
Submitted 22 March 2015
Accepted 11 August 2015
Published 2 September 2015

Corresponding author
Lee Naish, lee@unimelb.edu.au

Academic editor
Evelyn Duesterwald

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.22

Copyright
2015 Naish

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Sharing analysis in the Pawns compiler

Lee Naish

Computing and Information Systems, University of Melbourne, Melbourne, Australia

ABSTRACT
Pawns is a programming language under development that supports algebraic data
types, polymorphism, higher order functions and “pure” declarative programming.
It also supports impure imperative features including destructive update of shared
data structures via pointers, allowing significantly increased efficiency for some
operations. A novelty of Pawns is that all impure “effects” must be made obvious in
the source code and they can be safely encapsulated in pure functions in a way that
is checked by the compiler. Execution of a pure function can perform destructive
updates on data structures that are local to or eventually returned from the function
without risking modification of the data structures passed to the function. This paper
describes the sharing analysis which allows impurity to be encapsulated. Aspects of
the analysis are similar to other published work, but in addition it handles explicit
pointers and destructive update, higher order functions including closures and pre-
and post-conditions concerning sharing for functions.

Subjects Programming Languages
Keywords Functional programming language, Algebraic data type, Destructive update,
Mutability, Effects, Aliasing analysis, Sharing analysis

INTRODUCTION
This paper describes the sharing analysis done by the compiler for Pawns (Naish, 2015),

a programming language that is currently under development. Pawns supports both

declarative and imperative styles of programming. It supports algebraic data types,

polymorphism, higher order programming and “pure” declarative functions, allowing

very high level reasoning about code. It also allows imperative code, where programmers

can consider the representation of data types, obtain pointers to the arguments of data

constructors and destructively update them. Such code requires the programmer to reason

at a much lower level and consider aliasing of pointers and sharing of data structures.

Low level “impure” code can be encapsulated within a pure interface and the compiler

checks the purity. This requires analysis of pointer aliasing and data structure sharing, to

distinguish data structures that are only visible to the low level code (and are therefore

safe to update) from data structures that are passed in from the high level code (for which

update would violate purity). The main aim of Pawns is to get the benefits of purity for

most code but still have the ability to write some key components using an imperative style,

which can significantly improve efficiency (for example, a more than twenty-fold increase

in the speed of inserting an element into a binary search tree).

There are other functional programming languages, such as ML (Milner, Tofte &

Macqueen, 1997), Haskell (Jones et al., 1999) and Disciple (Lippmeier, 2009), that allow

destructive update of shared data structures but do not allow this impurity to be

How to cite this article Naish (2015), Sharing analysis in the Pawns compiler. PeerJ Comput. Sci. 1:e22; DOI 10.7717/peerj-cs.22

mailto:lee@unimelb.edu.au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.22
http://dx.doi.org/10.7717/peerj-cs.22
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

encapsulated. In these languages, the ability to update the data structure is connected to

its type.1 For a data structure to be built using destructive update, its type must allow

1 Disciple uses “region” information
to augment types, with similar
consequences.

destructive update and any code that uses the data structure can potentially update it as

well. This prevents simple declarative analysis of the code and can lead to a proliferation

of different versions of a data structure, with different parts being mutable. For example,

there are four different versions of lists, since both the list elements and the “spine” may

(or may not) be mutable, and sixteen different versions of lists of pairs. There is often an

efficiency penalty as well, with destructive update requiring an extra level of indirection

in the data structure (an explicit “reference” in the type with most versions of ML and

Haskell). Pawns avoids this inefficiency and separates mutability from type information,

allowing a data structure to be mutable in some contexts and considered “pure” in others.

The main cost from the programmer perspective is the need to include extra annotations

and information in the source code. This can also be considered a benefit, as it provides

useful documentation and error checking. The main implementation cost is additional

analysis done by the compiler, which is the focus of this paper.

The rest of this paper assumes some familiarity with Haskell and is structured as follows.

‘An Overview of Pawn’ gives a brief overview of the relevant features of Pawns. An early

pass of the compiler translates Pawns programs into a simpler “core” language; this is

described in ‘Core Pawns.’ ‘The Abstract Domain’ describes the abstract domain used for

the sharing analysis algorithm, ‘The Sharing Analysis Algorithm’ defines the algorithm

itself and ‘Example’ gives an extended example. ‘Discussion’ briefly discusses precision and

efficiency issues. ‘Related Work’ discusses related work and ‘Conclusion’ concludes.

AN OVERVIEW OF PAWNS
A more detailed introduction to Pawns is given in (Naish, 2015). Pawns has many

similarities with other functional languages. It supports algebraic data types with

parametric polymorphism, higher order programming and curried function definitions.

It uses strict evaluation. In addition, it supports destructive update via “references”

(pointers) and has a variety of extra annotations to make impure effects more clear from

the source code and allow them to be encapsulated in pure code. Pawns also supports a

form of global variables (called state variables) which support encapsulated effects, but

we do not discuss them further here as they are handled in essentially the same way as

other variables in sharing analysis. Pure code can be thought of in a declarative way, where

values can be viewed abstractly, without considering how they are represented. Code that

uses destructive update must be viewed at a lower level, considering the representation of

values, including sharing. We discuss this lower level view first, then briefly present how

impurity can be encapsulated to support the high level view. We use Haskell-like syntax for

familiarity.

