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ABSTRACT
The rapid dissemination of unverified information through social platforms like Twitter
poses considerable dangers to societal stability. Identifying real versus fake claims is
challenging, and previous work on rumor detection methods often fails to effectively
capture propagation structure features. Thesemethods also often overlook the presence
of comments irrelevant to the discussion topic of the source post. To address this,
we introduce a novel approach: the Structure-Aware Multilevel Graph Attention
Network (SAMGAT) for rumor classification. SAMGAT employs a dynamic attention
mechanism that blends GATv2 and dot-product attention to capture the contextual
relationships between posts, allowing for varying attention scores based on the stance of
the central node. The model incorporates a structure-aware attention mechanism that
learns attention weights that can indicate the existence of edges, effectively reflecting the
propagation structure of rumors. Moreover, SAMGAT incorporates a top-k attention
filtering mechanism to select the most relevant neighboring nodes, enhancing its
ability to focus on the key structural features of rumor propagation. Furthermore,
SAMGAT includes a claim-guided attention pooling mechanism with a thresholding
step to focus on themost informative posts when constructing the event representation.
Experimental results on benchmark datasets demonstrate that SAMGAT outperforms
state-of-the-art methods in identifying rumors and improves the effectiveness of early
rumor detection.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Sentiment Analysis, Neural Networks
Keywords Rumor detection, Graph attention networks, Self-supervised learning, Graph
representation learning

INTRODUCTION
The widespread adoption of social media has decentralized the authority over information,
leading to scenarios where truth is no longer determined solely by authoritative sources.
This shift has significant implications for society as misinformation can profoundly
affect political stability, public health, and social cohesion. For instance, during political
elections, misinformation campaigns have been known to manipulate public opinion,
thereby undermining democratic processes. Similarly, during the COVID-19 pandemic,
the spread of false information regarding treatments and the severity of the virus has led to
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public confusion, non-compliance with health guidelines, and vaccine hesitancy, further
exacerbating public health crises. Therefore, the need for effective rumor detectionmethods
is more urgent than ever. Deep learning has made a major impact on rumor detection,
capable of extracting deep semantic information from various data types, including text,
images, and structural information of rumors (Li, Zhang & Si, 2019). Traditional methods,
such as Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs),
have shown effectiveness in capturing time series relationships and local spatial feature
representation respectively (Ma et al., 2016;Wu et al., 2020; Lu & Li, 2020; Yu et al., 2017b;
Kumar, Bhatia & Sangwan, 2022). However, these methods are limited to using just text
information, often overlooking the structural information of rumor propagation. As a
result, several studies have investigated incorporating details about how rumors spread
into rumor detection models by utilizing approaches grounded in Graph Neural Network
(GNNs) (Bian et al., 2020; Lu & Li, 2020; Nguyen et al., 2020; Yuan et al., 2019; Yu et al.,
2022). However, GNNs often struggle to learn optimal graph representations due to the
presence of unrelated or irrelevant connections.

Given the complexity and diversity of social media content, rumor detection in social
networks is challenging. Misinformation is often unconsciously generated and spread by
regular users, while malicious actors design confusing dialogue structures to propagate
rumors. These factors contribute to the noise and complexity in the data, making it
difficult for existing models to accurately detect rumors. Furthermore, existing methods
face several limitations in effectively extracting structural information. Many current
approaches consider all nodes within the graph without filtering out irrelevant ones,
leading to the inclusion of noisy and unrelated information. Additionally, they often lack
explicit supervision in learning propagation structures, relying solely on the inherent graph
structure without leveraging prior knowledge to guide the learning process. Moreover, the
modeling of pairwise relationships remains inefficient, as traditional attention mechanisms
struggle to capture the nuanced importance of various connections within the graph. These
challenges and limitations highlight the need for an improved method of discerning the
importance of various relations within the graph to enhance the effectiveness of rumor
detection.

Graph attention networks (GATs) (Veličković et al., 2018) have been utilized to address
these challenges, employing self-attention to capture node importance. Despite their
utility, GATs are not without limitations, particularly when nodes with highly prominent
features disproportionately affect attention scores. This can lead to skewed representations,
analogous to scenarios in rumor detection where a few ‘‘hot’’ comments might dominate
and thus potentially mislead the model’s judgments. To address this imbalance, Min et al.
(2022) and Zhang et al. (2023) implemented an enhancement by integrating GATv2 (Brody,
Alon & Yahav, 2022). Taking this innovation further, we have developed DynamicGAT,
which incorporates a universal approximation attention function and DP attention. This
enhancement ensures dynamic and robust attention, enabling the model to incorporate
a wider range of connections and mitigate the risk of being misled by overly influential
nodes. TheDP attentionmechanism utilizes a sigmoid function to represent the connection
strength, refining the model’s focus on the relevance of connections between nodes. This
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integration enables the model to discern and prioritize the most meaningful connections,
thus avoiding distraction from irrelevant information. In summary, we propose a robust
graph attention model, DynamicGAT, that addresses the complexities of social media for
enhanced rumor detection.

To leverage propagation structure, we enhance the relational importance within graphs
via self-supervised attention. This leverages edges encoding relation importance. If nodes i
and j are linked and similar in content, they are deemed relevant to each other; if not, they’re
less important. Traditional attention mechanisms lack direct supervision. In contrast, our
approach exploits prior knowledge to guide attention (Knyazev, Taylor & Amer, 2019; Yu et
al., 2017b). This reinforcement not only elevates the significance of authentic connections
but also mitigates the impact of forged or unrelated links, thus enabling the model to
deliver robust predictions even in the face of perturbed graph structures.

In rumor detection, the number of replies to a post is a beneficial indicator (Wu, Yang
& Zhu, 2015). Our model maintains this cardinality information, denoting the number
of reposts, while managing complex and noisy post connections. We propose a dual
mechanism where attention is first concentrated on the top-k most similar nodes to the
central node. Additionally, to avoid loss of cardinality information, our model assigns
uniform attention weights to all neighboring nodes, incorporating this into the original
attention-based representation. We further advance existing graph attention pooling
method to form constrained, claim-guided graph representation. This approach retains
the overall graph structure, refines node representations, and prioritizes more relevant
posts. Thus, we balance maintaining cardinality and refining the graph for effective rumor
detection within a single, robust model.

To summarize, the key contributions of the present work are:

• We put forth an innovative constrained dynamic graph attention model to effectively
prioritize critical posts, representing events more accurately while preserving cardinality
information and modeling different relationships simultaneously.
• We guide graph attention using conversation structure in a self-supervised manner,
outperforming traditional graph attention models. Our model leverages trustworthy
prior structural knowledge to provide robust performance even under perturbed graph
structures.
• We restrict posts in the graph pooling process based on constrained claim-guided
attention, demonstrating superior performance in rumor detection.

RELATED WORK
The rampant spread of misinformation on social media platforms has made the
development of effective rumor detectionmethods a crucial endeavor. Traditional machine
learning classifiers have laid the groundwork for rumor detection by utilizing handcrafted
features such as sentiment analysis, bag-of-words models, user-profile features, text style
and temporal patterns (Castillo, Mendoza & Poblete, 2011; Ma et al., 2015; Tolosi, Tagarev
& Georgiev, 2016; Enayet & El-Beltagy, 2017; Kumar, Bhatia & Sangwan, 2022). These
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approaches, while pioneering, were limited by their reliance on surface features and a lack
of depth in capturing the complex nature of misinformation spread.

The advent of deep learning has significantly advanced the field of rumor detection.
The introduction of RNNs by Ma et al. (2016) marked a significant shift toward models
capable of capturing temporal semantic information, superseding models dependent on
handcrafted features. Subsequent work enhanced LSTM with attention mechanisms to
refine text representations and model temporal relationships within posts (Chen et al.,
2018). Yu et al. (2017a) groups posts into temporal windows, extracting representations
using paragraph vectors for each group and subsequently utilizing CNNs to model local
patterns. Similarly, Chen et al. (2019) employed a grouping method but further enhanced
group representations using attentionmechanisms, thereby improving the capture of global
features. The PLANmodel (Khoo et al., 2020) further advanced global feature extraction by
employing Transformer networks to model pairwise interactions between tweets through
self-attention.

