional
layers, two max-pooling layers, a dense layer, and an output layer to detect image
manipulation types. The algorithm utilizes error-level analysis to train the CNN model to
differentiate between original and fake images.Walia et al. (2021) combine two streams of
features for detecting image forgery. Stream one extracts the handcrafted features that
represent color characteristics by segmenting the RGB images into blocks, and then the
feature vector is created utilizing intra-block and inter-block information. The second
stream extracts the luminance channel from the YCbCr of the image, which is then used to
build a Local Binary Pattern (LBP) of the image. Afterward, LBP is fed to a ResNet-18
network to construct a feature vector. The resultant fused vector of the two streams is
normalized and provided to a shallow neural network (SNN) for forgery classification.

METHODOLOGY
This research proposes a CNN-based approach for detecting image manipulations. The
proposed method exploits the pros of ELA, which reveal discrepancies that indicate the
modified regions of the image, and integrates it with CNN to effectively extract the feature
that reflects the modified regions. During the training phase, the ELA algorithm is
employed on the training images to identify areas that have been tampered with.
Subsequently, the developed CNN model undergoes training on these modified images to
discern between genuine and altered images. In the testing phase, the ELA technique is
applied to the test images, and the resultant data is inputted into the trained model for
classification. Figure 1 introduces the proposed method’s basic architecture, and the
following subsections describe each part in detail. Furthermore, Algorithm 1 provides a
brief overview of the procedural steps comprising the ELA-CNN manipulation detection
model to facilitate a clear understanding of the sequential operations executed by the
algorithm.

Error level analysis
Error level analysis (ELA) is a well-known technique for determining areas in an image
exposed to tampering, especially image splicing and copy-move forgeries. The ELA idea
depends on exploring regions with different compression levels; this variation in
compression levels may result from subjecting parts of an image to various types of lossy
compressions or repeatedly using the same compression type for various areas of the
image. The process begins by subjecting the suspected image to additional lossy
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compression and subtracting the output from the original suspected image to highlight the
tampered areas, resulting in a higher ELA value. The pros of the ELA are that it amplifies
error levels, making discrepancies simpler to identify and analyze. This visualization assists

Figure 1 The proposed image forgery framework. Full-size DOI: 10.7717/peerj-cs.2205/fig-1

Algorithm 1 The proposed ELA-CNN image manipulation detection algorithm

Input dataset, epochs, batch_size, new_test_image

Output trained_model, evaluation criterion, predicted_image_class (i.e., authentic or manipulated)

1: ela_images = imagetoELA(dataset) ▹Dataset preparation step

2: [X, Y] = train_test_split(ela_images)

3: model = Sequential() ▹CNN model architecture step

4: model.add(Conv2D(32, (5, 5), ‘valid’, ‘relu’, (150, 150, 3)))

5: model.add(Conv2D(32, (5, 5), ‘valid’, ‘relu’))

6: model.add(MaxPool2D((2, 2)))

7: model.add(Dropout(0.25))

8: model.add(Flatten())

9: model.add(Dense(150, ‘relu’))

10: model.add(Dropout(0.5))

11: model.add(Dense(2, ‘sigmoid’))

12: model.compile(optimizer=‘adam’, loss=‘binary cross entropy’) ▹CNN model training step

13: model.fit(x_train, y_train, epochs = epochs, batchsize = batch_size, validation=(x_val, y_val))

14: loss, accuracy, precision, recall = model.evaluate(x_test, y_test)

15: ela_new_image = imagetoELA(new_test_image) ▹CNN model testing step

16: predicted_image_class = model.predict(ela_new_image)
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forensic specialists in identifying prospective areas of investigational interest. Therefore,
ELA is integrated with the CNN model to automatically classify manipulated images as
authentic or tampered images. The basic steps involved in ELA are as follows Sudiatmika
et al. (2019), Kumar, Chowdhary & Srivastava (2021, 2020):

1. Compress the original image using a lossy compression technique, such as JPEG, with
low compression settings. This technique introduces new compression artifacts while
maintaining current ones.

2. Calculate the error levels by subtracting the compressed image from the original image
to produce a difference image. This difference image represents the error levels presented
during the compression.