The low level view
Values in Pawns are represented as follows. Constants (data constructors with no

arguments) are represented using a value in a single word. A data constructor with N > 0

arguments is represented using a word that contains a tagged pointer to a block of N words

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 2/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

in main memory containing the arguments. For simple data types such as lists, the tag

may be empty. In more complex cases, some bits of the pointer may be used and/or a tag

may be stored in a word in main memory along with the arguments. Note that constants

and tagged pointers are not always stored in main memory and Pawns variables may

correspond to registers that contain the value. Only the arguments of data constructors

are guaranteed to be in main memory. An array of size N is represented in the same way

as a data constructor with N arguments, with the size given by the tag. Functions are

represented as either a constant (for functions that are known statically) or a closure which

is a data constructor with a known function and a number of other arguments.

Pawns has a Ref t type constructor, representing a reference/pointer to a value of type

t (which must be stored in memory). Conceptually, we can think of a corresponding Ref

data constructor with a single argument, but this is never explicit in Pawns code. Instead,

there is an explicit dereference operation: *vp denotes the value vp points to. There are

two ways references can be created: let bindings and pattern bindings. A let binding *vp

= val allocates a word in main memory, initializes it to val and makes vp a reference

to it (Pawns omits Haskell’s let and in keywords; the scope is the following sequence of

statements/expressions). In a pattern binding, if *vp is the argument of a data constructor

pattern, vp is bound to a reference to the corresponding argument of the data constructor

if pattern matching succeeds (there is also a primitive that returns a reference to the ith

element of an array). Note it is not possible to obtain a reference to a Pawns variable:

variables do not denote memory locations. However, a variable vp of type Ref t denotes a

reference to a memory location containing a value of type t and the memory location can

be destructively updated by *vp := val.

Consider the following code. Two data types are defined. The code creates a reference to

Nil (Nil is stored in a newly allocated memory word) and a reference to that reference (a

pointer to the word containing Nil is put in another allocated word). It also creates a list

containing constants Blue and Red (requiring the allocation of two cons cells in memory;

the Nil is copied). It deconstructs the list to obtain pointers to the head and tail of the list

(the two words in the first cons cell) then destructively updates the head of the list to be

Red.

data Colour = Red | Green | Blue

data Colours = Nil | Cons Colour Colours -- like [Colour]

...

*np = Nil -- np = ref to (copy of) Nil

*npp = np -- npp = ref to (copy of) np

cols = Cons Blue (Cons Red *np) -- cols = [Blue, Red]

case cols of

(Cons *headp *tailp) -> -- get ref to head and tail

*headp := Red -- update head with Red

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 3/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

The memory layout after the assignment can be pictured as follows, where boxes

represent main memory words and Ref and Cons followed by an arrow represent pointers

(no tag is used in either case):

The destructive update above changes the values of both headp and cols (the

representations are shared). One of the novel features of Pawns is that the source code

must be annotated with “!” to make it obvious when each “live” variable is updated. If both

headp and cols are used later, the assignment statement above must be written as follows,

with headp prefixed with “!” and an additional annotation attached to the whole statement

indicating colsmay be updated:

*!headp := Red !cols -- update *headp (and cols)

We say that the statement directly updates headp and indirectly updates cols, due to

sharing of representations. Similarly, if headp was passed to a function that may update it,

additional annotations are required. For example, (assign !headp Red) !cols makes

the direct update of headp and indirect update of cols clear. Sharing analysis is used to

ensure that source code contains all the necessary annotations. One aim of Pawns is that

any effects of code should be made clear by the code. Pawns is an acronym for Pointer

Assignment With No Surprises.

Pawns functions have extra annotations in type signatures to document which

arguments may be updated. For additional documentation, and help in sharing analysis,

there are annotations to declare what sharing may exist between arguments when the

function is called (a precondition) and what extra sharing may be added by executing the

function (called a postcondition, though it is the union of the pre- and post-condition that

must be satisfied after a function is executed). For example, we may have:

assign :: Ref t -> t -> ()

sharing assign !p v = _ -- p may be updated

pre nosharing -- p&v don’t share when called

post *p = v -- assign may make *p alias with v

assign !p v =

*!p := v

The “!” annotation on parameter p declares the first argument of assign is mutable.

The default is that arguments are not mutable. As well as checking for annotations on

assignments and function calls, sharing analysis is used to check that all parameters which

may be updated are declared mutable in type signatures, and pre- and post-conditions

are always satisfied. For example, assuming the previous code which binds cols, the call

assign !tailp !cols annotates all modified variables but violates the precondition

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 4/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

of assign because there is sharing between tailp and cols at the time of the call.

Violating this precondition allows cyclic structures to be created, which is important

for understanding the code. If the precondition was dropped, the second argument of

assign would also need to be declared mutable in the type signature and the assignment

to p would require v to be annotated. In general, there is an inter-dependence between

“!” annotations in the code and pre- and post-conditions. More possible sharing at a call

means more “!” annotations are needed, more sharing in (recursive) calls and more sharing

when the function returns.

Curried functions and higher order code are supported by attaching sharing and

destructive update information to each arrow in a type, though often the information

is inferred rather than being given explicitly in the source code. For example, implicit in

the declaration for assign above is that assign called with a single argument of type

Ref t creates a closure of type t ->() containing that argument (and thus sharing the

object of type t). The explicit sharing information describes applications of this closure

to another argument. There is a single argument in this application, referred to with

the formal parameter v. The other formal parameter, p, refers to the argument of the

closure. In general, a type with N arrows in the “spine” has K + N formal parameters in the

description of sharing, with the first K parameters being closure arguments.