Despite these advancements in capturing temporal, local, and global representations of
rumors, most approaches have not fully considered the complex propagation structures
inherent to rumors. Addressing this gap, several studies have pivoted towards the structural
characteristics of rumor spreading. Ma, Gao & Wong (2018) introduced recursive neural
networks that effectively modeled the bottom-up and top-down propagation trees.
Subsequently, graph convolutional networks (GCNs) were utilized to represent both
propagation and dispersion graphs (Bian et al., 2020). He et al. (2021) improved the
work (Bian et al., 2020) by using event-level contrastive learning. Further developments
by Yuan et al. (2019) as well as Lu & Li (2020) conceptualized propagation structures as
graphs incorporating heterogeneous information networks. EBGCN (Wei et al., 2021)
addressed uncertainties in propagation structures using a bayesian method to adjust
weights of unreliable relations. HD-Trans (Ma & Gao, 2020) refined the PLAN approach
by restricting self-attention to interactions within subtrees, thereby capturing hierarchical
relationships. This method can be seen as a bidirectional graph attention network (GAT)
incorporating sibling edges, employing Transformer-style attention functions. During
graph pooling, it selectively focuses on the most relevant information through attention
mechanisms to aggregate a comprehensive event representation. Similar to HD-Trans, the
model proposed by Lin et al. (2021) learns attentional representations at the post level,
incorporating both event-level attention and sibling relationships. However, it uniquely
conditions its event-level attention specifically on the source post, setting it apart from the
HD-Trans approach.

Recently, more studies have considered fusing multiple features for rumor detection.
DynamicGCN (Choi et al., 2021) represents a step forward in rumor detection by
integrating temporal dynamics and structural information through the use of dynamic
graph convolutional networks with attention mechanisms. TISN (Luo et al., 2022) uses
GCN to capture propagation patterns and concatenates posts in chronological order,
employing transformers to extract temporal features. UMLARD (Chen et al., 2022)
integrates user profiles, structural and temporal features, and tweet content through
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multi-view learning and attention mechanisms for enhanced rumor detection. DAN-
Tree++ (Bai, Han & Jia, 2023) enhances the PLAN model by integrating user profile
data and introducing tree structure embedding into Transformer blocks. MSLG (Han
et al., 2023) summarizes multi-source information into a heterogeneous graph that
includes rumor-word, word-word, and rumor-user relationships. Despite considering
a broader scope of information, existing approaches still face limitations in effectively
extracting structural information. Notably, current methods often consider all nodes
within the graph without filtering out irrelevant ones, and they lack explicit supervision
in learning propagation structures. Moreover, the modeling of pairwise relationships
remains inefficient. To address these limitations, we propose Structure-Aware Multilevel
Graph Attention Networks (SAMGAT), an extension of the GAT designed to enhance the
modeling of propagation structures.

METHODOLOGY
This section presents our SAMGAT for rumor detection leveraging undirected graph
structure. Our proposed model aggregates information using graph attention operating at
different levels, i.e., a graph attentionmechanism analyzes the local context by capturing the
importance of neighboring tweets for each node, while a claim-guided attentionmechanism
leverages global information from a central ‘‘claim’’ node, enhancing the understanding of
post content within the broader context of the interaction graph. As shown in Fig. 1, our
model will be further described in the subsequent subsections.

Problem definition
We define the dataset for rumor detection as C ={c1,c2,...,cm}, with each ci corresponding
to a distinct rumor event. ci=

{
ri,ωi

1,ω
i
2,...,ω

i
ni−1,Gi

}
, where ni denotes the post counts in

that event, ri is the claim post (Ma, Gao & Wong, 2018),ωi
j is the jth responsive post, andGi

symbolizes the graph structure. In particular, we utilize Gi to represent a graph consisting
of the node set Vi which represents posts in that event and the edge set Ei which denotes
the responsive relationships between posts. The graph node feature of Gi is represented as
Xi=

[
x i0,x

i
1,...,x

i
ni−1

]
, where x ij ∈Rd denotes the word embedding of each post. Let Ai be

the adjacency matrix of Gi.
Additionally, the goal of rumor detection is to learn a classifier f :C→ Y that maps

events C to their labels Y . Specifically, each event’s label can take one of two values: either
FR for false rumor or TR for true rumor. In some datasets, labels are classified with greater
specificity, taking one of four values from the set NR, FR, TR, UR. These finer-grained
labels represent: non-rumor, false rumor, true rumor, and unverified rumor. For clarity,
we have summarized some of the key terms and notations in Table 1.

Graph attention networks
GATs pivot on enriching the representation of posts by assigning differential importance
to neighboring posts, rather than homogenizing their importance as in the case of the
GCN model. The rationale behind employing GATs for embedding interaction graphs is
to mitigate the impact of unrelated posts.
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Figure 1 The framework of our proposed structure-aware multilevel graph attention networks. This
architecture integrates several key components built upon the Sibling Graph that represents semantic re-
lationships. The graph attention layer computes attention scores between nodes, leveraging the structured
information, as depicted in Fig. 2. The constrained local attention imposes limits on attention weight,
elaborated in Fig. 3. Furthermore, the relation-guided attention component adjusts edge weights to en-
hance feature representation, depicted in Fig. 4. Our network efficiently encodes the graph topology and
node interrelations through these interconnected modules, coupled with the Post-level and Constrained
Event-level Attention.

Full-size DOI: 10.7717/peerjcs.2200/fig-1

Leveraging self-attention in the form of GAT marks our starting point. Our goal is to
aggregate similar viewpoints of different types among neighboring nodes. Consequently,
the attention weights reflect the influence of neighboring posts on the focal post
within the graph G. The latent representations of nodes at layer l is denoted by

H l
=

[
hlc ,h

l
1,h

l
2,...,h

l
|V |−1

]>
. Here, hlc is equivalently represented as hl0. Initially, H

0
=X .

The computation of the attention weight proceeds as follows:

αlij =Atten
(
hli,h

l
j

)
(1)

e lij = LeakyReLU
(
Ea>
[
W lhli ‖W

lhlj
])

(2)

αlij =
exp

(
e lij
)

∑
k∈Ni

exp
(
e lik
) (3)

In this context, the function Atten computes the attention mechanism. Here, hli and hlj
represent the hidden states of tweets ωi and ωj in the graph, respectively. αlij reflects the
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Table 1 Terms and notations used in the article.

Symbol Definition

X Features of N nodes.
A Adjacency matrix of a graph.
αl
ij Attention score between posts i and j at layer l .

e lij Attention score before softmax between posts i and j at
layer l .

Ni One-hop neighbors of node i.
hli Hidden state of node i at layer l .
e lij,GO GAT Original attention score.
e lij,DP Dot-product attention score.
eij,MX MX attention score combining GO and DP.
α̃ij Modified attention weight after constrained local attention.
φij Probability of connection between nodes i and j.
g Lc→i Gate vector for post-level attention.
h̃Li Modified hidden representation after post-level attention.
hci Joint representation of node i and the claim.

relevance of tweet ωj to ωi, while Ea parameterize a weight vector to computes attention
weights and W l represents a trainable transformation matrix specific to each layer. Here,
·
> represents transposition and the ‖ symbol denotes the ‘‘concatenate’’ operation, and
Ni includes ωi’s one-hop neighbors along with ωi itself. The activation function is the
LeakyReLU. This leads us to the definition of the graph attention layer:

hl+1i =ReLU

∑
j∈Ni

αlijW
lhlj

 (4)

Weighted multi-head attention
To understand and represent different types of responsive relationships, we introduce
multi-head attention (Vaswani et al., 2017) in Eq. (5) by averaging the outputs from K
attention heads:

hl+1i =ReLU

 1
K

K∑
k=1

∑
j∈Ni

αlkij W
l
kh

l
jk

 (5)

where hl+1i signifies the latent representations of the post ωi in the (l+1)-th layer. αlkij
indicates the normalized attention weight determined by the k-th head in the l-th layer,
andW l

k refers to the learnable parameters associated with the linear transformation at that
layer. The resulting embedding for the l+1 layer is obtained through an averaging process.