3. Apply algorithms such as rescaling or high-pass filtering to intensify the error levels in
the difference image. This intensification makes the inconsistencies more visible.

4. Observe the intensified error levels in the difference image. Areas with higher error levels
reflect possible manipulations or alterations.

The proposed CNN model
Over the last few years, CNNs have exhibited outstanding performance on tasks such as
image classification. CNNs are designed to autonomously learn and extract related features
from input images to address a wide range of computer vision tasks effectively. CNNs
utilize convolutional and pooling layers to efficiently detect hierarchical patterns and
spatial correlations within the input image to represent complex visual details (Zafar et al.,
2022; Patil & Rane, 2021). This research exploits the advantages of CNN and constructs a
CNN model that consists of two convolutional, one max pooling, two dropouts, and two
fully connected layers, as shown in Fig. 2. First, an input image with dimensions 150 × 150
× 3 is fed into two consecutive convolution layers with 32 filters of kernel size 5 × 5 and the
rectified linear unit (ReLU) as an activation function to generate a hierarchical feature map
of 142 × 142 × 32. The two consecutive convolutional layers enable the model to learn
hierarchical representations of the input image. Each convolutional layer captures different
levels of abstraction, starting from low-level features like edges and textures to higher-level
features such as shapes and structures associated with image manipulations. The max
pooling layer with a filter size 2 × 2 following the two consecutive convolutional layers
helps summarize and downsample these learned features to create a more compact and
informative representation of the feature map with a size of 71 × 71 × 32. Max pooling is
selected because it can be beneficial for detecting localized manipulations in an image. Max
pooling emphasizes the input image’s most salient features or regions by choosing the
maximum value within each pooling region. If an image manipulation introduces a
distinctive pattern or artifact in a localized region, max pooling captures and amplifies
those features, making them more detectable.

Once the feature map dimension is down-sampled, it is fed to a dropout layer with a
probability of 0.25 to learn more robust and generalizable features. This reduces the risk of
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Figure 2 The proposed CNN model architecture. Full-size DOI: 10.7717/peerj-cs.2205/fig-2
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overfitting the training data and improves the model’s ability to generalize to unseen
images.

The next layer in the proposed image manipulation model is a dense layer of 150
neurons. This dense layer uses the ReLU activation function, which introduces non-
linearity to the network and helps capture complex patterns and features. A dropout layer
with a probability of 0.25 is applied to the dense layer output to drop out a fraction of the
neuron activations during training. The output of this dropout layer is then connected to
two neurons, representing the output neurons of the model. These output neurons use the
sigmoid activation function, which squashes the output values between 0 and 1.

The sigmoid activation is commonly used in binary classification tasks, where each
neuron represents a class (authentic or forged) and provides a probability estimate of the
input image belonging to that class. Table 1 summarizes the model architecture regarding
the filter size, feature map size, and the activation function used in each layer.

EXPERIMENTAL RESULTS
This section presents the dataset and details of the training hyperparameters. Moreover,
the efficiency of the proposed method is evaluated based on the selected dataset and
compared with state-of-the-art algorithms.

Dataset and training hyperparameters
The proposed method is trained and evaluated on the CASIA 2.0 dataset (Dong, Wang &
Tan, 2013). This dataset comprises 12,614 images in JPEG and TIFF formats with sizes 320
× 240 and 800 × 600, 7,491 authentic, and 5,123 manipulated images. Animals,
architecture, art, interiors, nature, plants, and texture are just a few of the themes
represented in these images. Copy move and image splicing are the manipulation methods
in CASIA 2, 3,274 of which are copy-move and 1,849 are image splicing, and these images
are created using Adobe Photoshop. The proposed method is only applied to the JPEG
images, whose numbers are 9,501. The dataset is split into 80% training and 20% validation
and testing. The experiments are conducted on the Kaggle platform using Keras with a
TensorFlow backend. The specific configuration provided by Kaggle includes four CPU

Table 1 The model architecture includes the filter size, feature map size, and activation function.