The following code defines binary search trees of integers and defines a function that

takes a pointer to a tree and inserts an integer into the tree. It uses destructive update,

as would normally be done in an imperative language. The declarative alternative must

reconstruct all nodes in the path from the root down to the new node. Experiments

using our prototype implementation of Pawns indicate that for long paths this destructive

update version is as fast as hand-written C code whereas the “pure” version is more than

twenty times slower, primarily due to the overhead of memory allocation.

data Tree = TNil | Node Tree Int Tree

bst_insert_du :: Int -> Ref Tree -> ()

sharing bst_insert_du x !tp = _ -- tree gets updated

pre nosharing -- integers are atomic so

post nosharing -- it doesn’t share

bst_insert_du x !tp =

case *tp of

TNil ->

*!tp := Node TNil x TNil -- insert new node

(Node *lp n *rp) ->

if x <= n then

(bst_insert_du x !lp) !tp -- update lp (and tp)

else

(bst_insert_du x !rp) !tp -- update rp (and tp)

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 5/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

The high level view
Whenever destructive update is used in Pawns, programmers must be aware of potential

sharing of data representations and take a low-level view. In other cases, it is desirable to

have a high level view of values, ignoring how they are represented and any sharing that

may be present. For example, in the two trees t1 and t2 depicted below, it is much simpler

if we do not have to care or know about the sharing between the trees and within tree t1.

The high level view is they are both just Node (Node TNil 123 TNil) 123 (Node

TNil 123 TNil).

Pawns has a mechanism to indicate that the high level view is taken. Pre- and

post-conditions can specify sharing with a special pseudo-variable named abstract.2 The

2 There is conceptually a different
abstract variable for each distinct
type.

sharing analysis of the Pawns compiler allows a distinction between “abstract” variables,

which share with abstract and for which the programmer takes a high level view, and

“concrete” variables for which the programmer must understand the representation and

explicitly declare all sharing in pre- and post-conditions. The analysis checks that no

live abstract variables can be destructively updated. Thus, if a function has a parameter

which is updated, it must be declared mutable and must not be declared to share with

abstract in the precondition (non-mutable parameters may or may not share with

abstract). Checking of preconditions ensures that abstract variables are not passed to

functions which expect concrete data structures. For example, an abstract tree cannot be

passed to bst insert du because the precondition allows no sharing with abstract.

It is important that the tree structure is known when bst insert du is used because

the result depends on it. For example, inserting into the right subtree of t2 only affects

this subtree whereas inserting into the right subtree of t1 (which has the same high level

value) also changes the left subtree of both t1 and t2. Note that concrete variables can be

passed to functions which allow abstract arguments. Pawns type signatures that have no

annotations concerning destructive update or sharing implicitly indicate no arguments are

destructively updated and the arguments and result share with abstract. Thus, a subset of

Pawns code can look like and be considered as pure functional code.

The following code defines a function that takes a list of integers and returns a binary

search tree containing the same integers. Though it uses destructive update internally,

this impurity is encapsulated and it can therefore be viewed as a pure function. The

list that is passed in as an argument is never updated and the tree returned is abstract

so it is never subsequently updated (a concrete tree could be returned if an explicit

postcondition without t = abstractwas given). An initially empty tree is created locally.

It is destructively updated by inserting each integer of the list into it (using list bst du,

which calls bst insert du), then the tree is returned. Within the execution of list bst

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 6/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

it is important to understand the low level details of how the tree is represented, but this

information is not needed outside the call.

data Ints = Nil | Cons Int Ints

list_bst :: Ints -> Tree -- pure function from Ints to Tree

-- implicit sharing information:

-- sharing list_bst xs = t

-- pre xs = abstract

-- post t = abstract

list_bst xs =

*tp = TNil -- create pointer to empty tree

list_bst_du xs !tp -- insert integers into tree

*tp -- return (updated) tree

list_bst_du :: Ints -> Ref Tree -> ()

sharing list_bst_du xs !tp = _ -- tree gets updated

pre xs = abstract

post nosharing

list_bst_du xs !tp =

case xs of

(Cons x xs1) ->

bst_insert_du x !tp -- insert head of list into tree

list_bst_du xs1 !tp -- insert rest of list into tree

Nil -> ()

CORE PAWNS
An early pass of the Pawns compiler converts all function definitions into a core language

by flattening nested expressions, introducing extra variables et cetera. A variable represent-

ing the return value of the function is introduced and expressions are converted to bindings

for variables. A representation of the core language version of code is annotated with

type, liveness and other information prior to sharing analysis. We just describe the core

language here. The right side of each function definition is a statement (described using

the definition of type Stat below), which may contain variables, including function names

(Var), data constructors (DCons) and pairs containing a pattern (Pat) and statement for

case statements. All variables are distinct except for those in recursive instances of Stat

and variables are renamed to avoid any ambiguity due to scope.

data Stat = -- Statement, eg

Seq Stat Stat | -- stat1 ; stat2

EqVar Var Var | -- v = v1

EqDeref Var Var | -- v = *v1

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 7/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

DerefEq Var Var | -- *v = v1

DC Var DCons [Var] | -- v = Cons v1 v2

Case Var [(Pat, Stat)] | -- case v of pat1 -> stat1 ...