After going through L−1 layers of GAT, we propose weighted multi-head attention
to manage the contributions of different relationships. Equation (5) is further enhanced
by Eq. (6) via weighting different relationships. This extension allows our model to
differentiate and prioritize diverse perspectives and attitudes in user comments, building
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Original GAT

Dot-product

GATv2

Figure 2 Overview of graph attention layer: GO, DP, MX, GOv2, MXv2. The unnormalized attention be-
fore softmax is represented by blue circles (eij), while the normalized attention between node i and j is de-
noted by red diamonds (φij).

Full-size DOI: 10.7717/peerjcs.2200/fig-2

···dropkey

Top-k Softmax

Figure 3 In the process of constrained local attention, the dropped key nodes for node i are indicated
by grey circles. The top-k nodes are represented by blue circles, while the nodes beyond the top-k that are
excluded from attention are shown as white circles.W l is omitted for simplicity.� denotes the element-
wise multiplication.

Full-size DOI: 10.7717/peerjcs.2200/fig-3

upon the foundation laid by the GAT. The computation of the final output in the L-th
layer is calculated using a newly introduced weight vector c .

hLi =ReLU

 K∑
k=1

ck
∑
j∈Ni

α
L−1,k
ij W L−1

k hL−1j

 (6)

hLi represents the enhanced node representation of ωi, which encodes the weighted
contributions of different relationships. We utilize mean pooling to summarize the whole
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Figure 4 The process of relation guided attention. The sibling graph is formulated by augmenting the
graph with additional edges connecting any pairs of nodes that share the same parent node. The target at-
tention weight between directly connected nodes is set to 1, while the target attention weight between sib-
ling nodes is parameterized by a hyperparameter y s ranging between 0 and 1.

Full-size DOI: 10.7717/peerjcs.2200/fig-4

event.

s̄=meanpooling
(
HL) (7)

Here, s̄ refers to the representation of the entire graph obtained through mean-pooling.

DynamicGAT
Building upon the GAT, we introduce DynamicGAT, which includes two variations of the
attention mechanism, namely GAT Original (GO) and dot-product (DP). These forms of
attention aim to further refine our model, allowing it to better understand and represent
data:

e lij,GO= LeakyReLU
(
Ea>
[
W lhli ‖W

lhlj
])
= LeakyReLU

(
Ea>1 W

lhli+Ea
>

2 W
lhlj
)

= LeakyReLU
(
W l

1h
l
i+W

l
2h

l
j

)
(8)

where Ea1 ‖ Ea2 = Ea, and Ea>1 W
l and Ea>2 W

l can be collapsed into two single linear
transformationsW l

1 andW l
2, respectively, and

e lij,DP=
(
W lhli

)>
·

(
W lhlj

)
(9)

Building on the enhanced capabilities of the GATv2 model (denoted as GOv2) (Brody,
Alon & Yahav, 2022), our approach incorporates a shared parameter weight W and
instigates nonlinearity through the placement of the LeakyReLU function before EaT . This
modification enables GATv2 to achieve a universal approximation attention function,
thereby endowing it with greater expressive power than its predecessor, GAT. The original
GAT model operates under a static attention mechanism, where the ranking of attention
scores among neighboring nodes remains constant across different central nodes. This
means that regardless of whether the central node represents support or opposition, GAT
assigns the highest attention to the same neighbor node—presumably the one with the
highest support. Ideally, the model should aggregate neighbors that align with the central
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node’s stance. In contrast, GATv2′s formulation takes into account the relationship between
the central node and its neighbors, allowing for a dynamic attention mechanism that can
vary the attention scores based on the context provided by the central node:

e lij,GOv2
=Ea>LeakyReLU

(
W lhli+W

lhlj
)

(10)

Moreover, the ultimate attention mechanism of DynamicGAT, denoted as MX, is
obtained by blending the GO and DP types. Specifically, MX is calculated by element-wise
multiplication of GOv2 and DP attention values followed by a sigmoid activation function
σ . In the field of natural language inference (NLI), DP attention mechanisms have been
widely employed to assess the compatibility between two sentences (Hu et al., 2020). Since
DP attention, combined with the sigmoid function, represents the degree of agreement,
it can subtly weaken the influence of nodes that contradict the view while implicitly
emphasizing those that share a common perspective.

DynamicGAT : eij,MXv2 = eij,GOv2 ·σ
(
eij,DP

)
(11)

Constrained local attention
Experiments have confirmed that attention dropout is helpful for GAT training on small
graphs. Fang et al. (2023) proves that integrating non-biased random dropping strategies
into graph neural networks equates to adding an extra term for regularization, which
leads to a more robust model. Taking inspiration from the dropkey technique utilized
in the Swin-transformer (Li et al., 2023), we prefer to use dropkey rather than traditional
dropout when computing the final attention scores. We specifically introduce a novel
dropout-before-softmax scheme where the Key is set as the dropout unit. Importantly, we
generate a unique masked key map for each central node instead of sharing a single map
across all query vectors. This scheme can regularize attention weights and keep them as a
probability distribution simultaneously.

dij =

{
0 with probability 1−d
−∞ with probability d

(12)

αij =
exp

(
dij+eij

)∑
k∈N (i)exp(dik+eik)

. (13)

Furthermore, in order to control the aggregation of information and eliminate the
potential impact of noisy edges, we impose a restriction on the number of nodes j that
can be aggregated for each central node i, using a hyperparameter pa. By selecting only the
top pa nodes with the highest attention weights to aggregate, we effectively filter out the
nodes that are least relevant to the central node, which are more likely to be connected by
noisy edges. This is done to ensure that a post retains its own information and to prevent
the aggregation of irrelevant or noisy information from neighboring nodes, which could
degrade the performance of rumor detection.

α̃i=TopK
(
αi,pa

)
(14)
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Graph structure can be difficult to distinguish for attention-based graph neural networks.
Since rumor detection is formulated as a graph classification task, it is necessary to enhance
the discriminative ability of our GNN. In light of the limitations of attention-based
aggregators in preserving the cardinality of multisets (Zhang & Xie, 2020), we introduce
modifications to the weighted summation function to address this issue. Specifically, we
incorporate cardinality information into the aggregation process without altering the
attention function. This approach ensures that each node in the neighborhood contributes
to the central node, implicitly maintaining the cardinality information. By doing so, we
not only keep the expressive power of the DynamicGAT but also improve the effectiveness
of node feature representation, thereby strengthening the discriminative capabilities of the
GNN. The modified equation is presented below:

hl+1i =ReLU

 ∑
j∈N (i)

α̃lijW
lhlj+w

l
∑

j∈N (i)

W lhlj

 (15)

Here, w l is the weight vector that is multiplied with the node features to adjust the
influence of the cardinality of the multiset.

Relation-guided attention
Inspired by SuperGAT (Kim & Oh, 2021), we can leverage the presence of edges to supervise
graph attention. This approach is grounded in the label-agreement assumption, which
posits that the relationship between connected nodes should be closer than that between
unconnected nodes. We leverage the link prediction task to provide self-supervision for
attention, using labels derived from the presence or absence of edges: for a pair of nodes
i and j, the label is 1 if an edge exists between them and 0 otherwise. We also consider
sibling relationships and label them as y s between 0 and 1. This mechanism, while being a
part of our GAT-based model, provides additional guidance to our attention mechanism.
It can be viewed as learning the graph structure because the learned node representations
can reconstruct both the reply relationships between posts and the sibling relationships of
posts. Hence, we refer to it as structure-aware attention. We sample a ratio of sibling edges
and set this ratio as a hyperparameter η. We use DP attention with sigmoid σ to calculate
the probability φij of connection between node i and j. Note that the computation of DP
attention only requires the representations of the two nodes. Therefore, we are essentially
learning node representations that can reflect the graph structure.

φij,MX= σ
(
eij,DP

)
(16)

Training samples consist of three parts: connected edges E , sibling edge samples E s,
and the complementary set Ec

= (V ×V )\(E∪E s). However, for graphs containing a vast
number of nodes, utilizing every possible negative case in Ec would not be computationally
efficient. Not all connected and sibling posts are valid, because theremight be bot-generated
content. Therefore, we first arbitrarily choose a total of pn · |E| negative samples E− from
Ec where the negative sampling ratio pn ∈R+ is a hyperparameter. After sampling edges,
we calculate their corresponding nodes’ attention weight by dot-product attention, and
select the top r ratio of edges in ascending or descending order as Ê , E s and Ê−. Due to the
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possibility of implicit connections between unconnected posts, we select those that are less
likely to be connected to serve as negative edges. The top r ratios for each edge type are set
differently to balance the importance of each type in the training process.