Layer Filter size Feature map size Activation function

Input – 150 × 150 × 3 –

Conv1 5 × 5 146, 146, 32 ReLU

Conv 2 5 × 5 142, 142, 32 ReLU

Max pooling 2 2 × 2 71, 71, 32

Drop out – 71, 71, 32

Flatten – 161,342 –

Fully connected 1 – 150 ReLU

Drop out 1 – 150 –

Fully connected 2 – 2 Sigmoid
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cores and 30 GB of RAM. We used a batch size of eight and trained the models for 40
epochs, with a learning rate 0.0001 and a dropout probability of 0.25. We employed the
Adam Optimizer and binary cross entropy as the loss function. These parameters are
chosen based on preliminary experiments to optimize model performance.

Evaluation metrics
The efficiency of the proposed model is evaluated based on three metrics: accuracy,
precision, and recall, which are calculated mathematically from Eqs. (1)–(3), respectively.

Accuarcy ¼ TN þ TP
TP þ FP þ TN þ FN

(1)

Precision ¼ TP
TP þ FP

(2)

Recall ¼ TP
TP þ FN

(3)

where TP is the true positive number, TN is the true negative number, FP is blackgray zero
the false positive number, and FN is the false negative number. Therefore, accuracy
provides an overall evaluation of the classifier’s effectiveness across all classes. Precision
measures how accurately the classifier recognizes positive cases. A higher precision rating
indicates fewer false positives. Recall measures a classifier’s ability to identify all positive
instances. It shows how well the classifier identifies positive examples. A better recall value
indicates fewer false negatives.

Simulation results
From the perspective of assessing the performance of the proposed model, the confusion
matrix is used to provide a comprehensive and informative summary of the classification
performance of this model as applied in Bukhari et al. (2021,2022). Table 2 presents the
confusion matrix of the proposed algorithm. It can be noticed from the table that 90% of
the forged images are predicted to be forged, while the model misclassifies 10% of them as
authentic images. Moreover, 95.5% of the authentic images are classified as authentic,
while 4.5% are predicted to be forged.

For assessing the model visually, Fig. 3 demonstrates examples of successfully detecting
authentic images and their corresponding ELA. The figure shows that the ELA images of
the authentic image are approximately black, which means that the image has not been
subjected to any manipulations, and the proposed model correctly classifies those images.

Moreover, examples of successfully detecting forged images are presented in Fig. 4A,
and their corresponding ELA and ground truth are introduced in Figs. 4B and 4C,
respectively. It can be observed from the ELA images that the tampered images succeed in
identifying the areas within the forged image with different compression levels, reflecting
that ELA discriminates between the forged and authentic images correctly and helps the
CNN model to be trained to differentiate between them.

On the other hand, according to the confusion matrix, the proposed model misclassifies
10% of the forged images and considers them authentic. Figure 5 shows samples of these
misclassified images. It can be perceived from the figure that the ELA of the tampered
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regions is not clear visually, which may confuse the CNN model when classifying these
images correctly.

Besides, the proposed algorithm is compared to the state-of-the-art algorithms
mentioned in Table 3 regarding training accuracy, testing accuracy, precision, and recall. It
can be observed from the results that the proposed model performs better thanMuniappan
et al. (2023), Tyagi & Yadav (2023a), and Ali et al. (2022) by 2 to 10 in terms of training
accuracy, while its training accuracy is approximately equal to that of Walia et al. (2022),
Walia et al. (2021), and Qazi, Zia & Almorjan (2022). Further, the proposed algorithm
outperforms all the conventional methods in testing accuracy, precision, and recall.
Certain results may be missed because the findings are from the algorithms’ original
publications. Remarkably, our investigation has uncovered that, despite the less complex
structure of our model, the CNNmodel proposed in this study has attained accuracy levels
that are comparable to those achieved by the ResNet 50 model employed in the research
conducted by Qazi, Zia & Almorjan (2022) and Walia et al. (2022). Furthermore, it is
worth noting that the CNN model that has been proposed exhibits superior performance
compared to the CAT-Net model introduced by Kwon et al. (2021), particularly in terms of

Table 2 Confusion matrix for assessing the classification accuracy of the proposed model.