Error | -- (for uncovered cases)

App Var Var [Var] | -- v = f v1 v2

Assign Var Var | -- *!v := v1

Instype Var Var -- v = v1::instance_of_v1_type

data Pat = -- patterns for case, eg

Pat DCons [Var] -- (Cons *v1 *v2)

Patterns in the core language only bind references to arguments — the arguments

themselves must be obtained by explicit dereference operations. Pawns supports “default”

patterns but for simplicity of presentation here we assume all patterns are covered in

core Pawns and we include an error primitive. Similarly, we just give the general case for

application of a variable to N > 0 arguments; our implementation distinguishes some

special cases. Memory is allocated for DerefEq, DC (for non-constants) and App (for

unsaturated applications which result in a closure). The runtime behaviour of Instype is

identical to EqVar but it is treated differently in type analysis.

Sharing and type analysis cannot be entirely separated. Destructive update in the

presence of polymorphic types can potentially violate type safety or “preservation”—

see Wright (1995), for example. For a variable whose type is polymorphic (contains a type

variable), we must avoid assigning a value with a less general type. For example, in *x =

[] the type of *x is “list of t”, where t is a type variable. Without destructive update, it

should be possible to use *x wherever a list of any type is expected. However, if *x is then

assigned a list containing integers (which has a less general type), passing it to a function

that expects a list of functions violates type safety (“calling” an arbitrary integer is not

safe). Pawns allows expressions to have their inferred types further instantiated using “::”,

and the type checking pass of the compiler also inserts some type instantiation. The type

checking pass ensures that direct update does not involve type instantiation but to improve

flexibility, indirect update is checked during the sharing analysis.

THE ABSTRACT DOMAIN
The representation of the value of a variable includes some set of main memory words

(arguments of data constructors). Two variables share if the intersection of their sets of

main memory words is not empty. The abstract domain for sharing analysis must maintain

a conservative approximation to all sharing, so we can tell if two variables possibly share

(or definitely do not share). The abstract domain we use is a set of pairs (representing

possibly intersecting sets of main memory locations) of variable components. The different

components of a variable partition the set of main memory words for the variable.

The components of a variable depend on its type. For non-recursive types other than

arrays, each possible data constructor argument is represented separately. For example,

the type Maybe (Maybe (Either Int Int)) can have an argument of an outer Just

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 8/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

data constructor, an inner Just and Left and Right. A component can be represented

using a list of x.y pairs containing a data constructor and an argument number, giving

the path from the outermost data constructor to the given argument. For example,

the components of the type above can be written as: [Just.1], [Just.1,Just.1],

[Just.1,Just.1,Left.1] and [Just.1,Just.1,Right.1]. If variable v has value

Just Nothing, the expression v.[Just.1] represents the single main memory word

containing the occurrence of Nothing.

For Ref t types we proceed as if there was a Ref data constructor, so vp.[Ref.1]

represents the word vp points to. For function types, values may be closures. A closure

that has had K arguments supplied is represented as a data constructor ClK with these

K arguments; these behave in the same way as other data constructor arguments with

respect to sharing, except Pawns provides no way to obtain a pointer to a closure argument.

Closures also contain a code pointer and an integer which are not relevant to sharing so

they are ignored in the analysis. We also ignore the subscript on the data constructor for

sharing analysis because type and sharing analysis only give a lower bound on the number

of closure arguments. Our analysis orders closure arguments so that the most recently

supplied argument is first (the reverse of the more natural ordering). Consider the code

below, where foo is a function that is defined with four or more arguments. The sharing

analysis proceeds as if the memory layout was as depicted in the diagram. The pre- and

post-conditions of foo are part of the type information associated with c1, c2 and c3.

For arrays, [Array .1] is used to represent all words in the array. The expression,

x.[Array .1,Just.1] represents the arguments of all Just elements in an array x of

Maybe values. For recursive types, paths are “folded” (Bruynooghe, 1986) so there are a

finite number of components. If a type T has sub-component(s) of type T we use the

empty path to denote the sub-component(s). In general, we construct a path from the

top level and if we come across a sub-component of type T that is in the list of ancestor

types (the top level type followed by the types of elements of the path constructed so

far) we just use the path to the ancestor to represent the sub-component. Consider the

following mutually recursive types that can be used to represent trees which consist of a

node containing an integer and a list of sub-trees:

data RTrees = Nil | Cons RTree RTrees

data RTree = RNode Int RTrees

For type RTrees we have the components [] (this folded path represents both

[Cons.2] and [Cons.1,RNode.2], since they are of type RTrees), [Cons.1] and

[Cons.1,RNode.1]. The expression t.[Cons.1,RNode.1] represents the set of

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 9/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

memory words that are the first argument of RNode in variable t of type RTrees. For type

RTree we have the components [] (for [RNode.2,Cons.1], of type RTree), [RNode.1]

and [RNode.2] (which is also the folded version of [RNode.2,Cons.2], of type RTrees).

In our sharing analysis algorithm we use a function fc (fold component) which takes a v.c

pair, and returns v.c′ where c′ is the correctly folded component for the type of variable v.

For example, fc (ts.[Cons.2])= ts.[], assuming ts has type RTrees.