Ê = sort(E,ratio= rc ,key=φij,ascending= False) (17)

Ê s
= sort(E s,ratio= rs,key=φij,ascending= False) (18)

Ê−= sort(E−,ratio= rn,key=φij,ascending=True) (19)

where rc , rs, and rn are the top r ratios for connected edges, sibling edges, and negative
edges, respectively. These ratios are hyperparameters that can be tuned based on the specific
task and dataset characteristics to achieve the best performance.

The concept behind this approach is akin to SGATs (Ye & Ji, 2023), which is capable
of identifying and eliminating task-irrelevant edges in graphs, thereby producing robust
outcomes even in the presence of noisy graphs. We apply a similar concept to ensure the
effectiveness of SuperGAT in noisy graph environments by exclusively utilizing reliable
edges. The loss function Ll

E of layer l is:

Ll
E =−


1

|Ê∪ Ê−|

∑
(j,i)∈Ê∪Ê−

1(j,i)=1 · logφ
l
ij+1(j,i)=0 · log

(
1−φlij

)
+

1∣∣Ê s
∣∣ ∑
(j,i)∈Ê s

∣∣∣y s−φlij∣∣∣2
 (20)

where 1(j,i)=1 and 1(j,i)=0 are indicator functions. An indicator function is a common
mathematical concept used to determine whether a certain condition is true or false. These
indicator functions are used to differentiate between existing and non-existing edges and
calculate the loss accordingly.

Claim-guided attention pooling
Building upon the foundation of the GATs, we put forth a modified claim-guided attention
mechanism. This mechanism is crafted to operate together with the previously introduced
GATs, further refining the representation of our data. Our proposed mechanism enhances
both the topical coherence and semantic inference capabilities of the model, ultimately
making it more precise in reasoning the veracity of a rumored event.

The claim-guided attention pooling is predicated on the assumption of relevance
between posts and the claim. Many posts, when considered without the context of the
claim, exhibit low relevance to the claim. Direct attention pooling in such cases may not
effectively aggregate the information from the graph.

Post-level attention
To address the issue of ineffective aggregation of posts with low relevance to the claim
when directly applying weighted graph pooling based on the relevance between posts and
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the claim, we employ a gating module (Lin et al., 2021). This module is used to infuse
each post with claim information, thereby leading to higher attention weights for the posts
during subsequent event-level attention computations. This is a departure from previous
approaches (Lin et al., 2021) that positioned the gating module before every layer of the
convolution. Instead, we place this module after the last layer of the convolution. This
adjustment not only bolsters the model’s ability to enhance topical coherence, but also
further addresses the issue of weak relevance during subsequent graph attention pooling.

The operation of our model can be presented as follows:

g Lc→i = sigmoid
(
W L

g h
L
i +U

L
g h

L
c

)
(21)

h̃Li = g Lc→i�hLc +
(
1−g Lc→i

)
�hLi (22)

(22)

In this configuration, g Lc→i represents the contribution of claim c to target post i in the
L-th layer, consisting of trainable parametersW L

g and U L
g .h

L
c represents the hidden state of

claim c in the L-th layer. h̃Li represents the updated hidden state of target post i in the L-th
layer after incorporating the information from the claim. For simplicity, we have omitted
the bias. The � symbol denotes the Hadamard product.

Constrained event-level attention
We have made a significant adjustment to our model to address the limitations of the
traditional GAT-mean-based model, particularly its potential inability to accurately weight
node vectors. This mechanism works in tandem with the post-level attention, aiming to
boost the semantic inference capacity of our model, with a focus on accurately capturing
the relationship between the posts and the claim.

Our approach simplifies the complex joint representation used in previous models (Lin
et al., 2021). Instead of employing concatenation, element-wise multiplication, and the
absolute element-wise discrepancy between hLc and hLi , which is subsequently processed
using a fully-connected (FC) layer and TanH, we employ an add-attention mechanism to
measure the similarity between hc and hi. This allows us to reduce the joint representation
to a more manageable form:

hci =
[
hLc ‖h̃

L
i
]

(23)

This modification, while seemingly simple, provides performance enhancements. We
empirically find that it allows the model to effectively process the relationships between
posts and the claim, while providing computational efficiencies. In this setup, βi represents
the attention weight assigned to post xi to obtain the aggregated representation ŝ of
the event. Building on this, we proceed to implement graph attention pooling on the
claim-enhanced post representations. This is done to select informative posts based on
inference, guided by the joint representation hci . This leads to:

bi = tanh
(
FC
(
hci
))

(24)
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βi =
exp(bi)∑
iexp(bi)

(25)

ŝ=
∑
i

βih̃Li (26)

Recognizing that not all posts contribute equally to the claim, we refine our model with
a thresholding step to exclude less relevant posts. Only posts with attention weights βi
exceeding a predefined threshold q are considered, ensuring that our model focuses on the
most informative content when constructing the event representation ŝ.

βi =
exp(bi)∑
iexp(bi)

(
βi> q

)
(27)

This constrained event-level attention mechanism significantly refines the information
filtering and processing capabilities at the graph level, which is crucial for effective rumor
detection. By setting a specific threshold q, the model efficiently excludes posts that do
not significantly relate to the core topic of the event, thereby ensuring that the graph
representation is concentrated on the most critical information.

Classification of rumor detection
Finally, we use the refined representations obtained from the GAT and the claim-guided
attention pooling to classify the rumors. The prediction result ŷ of the event is calculated
by a multi-layer perceptron(MLP).

ŷ = softmax(MLP(ŝ)). (28)

Then, we employ the cross-entropy loss and relation-guided attention loss to train our
model using the ground truth y :

L(y,ŷ)=−
N∑
i=1

yilog
(
ŷi
)
+λLl

E . (29)

In this loss function L, λ balances the cross-entropy loss and relation-guided attention
loss.

We provide pseudo-code for our training procedure in Algorithm 1.

EXPERIMENTS AND ANALYSIS
To examine the efficacy of our introduced SAMGAT model, we compare the rumor
detection performance with the state-of-the-art models on public datasets. We also
compare and analyze the performance of the SAMGAT model and the baseline method in
early rumor detection.
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Algorithm 1 The SAMGAT Algorithm
Input: Graph G(V ,E), Event set C , Label set Y =N ,F ,T ,U
Output: Classifier f :C→Y
for each layer l = 1 to L do

4: for all nodes i∈V do
for all neighbors j ∈Ni do

Compute unnormalized attention scores using Eq. (5), Eq. (6) and Eq.
(11)

Apply dropout to modify unnormalized attention scores with probability
d

8: end for
Apply softmax to unnormalized attention scores, obtaining attention scores
Apply TopK to attention scores
Update node representations using Eq.(16)

12: end for
end for
Apply post-level attention for each post i using Eq. (21) and (22)
Compute event-level representation using Eq. (23) to (27)

16: Make predictions ŷ with classifier and softmax using Eq. (28)
Compute loss L

(
y,ŷ

)
and LE to update model parameters using Eq. (20) and Eq.(29)

Experimental settings
Datasets
We evaluate our proposed method on three publicly available benchmark datasets:
Twitter15, Twitter16 (Ma, Gao & Wong, 2017), and PHEME (Zubiaga, Liakata & Procter,
2016). These datasets have been widely adopted by the research community and are
considered standard benchmarks for evaluating rumor detection models. By utilizing the
same datasets as previous studies, we can directly compare the performance of our proposed
SAMGAT model with state-of-the-art approaches, ensuring the consistency and reliability
of our experimental results. For the text information of the graph nodes, we employ the
Bidirectional Encoder Representations from Transformers (Nguyen, Vu & Tuan Nguyen,
2020), which has demonstrated effectiveness in areas including Sentiment Analysis (Zhang
et al., 2020), natural language inference, etc., to encode every post’s content to form feature
matrix X. The statistics are presented in Table 2. The claims in Twitter15 and Twitter16 are
labeled as non-rumor, false rumor, true rumor, or unverified rumor, while the unbalanced
dataset PHEME contains two binary labels: false rumor and non-rumor.