True Forged 90% 10%

Authentic 4.5% 95.5%

Forged Authentic

Predicted

Figure 3 Successfully detecting authentic images. (A) Original images. (B) The corresponding ELA images.
Full-size DOI: 10.7717/peerj-cs.2205/fig-3
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precision, recall, and accuracy. Additionally, the proposed system’s performance is
evaluated based on inference time and memory utilization. Our findings indicate that the
inference time for all test images is 52 s, with the model size approximately 277 megabytes.
The findings above highlight the notable efficacy and proficiency of the proposed CNN
methodology in the realm of image manipulation detection. It enables rapid identification
of manipulated content to mitigate the spread of misinformation and protect the integrity
of digital media in social media, journalism, and art.

DISCUSSION
The proposed algorithm underwent several experiments to optimize its architecture. Thus,
different configurations are adjusted and evaluated iteratively to identify the architecture
that yields the best results for manipulation detection. The best five model configurations
are selected and presented in Table 4. The architecture of each model with the layer
arrangement is introduced in column 2. One of these configurations involved repeating the
convolutional and max pooling layers four times, as in model 1. This adjustment resulted
in a test accuracy of approximately 80%. Another experiment involved adding a batch
normalization layer in conjunction with the convolutional and max pooling layers and
repeating this group of layers as in models 2, 3, and 4. This modification led to an

Figure 4 Successfully detecting forged images. (A) Forged images. (B) The corresponding ELA. (C) The corresponding ground truth.
Full-size DOI: 10.7717/peerj-cs.2205/fig-4
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Figure 5 Misclassified forged images. (A) Forged images. (B) The extracted ELA. (C) The corre-
sponding ground truth. Full-size DOI: 10.7717/peerj-cs.2205/fig-5

Table 3 Comparison between the proposed model and the state-of-art techniques.

Method Training accuracy Testing accuracy Precision Recall

Muniappan et al. (2023) 89 – 82 89

Tyagi & Yadav (2023a) 98.93 – 90.6 94.8

Kwon et al. (2021) – 87.29 62 87

Ali et al. (2022) 94.93 92.23 85 97

Walia et al. (2022) 99.5 – – –

Walia et al. (2021) 99.3 – – –

Qazi, Zia & Almorjan (2022) 99.3 – – –

The proposed technique 99.05 94.14 94.1 94.07

Table 4 Comparison between different CNN model architectures for the proposed model.

Model name Architecture Training
accuracy

Test
accuracy

Model 1 4 Conv-max pool flatten, Dense, Dropout dense 98.55 80.37

Model 2 4 Conv-batch norm-max pool dropout, Flatten, Dense dropout, Dense 96.66 88.9

Model 3 4 Conv-max pool-batch norm dropout, Flatten, Dense dropout, Dense 90.18 86.8

Model 4 Conv, Max pool, Batch norm 3 Conv-max pool batch norm, Flatten, Dense dropout, Dense 96.76 85

The proposed model 2 Conv-max pool, Dropout, Dense, Dropout, Dense 99.05 94.14
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improved test accuracy of 85 to 88%. The last configuration is the best and is selected as the
proposed model because it achieves the best test and training accuracy with values of 94.14
and 99.05, respectively.

CONCLUSION
This study presents a novel image manipulation detection system targeting copy-move and
splicing forgeries. The proposed method leverages ELA to extract features and utilizes a
new CNN architecture for robust classification. The network is constructed from two
convolution layers, a max pooling layer, two dropout layers, and two fully connected
layers. Evaluated on the CASIA 2.0 benchmark dataset, the system achieves high accuracy,
precision, and recall, surpassing the performance of current state-of-the-art models. The
impressive performance exhibited on the CASIA 2.0 dataset indicates promising potential
for implementation in diverse fields where the integrity and authenticity of visual content
are of the highest priority. While the system shows promising results in detecting image
tampering, there are potential areas for future research. One avenue for investigation could
focus on identifying the specific regions within an image that have been forged, providing
more granular information about the tampering. Additionally, further research could
explore methods to specify the type of tampering that has occurred, such as determining
whether it is a copy-move or splicing forgery.
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