As well as containing pairs of components for distinct variables which may alias, the

abstract domain contains “self-alias” pairs for each possible component of a variable which

may exist. Consider the following two bindings and the corresponding diagram (as with

Cons, no tag is used for RNode):

With our domain, the most precise description of sharing after these two bindings is as

follows. We represent an alias pair as a set of two variable components. The first five are

self-alias pairs and the other two describe the sharing between t and ts.

{{t.[RNode.1], t.[RNode.1]},

{t.[RNode.2], t.[RNode.2]},

{ts.[], ts.[]},

{ts.[Cons.1], ts.[Cons.1]},

{ts.[Cons.1,RNode.1], ts.[Cons.1,RNode.1]},

{t.[RNode.1], ts.[Cons.1,RNode.1]},

{t.[RNode.2], ts.[]}}

Note there is no self-alias pair for t.[] since there is no strict sub-part of t that is an

RTree. Similarly, there is no alias between ts.[Cons.1] and any part of t. Although the

value t is used as the first argument of Cons in ts, this is not a main memory word that

is used to represent the value of t (indeed, the value of t has no Cons cells). The tagged

pointer value stored in variable t (which may be in a register) is copied into the cons

cell. Such descriptions of sharing are an abstraction of computation states. The set above

abstracts all computation states in which t is a tree with a single node, ts is a list of trees,

elements of ts may be t or have t as a subtree, and there are no other live variables with

non-atomic values.

THE SHARING ANALYSIS ALGORITHM
We now describe the sharing analysis algorithm. Overall, the compiler attempts to find

a proof that for a computation with a depth D of (possibly recursive) function calls, the

following condition C holds, assuming C holds for all computations of depth less than D.

This allows a proof by induction that C holds for all computations that terminate normally.

C: For all functions f , if the precondition of f is satisfied (abstracts the computation

state) whenever f is called, then

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 10/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

1. for all function calls and assignment statements in f , any live variable that may be

updated at that point in an execution of f is annotated with “!”,

2. there is no update of live “abstract” variables when executing f ,

3. all parameters of f which may be updated when executing f are declared mutable in the

type signature of f ,

4. the union of the pre- and post-conditions of f abstracts the state when f returns plus the

values of mutable parameters in all states during the execution of f ,

5. for all function calls and assignment statements in f , any live variable that may be

directly updated at that point is updated with a value of the same type or a more general

type, and

6. for all function calls and assignment statements in f , any live variable that may be

indirectly updated at that point only shares with variables of the same type or a more

general type.

The algorithm is applied to each function definition in core Pawns to compute an

approximation to the sharing before and after each statement (we call it the alias set). This

can be used to check points 1, 2, 4 and 6 above. The algorithm checks that preconditions

are satisfied for each function call, allowing the induction hypothesis to be used. Point 3

is established using point 1 and a simple syntactic check that any parameter of f that is

annotated “!” in the definition is declared mutable in the type signature (parameters are

considered live throughout the definition). Point 5 relies on 3 and the type checking pass.

The core of the algorithm is to compute the alias set after a statement, given the alias set

before the statement. This is applied recursively for compound statements in a form of

abstract execution. Note that for point 4, if a statement changes the set of memory cells

used to represent a mutable parameter, the algorithm computes the sharing for the union

of the two sets of cells.

We do not prove correctness of the algorithm but hope our presentation is sufficiently

detailed to have uncovered any bugs. A proof would have a separate case for each kind of

statement in the core language, showing that if the initial alias set abstracts the execution

state before the statement the resulting alias set abstracts the execution state after the

statement. This would require a more formal description of execution states and their

relationship with the core language and the abstract domain. The abstract domain relies

on type information so the sharing analysis relies on type preservation in the execution.

Type preservation also relies on sharing analysis. Thus, a completely formal approach must

tackle both problems together. Although our approach is not formal, we do state the key

condition C, which has points relating to both sharing and types, and we include Instype

in the core language.

The alias set used at the start of a definition is the precondition of the function.

This implicitly includes self-alias pairs for all variable components of the arguments of

the function and the pseudo-variables abstractT for each type T used. Similarly, the

postcondition implicitly includes self-alias pairs for all components of the result (and

the abstractT variable if the result is abstract).3 As abstract execution proceeds, extra

3 Self-aliasing for arguments and results
is usually desired. For the rare cases it
is not, we may provide a mechanism to
override this default in the future.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 11/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

variables from the function body are added to the alias set and variables that are no longer

live can be removed to improve efficiency. For each program point, the computed alias set

abstracts the computation state at that point in all concrete executions of the function that

satisfy the precondition. For mutable parameters of the function, the sharing computed

also includes the sharing from previous program points. The reason for this special

treatment is explained when we discuss the analysis of function application. The alias

set computed for the end of the definition, with sharing for local variables removed, must

be a subset of the union of the pre- and post-condition of the function.

Before sharing analysis, a type checking/inference pass is completed which assigns a

type to each variable and function application. This determines the components for each

variable. Polymorphism is also eliminated as follows. Suppose we have a function take n

xs, which returns the list containing the first n elements of xs:

take :: Int -> [a] -> [a]

sharing take n xs = ys

pre nosharing

post ys = xs

For each call to take, the pre- and post-conditions are determined based on the type

of the application. An application to lists of Booleans will have two components for each

variable whereas an application to lists of lists of Booleans will have four. When analysing

the definition of take we instantiate type variables such as a above to Ref (). This type

has a single component which can be shared to represent possible sharing of arbitrary

components of an arbitrary type. Type checking prevents sharing between non-identical

types, such as [a] and [b]. Finally, we assume there is no type which is an infinite chain

of refs, for example, type Refs = Ref Refs (for which type folding results in an empty

component rather than a [Ref.1] component; this is not a practical limitation).