The labels for each event in Twitter15 andTwitter16were annotated based on the veracity
tag (Ma, Gao & Wong, 2017) of the corresponding item on rumor-dispelling websites such
as snopes.com and Emergent.info. The labels of the PHEME dataset are annotated by news
practitioner.

Compared methods
We evaluate our proposed model against the following state-of-the-art baselines:
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Table 2 Statistics of the datasets.

Statistic Twitter15 Twitter16 PHEME

# of source tweets/events 1490 818 6425
# of non-rumors 374 205 4023
# of false rumors 370 205 2402
# of unverified rumors 374 203 –
# of true rumors 372 205 –
# of users 276,663 173,487 48,843
# of posts/postings 331,612 204,820 197,852

• DTC (Castillo, Mendoza & Poblete, 2011): A decision tree based approach that combines
various news features.
• SVM-TS (Ma et al., 2015): A support vector machine classifier that models the temporal
properties of social context during message propagation.
• GRU-RNN (Ma et al., 2016): This article introduces an RNN based model to detect
rumors, which learns from the temporal dynamics of social media to identify rumors
more effectively than methods relying on static features.
• BU-RVNN and TD-RVNN (Ma, Gao & Wong, 2018): Models that view rumor
propagation as a tree structure and adopt bottom-up and top-down recursive neural
networks for the rumor classification task.
• PLAN (Khoo et al., 2020): A tree transformer based model capturing long-term
interactions with token-level and post-level attention.
• BiGCN (Bian et al., 2020): An approach using bidirectional graph convolutional models
for social media rumor detection that analyzes both propagation and dispersion patterns.
• ClaHi-GAT (Lin et al., 2021): A GAT model based on an undirected graph, which
employs claims to enhance reply posts and incorporate sibling connections between
relevant messages.
• HDGCN (Yu et al., 2022): An approach to dynamic rumor detection using
heterogeneous graph convolutional networks and an ordinary differential equation
system.
• TISN (Luo et al., 2022): This study combines text and propagation structure by
employing BERT and GCN. TISN arranged tweets in chronological order to extract
temporal features of rumors.

In line with standard evaluation practices within the field, we assessed model
performance using accuracy and F1 score to offer a comprehensive perspective on model
performance, considering both precision and recall. We employed 5-fold cross-validation
to ensure that our assessment is robust and reliable, providing a thorough validation
across various subsets of data. This approach strengthens the credibility of our findings by
demonstrating consistent performance across different partitions of the dataset.

The BERT word embedding is initialized with the size of 768. We configured the
model with 2 graph attention layers (represented by L) and 8 attention heads (notated
as K ). The hyperparameters are set as follows: pn = 0.5, rc = 0.9, rn = 0.9, rs = 0.4,

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2200


Table 3 Results on the Twitter15 dataset.

Twitter15

Method ACC F1

NR FR TR UR

DTC 0.454 0.733 0.355 0.317 0.415
SVM-TS 0.544 0.796 0.472 0.404 0.484
BU-RVNN 0.708 0.695 0.728 0.759 0.653
TD-RVNN 0.723 0.682 0.758 0.821 0.654
BiGCN 0.836 0.791 0.842 0.887 0.801
ClaHi-GAT 0.891 0.878 0.882 0.931 0.867
TISN 0.886 0.957 0.893 0.869 0.812
HDGCN 0.834 0.853 0.868 0.859 0.823
SAMGAT 0.917 0.928 0.862 0.908 0.893

Notes.
The bold value indicates the best result among all methods.

pa = 5, y s = 0.4, q= 0.005, and λ= 1. Parameters were updated via backpropagation
using the Adam optimizer (Kingma & Ba, 2015), and the initial learning rate is 0.0005.
Dropout regularization of 0.2 was applied to prevent overfitting. Early stopping (Yao,
Rosasco & Caponnetto, 2007) was employed to monitor validation loss, stopping training
if loss did not improve for 10 epochs in order to avoid overfitting. The code has been
published at https://github.com/qwerdabc/SAMGAT. The dataset link for Twitter15 and
Twitter16 can be found at https://github.com/majingCUHK/Rumor_RvNN, the original
data source by Ma, Gao & Wong (2018). For the PHEME dataset, it is available at
https://doi.org/10.6084/m9.figshare.4010619.v1.

Results and analysis
In this section, we assess the effectiveness of our proposed method for identifying rumors.
The results of our method and all baseline methods, as presented in Tables 3, 4 and 5,
indicate that our SAMGAT outperforms the existing baselines across the majority of
evaluation metrics, even in the case where data is unbalanced. The reasons for SAMGAT’s
superior performance can be attributed to the following factors:

Feature-based approaches like SVM-TS and DTC struggle to perform well because they
rely on manually engineered features derived from overall tweet statistics. These features
alone are not enough to fully characterize the general properties of tweets and model
the complex dynamics of how information spreads. SVM-TS achieves marginally better
performance due to its use of a comprehensive feature set and its focus on the temporal
patterns of retweets. However, it still falls short of capturing the intricate relationships and
dependencies within the data.

SAMGAT outperforms the two recursive neural network (RvNN) models introduced
byMa, Gao & Wong (2018). Key reasons for this include the earlier development of RvNN,
possibly resulting in a less advanced model capacity. Moreover, RvNN models tend to
lose track of past data during propagation, a significant drawback in rumor detection
where the original tweet’s history is vital. This issue diminishes the importance of source
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Table 4 Results on the Twitter16 dataset.

Twitter16

Method ACC F1

NR FR TR UR

DTC 0.465 0.643 0.393 0.419 0.403
SVM-TS 0.574 0.755 0.420 0.571 0.526
BU-RVNN 0.718 0.723 0.712 0.779 0.659
TD-RVNN 0.737 0.662 0.743 0.835 0.708
BiGCN 0.864 0.788 0.859 0.932 0.864
ClaHi-GAT 0.908 0.862 0.916 0.954 0.901
HDGCN 0.865 0.820 0.863 0.930 0.863
TISN 0.883 0.956 0.797 0.802 0.833
SAMGAT 0.913 0.932 0.921 0.940 0.838

Notes.
The bold value indicates the best result among all methods.

Table 5 Results on the PHEME dataset.

PHEME

Method Acc. F1 Score

Non-rumor Rumor

DTC 0.670 0.755 0.494
SVM-TS 0.685 0.757 0.539
GRU-RNN 0.775 0.832 0.658
RvNN 0.829 0.873 0.736
PLAN 0.824 0.868 0.731
Bi-GCN 0.835 0.872 0.764
ClaHi-GAT 0.859 0.893 0.790
SAMGAT 0.864 0.865 0.863

Notes.
The bold value indicates the best result among all methods.

tweets in RvNN models. In contrast, the graph model’s input encompasses the attributes
of all nodes, unlike RvNN’s moment-specific input. Additionally, the graph network’s
propagation is guided by edge relationships, as opposed to RvNN’s dependency on the
sequence of reading. These factors contribute to RvNN’s suboptimal performance in this
context.

BiGCN, HDGCN, and TISN employ graph convolutional networks to simulate rumor
propagation, integrating structural characteristics for detecting rumors. GCN highlights
node connections and synchronizes feature sharing across nodes. Unlike the RNN
recursive model, the graph model processes the entire graph in a single pass, leading
to a global and potentially more stable representation. However, the method based on
graph convolutional neural networks cannot dynamically assign weights and reduce the
influence of noisy nodes. BiGCN adopts a bi-directional modeling approach for rumor
propagation graphs, utilizing top-down and bottom-up graph convolutional networks
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to extract representations. However, this bi-directional propagation process has two key
limitations. First, it propagates and amplifies information fromnoisy nodes twice. Second, it
treats all relationships within the graph as one, failing to differentiate betweenmore and less
significant connections. TISN concatenates all reply posts in chronological order to capture
temporal information and uses GCN to capture propagation structure information. Yet,
its approach to temporal and structural modeling does not effectively filter out irrelevant
posts and lacks sufficient utilization of the information from the original posts, making it
inferior to SAMGAT in this regard. HDGCN employs an ODE-based GCN to capture the
dynamic propagation of messages, which can be viewed as the aggregation of results from
multiple GCN layers with smaller propagation steps. Although this approach provides
more fine-grained modeling compared to discrete methods, the propagation process still
includes noisy nodes. Additionally, it employs mean-pooling to aggregate graph-level
representations, which does not distinguish contributions from different nodes, leading to
lossy modeling.

ClaHi-GAT and SAMGAT both model conversational structures using undirected
interaction graphs, aiming to improve representation learning by considering
comprehensive social contexts and focusing on semantically relevant posts related to
the target claim. However, they differ in several key aspects. At the node aggregation level,
ClaHi-GAT employs the original GAT formula, which struggles to effectively differentiate
the importance of diverse interactions. In contrast, SAMGAT utilizes GATv2 and dot-
product attention mechanisms, enabling the model to selectively weaken or discard less
relevant connections, refining its ability to focus on significant interactions within the
network. Moreover, SAMGAT introduces a top-k mechanism for node selection and
weighted multi-head attention to differentiate the importance of various relationships,
further enhancing its capacity to prioritize pertinent information and filter out noise.
In terms of graph aggregation, both models adopt claim-guided attention to weight and
aggregate nodes. However, SAMGAT takes it a step further by incorporating a threshold to
filter out nodes with low attention scores relative to the claim, ensuring that only the most
pertinent information is considered during the graph readout process. This aligns with
SAMGAT’s node-level constraint strategy, jointly elevating the model’s performance in
rumor detection tasks. In comparison, while ClaHi-GAT also distinguishes the importance
of different posts through attention mechanisms, it does not impose strict conditions
during aggregation, potentially allowing redundant or irrelevant information to influence
the final representation. Furthermore, SAMGAT distinguishes itself from ClaHi-GAT by
incorporating self-supervised learning techniques to explicitly learn node representations
capable of reconstructing the graph structure. This aligns with the goal of rumor detection
research considering propagation structures: to effectively leverage graph structure for
enhanced performance, ultimately contributing to SAMGAT’s superior performance in
the rumor detection task.

Ablation experiments
To validate the contribution of each component in SAMGAT, we make comparisons
between the complete model and these derivative versions: SAMGAT-ADD employs
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Table 6 Ablation experiment on the Twitter15, Twitter16 and PHEME.

Model Twitter15 Twitter16 PHEME

Acc. Acc. Acc.

SAMGAT 0.917 0.913 0.864
SAMGAT-ADD 0.908 0.891 0.862
SAMGAT-NR 0.884 0.885 0.826
SAMGAT-NCLA 0.906 0.907 0.859
SAMGAT-NCAP 0.898 0.901 0.841

solely the original GAT formula without weighted multi-head attention or DynamicGAT
attention. SAMGAT-NR removes the relation-guided attention module, losing the
capability to optimize attention weights based on structural information in the network.
SAMGAT-NCLA removes the constrained local attention module, making the model
unable to filter unrelated nodes and lose cardinality information, reducing the quality of
representations. SAMGAT-NCAP removes the claim-guided attention pooling module. As
a result, the model can no longer aggregate information based on claim cues.

The experimental results are summarized in Table 6. We can observe that: (1) In
comparison to SAMGAT, the accuracy of SAMGAT-NR on the Twitter15, Twitter16, and
PHEME datasets decreases by 3.3%, 2.8%, and 3.8%, respectively. Clearly, the model’s
capability is confined without relation-guided attention due to the lack of structural
supervision. (2) The lack of claim-guided attention pooling will impair SAMGAT’s
performance. As the model aggregates all information without selection, noisy information
disrupts the model. (3) The SAMGAT model that introduces DynamicGAT attention
and weighted multi-head is better than SAMGAT-ADD, demonstrating the effectiveness
of these modifications. (4) When constrained local attention is removed, center node
aggregates all neighbors to form its own representation, which will contain irrelevant
information and reduce its own information.

Early rumor detection
Early and accurate rumor debunking is crucial to mitigate their spread and negative
impacts. We compare the performance of various detection methods at different stages
of rumor propagation, measured by the number of responding posts. We evaluate the
methods’ accuracy as we progressively analyze validation data in chronological order,
stopping once the desired quantity of responses is reached.

Figure 5 illustrates the performances of SAMGAT, Clahi-GAT, Bi-GCN, and RvNN
across different deadlines. It is observed that models viewing the propagation as a graph
(e.g., SAMGAT, Clahi-GAT, and Bi-GCN) attain superior performance in the initial stages
of rumor propagation. Interestingly, the initial performance of the other graph-based
models (e.g., ClahiGAT) exhibited some noticeable fluctuations. We speculate this is due
to the increasing complexity and noise associated with claim propagation. In contrast,
our SAMGAT method demonstrates insensitivity to data variations, resulting in improved
stability and robustness. Clahi-GAT and Bi-GCN achieve their saturated performance after
approximately 30 posts on Twitter15 and Twitter16, whereas our method continues to
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improve as the number of posts increases, demonstrating its ability to handle larger and
more complex datasets, showcasing a significantly superior early detection performance.

Sensitive analysis of neighbor number
We also analyze the sensitivity of the hyper-parameter pa as illustrated in Fig. 6, which
controls the aggregation step based on attention weights. Experiments on the Twitter15
and Twitter16 datasets were conducted using constrained local attention by varying pa in
the range of 1,2,3,4,5,10,20. The results show that the accuracy first increases to a peak
value and then stabilizes or slightly decreases. This indicates that pa plays a crucial role in
regulating the balance between preserving relevant information and filtering out noisy or
irrelevant nodes. When pa is too small, the model may not sufficiently aggregate relevant
information from neighboring nodes, leading to suboptimal performance. On the other
hand, when pa is too large, the model may include more irrelevant or noisy nodes in
the aggregation, which can introduce noise into the graph representation and degrade
the rumor detection performance. In the context of rumor detection tasks, the optimal
value of pa allows the model to preserve the most relevant nodes to the central node while
discarding irrelevant ones, which helps eliminate noisy edges in the propagation tree and
filter out off-topic responses.

CONCLUSION
The proposed SAMGATmodel has demonstrated superior performance in rumor detection
on social networks, showcasing its ability to navigate the complexities inherent in social
media data. The incorporation of DynamicGAT allows themodel to discern the importance
of various relations within the graph, improving the model’s robustness to graph noise.
The introduction of a self-supervised task and a dual claim-guided mechanism further
refine the graph and maintain cardinality information, thereby contributing to the efficacy
of rumor detection. The model’s ability to effectively detect rumors and prioritize pertinent
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information can contribute to the development of more robust systems for combating
the spread of misinformation on social media platforms. Moreover, SAMGAT can be
integrated into real-time rumor detection pipelines and content moderation systems
to identify and address the spread of misinformation in a timely manner. Social media
platforms and news organizations can leverage the model’s capabilities to enhance their
content verification processes. Future work could explore the application of the proposed
model in other domains, such as fake news detection or stance classification. Additionally,
our study is currently limited to event-level rumor detection. However, as multiple events
often pertain to the same topic, incorporating topic-based analysis could prove beneficial,
especially for events characterized by a limited volume of posts. Exploring this avenue may
enhance the robustness and scope of our rumor detection methodology in future research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China under
grant 62006009. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Natural Science Foundation of China: 62006009.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yafang Li conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 22/27

https://peerj.com
https://doi.org/10.7717/peerjcs.2200/fig-6
http://dx.doi.org/10.7717/peerj-cs.2200


• Zhihua Chu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Caiyan Jia analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• Baokai Zu conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/qwerdabc/SAMGAT
- qwerdabc. (2024). qwerdabc/SAMGAT: init (init). Zenodo. https://doi.org/10.5281/

zenodo.12598037.
The data for Twitter15 and Twitter16 is available at Github and figshare:
- https://github.com/majingCUHK/Rumor_RvNN
- ma, jing (2017). rumdetect2017. figshare. Dataset. https://doi.org/10.6084/m9.figshare.

25406389.v1
The data for PHEME is available at figshare:
Zubiaga, Arkaitz; Wong Sak Hoi, Geraldine; Liakata, Maria; Procter, Rob (2016).

PHEME dataset of rumours and non-rumours. figshare. Dataset. https://doi.org/10.6084/
m9.figshare.4010619.v1.