Suppose a0 is the alias set just before statement s. The following algorithm computes

alias(s,a0), the alias set just after statement s. The algorithm structure follows the

recursive definition of statements and we describe it using pseudo-Haskell, interspersed

with discussion. The empty list is written [], non-empty lists are written [a,b,c] or

a:b:c:[] and ++ denotes list concatenation. At some points we use high level declarative

set comprehensions to describe what is computed and naive implementation may not lead

to the best performance.

alias (Seq stat1 stat2) a0 = -- stat1; stat2

alias stat2 (alias stat1 a0)

alias (EqVar v1 v2) a0 = -- v1 = v2

let

self1 = {{v1.c1,v1.c2}|{v2.c1,v2.c2} ∈ a0}

share1 = {{v1.c1,v.c2}|{v2.c1,v.c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 12/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

alias (DerefEq v1 v2) a0 = -- *v1 = v2

let

self1 = {{v1.[Ref.1],v1.[Ref.1]}} ∪

{{fc(v1.(Ref.1:c1)),fc(v1.(Ref.1:c2))}|{v2.c1,v2.c2} ∈ a0}

share1 = {{fc(v1.(Ref.1:c1)),v.c2}|{v2.c1,v.c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

Sequencing is handled by function composition. To bind a fresh variable v1 to a variable

v2, the self-aliasing of v2 (including aliasing between different components of v2) is

duplicated for v1 and the aliasing for each component of v2 (which includes self-aliasing)

is duplicated for v1. Binding *v1 to v2 is done in a similar way, but the components of v1

must have Ref.1 prepended to them and the result folded, and the [Ref.1] component of

v1 self-aliases. Folding is only needed for the rare case of types with recursion through Ref.

alias (Assign v1 v2) a0 = -- *v1 := v2

let

-- al = possible aliases for v1.[Ref.1]

al = {va.ca | {v1.[Ref.1],va.ca} ∈ a0}

-- (live variables in al, which includes v1, must be

-- annotated with ! and must not share with abstract)

self1al = {{fc(va.(ca++c1)), fc(vb.(cb++c2))}|

va.ca ∈ al ∧ vb.cb ∈ al ∧ {v2.c1,v2.c2} ∈ a0}

share1al = {{fc(va.(ca++c1)),v.c2} |

va.ca ∈ al ∧ {v2.c1,v.c2} ∈ a0}

in if v1 is a mutable parameter then

a0 ∪ self1al ∪ share1al

else let

-- old1 = old aliases for v1, which can be removed

old1 = {{v1.(Ref.1:d:c1),v.c2} | {v1.(Ref.1:d:c1),v.c2} ∈ a0}

in (a0 \ old1) ∪ self1al ∪ share1al

Assignment to an existing variable differs from binding a fresh variable in three

ways. First, self-sharing for v1.[Ref.1] is not added since it already exists. Second,

v1.[Ref.1] may alias several variable components (the live subset of these variables must

be annotated with “!” on the assignment statement; checking such annotations is a primary

purpose of the analysis). All these variables end up sharing with v2 and what v2 shares with

(via share1al) plus themselves and each other (via self1al). The components must be

concatenated and folded appropriately. Third, if v1 is not a mutable parameter the existing

sharing with a path strictly longer than [Ref.1] (that is, paths of the form Ref.1 :d : c1)

can safely be removed, improving precision. The component v1.[Ref.1] represents the

single memory word that is overwritten and whatever the old contents shared with is no

longer needed to describe the sharing for v1. For mutable parameters the old value may

share with variables from the calling context and we retain this information, as explained

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 13/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

later. Consider the example below, where t and ts are as before and local variables v1 and

v3 are references to the element of ts. The value assigned, v2, is RNode 3 (Cons (RNode

4 Nil) Nil).

There is aliasing of v1.[Ref.1], v3.[Ref.1] and ts.[Cons.1] so all these variables

have the sharing of v2 and self-sharing added. Generally we must also add sharing between

all pairs of these variables. For example, {ts.[Cons.1], v3.[Ref.1,RNode.2,Cons.1]}

must be added because the Cons component of v3 did not previously exist. The old sharing

of v1 with t is discarded. Note that we cannot discard the old sharing of ts and v3 with

t for two reasons. First, no definite aliasing information is maintained, so we cannot be

sure v3 or ts are modified at all. Second, the assignment updates only one memory word

whereas there may be other words also represented by ts.[Cons.1]. In some cases,

the old sharing of v1 is discarded and immediately added again. Consider the following

example, which creates a cyclic list.

The sharing between v1 and v3 is discarded but added again (via share1al) because v2

also shares with v3. Correctness of the algorithm when cyclic terms are created depends on

the abstract domain we use. A more expressive domain could distinguish between different

cons cells in a list. For example, if types are “folded” at the third level of recursion rather

than the first, the domain can distinguish three classes of cons cells, where the distance

from the first cons cell, modulo three, is zero, one or two. For a cyclic list with a single cons

cell, that cons cell must be in all three classes and our algorithm would need modification

to achieve this. However, in our domain types are folded at the first level of recursion so we

have a unique folded path for each memory cell in cyclic data structure (cyclic terms can

only be created with recursive types). There is no distinction between the first and second

cons cell in a list, for example.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 14/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

alias (DC v dc [v1,... vN]) a0 = -- v = Dc v1...vN

let

self1 = {{fc(v.[dc.i]), fc(v.[dc.i])} | 1 ≤ i ≤ N} ∪

{{fc(v.(dc.i:c1)),fc(v.(dc.j:c2))} | {vi.c1,vj.c2} ∈ a0}

share1 = {{fc(v.(dc.i:c1)),w.c2} | {vi.c1,w.c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

The DerefEq case can be seen as equivalent to v1 = Ref v2 and binding a variable to

a data constructor with N variable arguments is a generalisation. If there are multiple vi

that share, the corresponding components of v must also share; these pairs are included in

self1.

alias (EqDeref v1 v2) a0 = -- v1 = *v2

let

self1 = {{v1.c1,v1.c2} | {fc(v2.(Ref.1:c1)),fc(v2.(Ref.1:c2))} ∈ a0}

share1 = {{v1.c1,v.c2} | {fc(v2.(Ref.1:c1)),v.c2} ∈ a0

empty1 = {{v1.[],v.c} | {v1.[],v.c} ∈ (self1 ∪ share1)

in

if the type of v1 has a [] component then

a0 ∪ self1 ∪ share1

else --- avoid bogus sharing with empty component

(a0 ∪ self1 ∪ share1)\ empty1

The EqDeref case is similar to the inverse of DerefEq in that we are removing Ref.1

rather than prepending it (the definition implicitly uses the inverse of fc). However, if the

empty component results we must check that such a component exists for the type of v1.

alias (App v f [v1,... vN]) a0 = -- v = f v1...vN
let
"f(w1, ... wK+ N) = r" is used to declare sharing for f
mut = the arguments that are declared mutable
post = the postcondition of f along with the sharing for

mutable arguments from the precondition,
with parameters and result renamed with
f.[Cl.K],... f.[Cl.1],v1,... vN and v, respectively

-- (the renamed precondition of f must be a subset of a0,
-- and mutable arguments of f and live variables they share
-- with must be annotated with ! and must not share with
-- abstract)
-- selfc+sharec needed for possible closure creation
selfc = {{v.[Cl.i],v.[Cl.i] | 1 ≤ i ≤ N} ∪

{{v.((Cl.(N + 1 − i)):c1),v.((Cl.(N+1-j)):c2)} |

{vi.c1,vj.c2} ∈ a0} ∪

{{v.((Cl.(i + N)):c1),v.((Cl.(j + N)):c2)} |

{f.((Cl.i):c1),f.((Cl.j):c2)} ∈ a0}
sharec = {{v.((Cl.(N + 1 − i)):c1),x.c2} | {vi.c1,x.c2)} ∈ a0} ∪

{{v.((Cl.(i + N)):c1),x.c2 | {f.((Cl.i):c1),x.c2} ∈ a0}
-- postt+postm needed for possible function call
postt = {{x1.c1,x3.c3} | {x1.c1,x2.c2} ∈ post ∧{x2.c2,x3.c3} ∈ a0}

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 15/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

postm = {{x1.c1,x2.c2} | {x1.c1,vi.c3} ∈ a0} ∧ {x2.c2,vj.c4} ∈ a0 ∧

{vi.c3,vj.c4} ∈ post ∧vi ∈ mut ∧ vj ∈ mut}
in

a0 ∪ selfc ∪ sharec ∪ postt ∪ postm

For many App occurrences, the function is known statically and we can determine

if the function is actually called or a closure is created instead. However, in general

we must assume either could happen and add sharing for both. If a closure is created,

the first N closure arguments share with the N arguments of the function call and any

closure arguments of f share with additional closure arguments of the result (this requires

renumbering of these arguments).

Analysis of function calls relies on the sharing and mutability information attached

to all arrow types. Because Pawns uses the syntax of statements to express pre- and

post-conditions, our implementation uses the sharing analysis algorithm to derive an

explicit alias set representation (currently this is done recursively, with the level of

recursion limited by the fact than pre- and post-conditions must not contain function

calls). Here we ignore the details of how the alias set representation is obtained. The

compiler also uses the sharing information immediately before an application to check

that the precondition is satisfied, all required “!” annotations are present and abstract

variables are not modified.

Given that the precondition is satisfied, the execution of a function results in sharing

of parameters that is a subset of the union of the declared pre- and post-conditions (we

assume the induction hypothesis holds for the sub-computation, which has a smaller

depth of recursion). However, any sharing between non-mutable arguments that exists

immediately after the call must exist before the call. The analysis algorithm does not

add sharing between non-mutable arguments in the precondition as doing so would

unnecessarily restrict how “high level” and “low level” code can be mixed. It is important

we can pass a variable to a function that allows an abstract argument without the analysis

concluding the variable subsequently shares with abstract, and therefore cannot be

updated. Thus post is just the declared postcondition plus the subset of the precondition

which involves mutable parameters of the function, renamed appropriately. The last N

formal parameters, wK+1 ...wK+N are renamed as the arguments of the call, v1 ...vN

and the formal result r is renamed v. The formal parameters w1 ...wK represent closure

arguments K ...1 of f. Thus a variable component such as w1.[Cons.1] is renamed

f.[Cl.K,Cons.1].