REFERENCES
Bai L, Han X, Jia C. 2023. A rumor detection model incorporating propagation path con-

textual semantics and user information. Neural Processing Letters 55(7):9831–9850.
Bian T, Xiao X, Xu T, Zhao P, HuangW, Rong Y, Huang J. 2020. Rumor de-

tection on social media with bi-directional graph convolutional networks.
Proceedings of the AAAI Conference on Artificial Intelligence 34(01):549–556
DOI 10.1609/aaai.v34i01.5393.

Brody S, Alon U, Yahav E. 2022.How attentive are graph attention networks? In:
International conference on learning representations.

Castillo C, MendozaM, Poblete B. 2011. Information credibility on twitter. In: Proceed-
ings of the 20th international conference on World Wide Web, WWW’11. New York:
Association for Computing Machinery, 675–684 DOI 10.1145/1963405.1963500.

Chen T, Li X, Yin H, Zhang J. 2018. Call attention to rumors: deep attention based
recurrent neural networks for early rumor detection. In: Ganji M, Rashidi L,
Fung B, Wang C, eds. Trends and applications in knowledge discovery and data
mining. PAKDD 2018. Lecture notes in computer science, vol 11154, Cham: Springer
DOI 10.1007/978-3-030-04503-6_4.

Chen X, Zhou F, Trajcevski G, BonsangueM. 2022.Multi-view learning with distin-
guishable feature fusion for rumor detection. Knowledge-Based Systems 240:108085
DOI 10.1016/j.knosys.2021.108085.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 23/27

https://peerj.com
https://github.com/qwerdabc/SAMGAT
https://doi.org/10.5281/zenodo.12598037
https://doi.org/10.5281/zenodo.12598037
https://github.com/majingCUHK/Rumor_RvNN
https://doi.org/10.6084/m9.figshare.25406389.v1
https://doi.org/10.6084/m9.figshare.25406389.v1
https://doi.org/10.6084/m9.figshare.4010619.v1
https://doi.org/10.6084/m9.figshare.4010619.v1
http://dx.doi.org/10.1609/aaai.v34i01.5393
http://dx.doi.org/10.1145/1963405.1963500
http://dx.doi.org/10.1007/978-3-030-04503-6_4
http://dx.doi.org/10.1016/j.knosys.2021.108085
http://dx.doi.org/10.7717/peerj-cs.2200


Chen Y, Sui J, Hu L, GongW. 2019. Attention-residual network with CNN for rumor
detection. In: Proceedings of the 28th ACM international conference on information
and knowledge management. New York: ACM, 1121–1130.

Choi J, Ko T, Choi Y, Byun H, Kim C-k. 2021. Dynamic graph convolutional networks
with attention mechanism for rumor detection on social media. PLOS ONE
16(8):e0256039 DOI 10.1371/journal.pone.0256039.

Enayet O, El-Beltagy SR. 2017. NileTMRG at SemEval-2017 Task 8: determining rumour
and veracity support for rumours on twitter. In: Bethard S, Carpuat M, Apidianaki
M, Mohammad SM, Cer D, Jurgens D, eds. Proceedings of the 11th international
workshop on semantic evaluation (SemEval-2017). Stroudsburg: Association for
Computational Linguistics, 470–474 DOI 10.18653/v1/S17-2082.

Fang T, Xiao Z,Wang C, Xu J, Yang X, Yang Y. 2023. DropMessage: unifying random
dropping for graph neural networks. In: Proceedings of the thirty-seventh AAAI
conference on artificial intelligence and thirty-fifth conference on innovative applica-
tions of artificial intelligence and thirteenth symposium on educational advances in
artificial intelligence, AAAI’23/IAAI’23/EAAI’23. Washington, D.C.: AAAI Press,
DOI 10.1609/aaai.v37i4.25545.

Han X, ZhaoM, Zhang Y, Zhao T. 2023. Jointly multi-source information and local-
global relations of heterogeneous network for rumor detection. Frontiers in Physics
10:1056207 DOI 10.3389/fphy.2022.1056207.

He Z, Li C, Zhou F, Yang Y. 2021. Rumor detection on social media with event augmen-
tations. In: Proceedings of the 44th international ACM SIGIR conference on research
and development in information retrieval, SIGIR ’21. New York: Association for
Computing Machinery, 2020–2024 DOI 10.1145/3404835.3463001.

Hu Z, Fu Z, Peng C,WangW. 2020. Enhanced sentence alignment network for efficient
short text matching. In: Xu W, Ritter A, Baldwin T, Rahimi A, eds. Proceedings of the
sixth workshop on noisy user-generated text (W-NUT 2020). Stroudsburg: Association
for Computational Linguistics, 34–40 DOI 10.18653/v1/2020.wnut-1.6.

Khoo LMS, Chieu HL, Qian Z, Jiang J. 2020. Interpretable rumor detection in mi-
croblogs by attending to user interactions. Proceedings of the AAAI Conference on
Artificial Intelligence 34(05):8783–8790 DOI 10.1609/aaai.v34i05.6405.

KimD, Oh A. 2021.How to find your friendly neighborhood: graph attention design
with self-supervision. In: International conference on learning representations.

Kingma D, Ba J. 2015. Adam: a method for stochastic optimization. In: International
conference on learning representations (ICLR). San Diega, CA, USA.

Knyazev B, Taylor GW, AmerM. 2019. Understanding attention and generalization in
graph neural networks. In: Advances in neural information processing systems, volume
32. Red Hook: Curran Associates, Inc.

Kumar A, Bhatia M, Sangwan SR. 2022. Rumour detection using deep learning and
filter-wrapper feature selection in benchmark twitter dataset.Multimedia Tools and
Applications 81(24):34615–34632.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 24/27

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0256039
http://dx.doi.org/10.18653/v1/S17-2082
http://dx.doi.org/10.1609/aaai.v37i4.25545
http://dx.doi.org/10.3389/fphy.2022.1056207
http://dx.doi.org/10.1145/3404835.3463001
http://dx.doi.org/10.18653/v1/2020.wnut-1.6
http://dx.doi.org/10.1609/aaai.v34i05.6405
http://dx.doi.org/10.7717/peerj-cs.2200


Li B, Hu Y, Nie X, Han C, Jiang X, Guo T, Liu L. 2023. DropKey for vision transformer.
In: 2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Pis-
cataway: IEEE Computer Society, 22700–22709 DOI 10.1109/CVPR52729.2023.02174.

Li Q, Zhang Q, Si L. 2019. Rumor detection by exploiting user credibility informa-
tion, attention and multi-task learning. In: Korhonen A, Traum D, Màrquez L,
eds. Proceedings of the 57th annual meeting of the association for computational
linguistics. Stroudsburg: Association for Computational Linguistics, 1173–1179
DOI 10.18653/v1/P19-1113.

Lin H, Ma J, ChengM, Yang Z, Chen L, Chen G. 2021. Rumor detection on twitter with
claim-guided hierarchical graph attention networks. In: Moens M-F, Huang X,
Specia L, Yih SW-t, eds. Proceedings of the 2021 conference on empirical methods in
natural language processing. Stroudsburg: Association for Computational Linguistics,
10035–10047 DOI 10.18653/v1/2021.emnlp-main.786.

Lu Y-J, Li C-T. 2020. GCAN: graph-aware co-attention networks for explainable fake
news detection on social media. In: Jurafsky D, Chai J, Schluter N, Tetreault J,
eds. Proceedings of the 58th annual meeting of the association for computational
linguistics. Stroudsburg: Association for Computational Linguistics, 505–514
DOI 10.18653/v1/2020.acl-main.48.

Luo Z, Zhu X, Qian Z, Li P. 2022. Employing temporal information and propagation
structure to detect rumors. In: 2022 International joint conference on neural networks
(IJCNN). 1–8 DOI 10.1109/IJCNN55064.2022.9892725.

Ma J, GaoW. 2020. Debunking rumors on twitter with tree transformer. In: Scott D, Bel
N, Zong C, eds. Proceedings of the 28th international conference on computational
linguistics. Stroudsburg: International Committee on Computational Linguistics,
5455–5466 DOI 10.18653/v1/2020.coling-main.476.

Ma J, GaoW,Mitra P, Kwon S, Jansen BJ, Wong K-F, ChaM. 2016. Detecting rumors
from microblogs with recurrent neural networks. In: Proceedings of the twenty-fifth
international joint conference on artificial intelligence, IJCAI’16. Washington, D.C.:
AAAI Press, 3818–3824.

Ma J, GaoW,Wei Z, Lu Y,Wong K-F. 2015. Detect rumors using time series of social
context information on microblogging websites. In: Proceedings of the 24th ACM
international on conference on information and knowledge management. New York:
ACM, 1751–1754.

Ma J, GaoW,Wong K-F. 2017. Detect rumors in microblog posts using propagation
structure via kernel learning. In: Barzilay R, Kan M-Y, eds. Proceedings of the
55th annual meeting of the association for computational linguistics (Volume 1:
Long Papers). Stroudsburg: Association for Computational Linguistics, 708–717
DOI 10.18653/v1/P17-1066.

Ma J, GaoW,Wong K-F. 2018. Rumor detection on twitter with tree-structured
recursive neural networks. In: Gurevych I, Miyao Y, eds. Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Stroudsburg: Association for Computational Linguistics, 1980–1989
DOI 10.18653/v1/P18-1184.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 25/27

https://peerj.com
http://dx.doi.org/10.1109/CVPR52729.2023.02174
http://dx.doi.org/10.18653/v1/P19-1113
http://dx.doi.org/10.18653/v1/2021.emnlp-main.786
http://dx.doi.org/10.18653/v1/2020.acl-main.48
http://dx.doi.org/10.1109/IJCNN55064.2022.9892725
http://dx.doi.org/10.18653/v1/2020.coling-main.476
http://dx.doi.org/10.18653/v1/P17-1066
http://dx.doi.org/10.18653/v1/P18-1184
http://dx.doi.org/10.7717/peerj-cs.2200


Min E, Rong Y, Bian Y, Xu T, Zhao P, Huang J, Ananiadou S. 2022. Divide-and-
Conquer: post-user interaction network for fake news detection on social media.
In: Proceedings of the ACMWeb conference 2022, WWW ’22. New York, NY, USA:
Association for Computing Machinery, 1148–1158 DOI 10.1145/3485447.3512163.

Nguyen DQ, Vu T, Tuan Nguyen A. 2020. BERTweet: a pre-trained language
model for English Tweets. In: Liu Q, Schlangen D, eds. Proceedings of the
2020 conference on empirical methods in natural language processing: system
demonstrations. Stroudsburg: Association for Computational Linguistics, 9–14
DOI 10.18653/v1/2020.emnlp-demos.2.

Nguyen V-H, Sugiyama K, Nakov P, KanM-Y. 2020. FANG: leveraging social con-
text for fake news detection using graph representation. In: Proceedings of the
29th ACM international conference on information & knowledge management,
CIKM ’20. New York: Association for Computing Machinery, 1165–1174
DOI 10.1145/3340531.3412046.

Tolosi L, Tagarev A, Georgiev G. 2016. An analysis of event-agnostic features for rumour
classification in twitter. In: Social media in the newsroom, papers from the 2016
ICWSMWorkshop, Cologne, Germany, May 17, 2016, volume WS-16-19 of AAAI
Technical Report. Washington, D.C.: AAAI Press.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu,
Polosukhin I. 2017. Attention is all you need. In: Advances in neural information
processing systems, volume 30. Red Hook: Curran Associates, Inc.

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. 2018. Graph
attention networks. In: International conference on learning representations..

Wei L, Hu D, ZhouW, Yue Z, Hu S. 2021. Towards propagation uncertainty: edge-
enhanced bayesian graph convolutional networks for rumor detection. In: Zong C,
Xia F, Li W, Navigli R, eds. Proceedings of the 59th annual meeting of the association
for computational linguistics and the 11th international joint conference on natural
language processing (Volume 1: Long Papers). Stroudsburg: Association for Compu-
tational Linguistics, 3845–3854 DOI 10.18653/v1/2021.acl-long.297.

WuK, Yang S, Zhu KQ. 2015. False rumors detection on Sina Weibo by propagation
structures. In: 2015 IEEE 31st international conference on data engineering. Piscat-
away: IEEE, 651–662 DOI 10.1109/ICDE.2015.7113322.

Wu L, Rao Y, Zhao Y, Liang H, Nazir A. 2020. DTCA: decision tree-based co-attention
networks for explainable claim verification. In: Jurafsky D, Chai J, Schluter N,
Tetreault J, eds. Proceedings of the 58th annual meeting of the association for com-
putational linguistics. Stroudsburg: Association for Computational Linguistics,
1024–1035 DOI 10.18653/v1/2020.acl-main.97.

Yao Y, Rosasco L, Caponnetto A. 2007. On early stopping in gradient descent learning.
Constructive Approximation 26(2):289–315 DOI 10.1007/s00365-006-0663-2.

Ye Y, Ji S. 2023. Sparse graph attention networks. IEEE Transactions on Knowledge and
Data Engineering 35(01):905–916 DOI 10.1109/TKDE.2021.3072345.

Yu Y, Choi J, Kim Y, Yoo K, Lee S-H, Kim G. 2017b. Supervising neural attention
models for video captioning by human gaze data. In: 2017 IEEE conference on

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 26/27

https://peerj.com
http://dx.doi.org/10.1145/3485447.3512163
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.2
http://dx.doi.org/10.1145/3340531.3412046
http://dx.doi.org/10.18653/v1/2021.acl-long.297
http://dx.doi.org/10.1109/ICDE.2015.7113322
http://dx.doi.org/10.18653/v1/2020.acl-main.97
http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1109/TKDE.2021.3072345
http://dx.doi.org/10.7717/peerj-cs.2200


computer vision and pattern recognition (CVPR). Piscataway: IEEE, 6119–6127
DOI 10.1109/CVPR.2017.648.

Yu F, Liu Q,Wu S,Wang L, Tan T. 2017a. A convolutional approach for misinformation
identification. In: Proceedings of the twenty-sixth international joint conference on
artificial intelligence, IJCAI-17. 3901–3907 DOI 10.24963/ijcai.2017/545.

Yu D, Zhou Y, Zhang S, Liu C. 2022.Heterogeneous graph convolutional network-
based dynamic rumor detection on social media. Complexity 2022:8393736
DOI 10.1155/2022/8393736.

Yuan C, Ma Q, ZhouW, Han J, Hu S. 2019. Jointly embedding the local and
global relations of heterogeneous graph for rumor detection. In: 2019 IEEE
International conference on data mining (ICDM). Piscataway: IEEE, 796–805
DOI 10.1109/ICDM.2019.00090.

Zhang Z,Wu Y, Zhao H, Li Z, Zhang S, Zhou X, Zhou X. 2020. Semantics-aware
BERT for language understanding. Proceedings of the AAAI Conference on Artificial
Intelligence 34(05):9628–9635 DOI 10.1609/aaai.v34i05.6510.

Zhang S, Xie L. 2020. Improving attention mechanism in graph neural networks via car-
dinality preservation. In: Bessiere C, ed. Proceedings of the twenty-ninth international
joint conference on artificial intelligence, IJCAI-20. International Joint Conferences on
Artificial Intelligence Organization, 1395–1402 DOI 10.24963/ijcai.2020/194.

Zhang K, Yu J, Shi H, Liang J, Zhang X-Y. 2023. Rumor detection with diverse counter-
factual evidence. In: Proceedings of the 29th ACM SIGKDD conference on knowledge
discovery and data mining, KDD ’23. New York: Association for Computing Machin-
ery, 3321–3331 DOI 10.1145/3580305.3599494.

Zubiaga A, Liakata M, Procter R. 2016. Learning reporting dynamics during breaking
news for rumour detection in social media. ArXiv arXiv:1610.07363.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2200 27/27

https://peerj.com
http://dx.doi.org/10.1109/CVPR.2017.648
http://dx.doi.org/10.24963/ijcai.2017/545
http://dx.doi.org/10.1155/2022/8393736
http://dx.doi.org/10.1109/ICDM.2019.00090
http://dx.doi.org/10.1609/aaai.v34i05.6510
http://dx.doi.org/10.24963/ijcai.2020/194
http://dx.doi.org/10.1145/3580305.3599494
http://arXiv.org/abs/1610.07363
http://dx.doi.org/10.7717/peerj-cs.2200