It is also necessary to include one step of transitivity in the sharing information: if

variable components x1.c1 and x2.c2 alias in post and x2.c2 and x3.c3 (may) alias before

the function call, we add an alias of x1.c1 and x3.c3 (in postt). Function parameters are

proxies for the argument variables as well as any variable components they may alias and

when functions are analysed these aliases are not known. This is why the transitivity step

is needed, and why mutable parameters also require special treatment. If before the call,

x1.c1 and x2.c2 may alias with mutable parameter components vi.c3 and vj.c4, respectively,

and the two mutable parameter components alias in post then x1.c1 and x2.c2 may alias

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 16/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

after the call; this is added in postm. Consider the example below, where we have a pair v1

(of references to references to integers) and variables x and y share with the two elements

of v1, respectively. When v1 is passed to function f1 as a mutable parameter, sharing

between x and y is introduced. The sharing of the mutable parameter in the postcondition,

{v1.[Pair.1,Ref.1,Ref.1],v1.[Pair.2,Ref.1,Ref.1]}, results in sharing between x and y

being added in the analysis.

f1 :: Pair (Ref (Ref Int)) -> ()

sharing f1 !v1 = _

pre nosharing

post *a = *b; v1 = Pair a b

f1 !v1 =

case v1 of (Pair rr1 rr2) -> *rr1 := *rr2 !v1

The need to be conservative with the sharing of mutable parameters in the analysis

of function definitions (the special treatment in Assign) is illustrated by the example

below. Consider the initial state, with variables v1 and v2 which share with x and y,

respectively. After f2 is called x and y share, even though the parameters v1 and v2 do

not share at any point in the execution of f2. If mutable parameters were not treated

specially in the Assign case, nosharing would be accepted as the postcondition of f2

and the analysis of the call to f2 would then be incorrect. The sharing is introduced

between memory cells that were once shared with v1 and others that were once shared

with v2. Thus in our algorithm, the sharing of mutable parameters reflects all memory

cells that are reachable from the parameters during the execution of the function. Where

the mutable parameters are assigned in f2, the sharing of the parameters’ previous values

(rr1 and rr2) is retained. Thus when the final assignment is processed, sharing between

the parameters is added and this must be included in the postcondition. Although this

assignment does not modify v1 or v2, the “!” annotations are necessary and alert the reader

to potential modification of variables that shared with the parameters when the function

was called.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 17/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

f2 :: Ref (Ref (Ref Int)) -> Ref (Ref (Ref Int)) -> ()
sharing f2 !v1 !v2 = _
pre nosharing
post **v1 = **v2

f2 !v1 !v2 =
*r10 = 10 -- ref to new cell containing 10
*rr10 = r10 -- ref to above ref
*r20 = 20 -- ref to new cell containing 20
*rr20 = r20 -- ref to above ref
rr1 = *v1 -- save *v1
rr2 = *v2 -- save *v2
*!v1 := rr10 -- update *v1 with Ref (Ref 10)
*!v2 := rr20 -- update *v2 with Ref (Ref 20)
*rr1 := *rr2 !v1!v2 -- can create sharing at call

alias Error a0 = ∅ -- error
alias (Case v [(p1,s1),...(pN,sN)]) a0 = -- case v of ...
let
old = {{v.c1,v2.c2 | {v.c1,v2.c2} ∈ a0}

in
1≤ i≤ N aliasCase a0 old v pi si

aliasCase a0 av v (Pat dc [v1,... vN]) s = -- (Dc *v1...*vN) -> s
let
avdc = {{fc(v.(dc.i:c1)),w.c2} | {fc(v.(dc.i:c1)),w.c2} ∈ av}
rself = {{vi.[Ref.1],vi.[Ref.1]} | 1 ≤ i ≤ N}
vishare = {{fc(vi.(Ref.1:c1)),fc(vj.(Ref.1:c2))} |

{fc(v.(dc.i:c1)),fc(v.(dc.j:c2))} ∈ av}
share = {{fc(vi.(Ref.1:c1)),w.c2} | {fc(v.(dc.i:c1)),w.c2))} ∈ av}

in
alias s (rself ∪ vishare ∪ share∪(a0 \ av)∪ avdc)

For a case expression we return the union of the alias sets obtained for each of the

different branches. For each branch, we only keep sharing information for the variable we

are switching on that is compatible with the data constructor in that branch (we remove all

the old sharing, av, and add the compatible sharing, avdc). We implicitly use the inverse

of fc. To deal with individual data constructors, we consider pairs of components of

arguments i and j which may alias in order to compute possible sharing between vi and vj,

including self-aliases when i = j. The corresponding component of vi (prepended with Ref

and folded) may alias the component of vj. For example, if v of type RTrees is matched

with Cons *v1 *v2 and v.[] self-aliases, we need to find the components which fold to

v.[] (v.[Cons.2] and v.[Cons.1,RNode.2]) in order to compute the sharing for v2

and v1. Thus we compute that v2.[Ref.1], may alias v1.[Ref.1,RNode.2]. This can

occur if the data structure is cyclic, such as the example below where v is a list containing

a single tree with 2 in the node and v as the children (hence it represents a single infinite

branch). Note that v1.[Ref.1,RNode.2] represents both the memory cell containing the

Cons pointer and the cell containing Nil.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 18/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

alias (Instype v1 v2) a0 = -- v1 = v2::t

alias (EqVar v1 v2) a0

-- (if any sharing is introduced between v1 and v2,

-- v2 must not be indirectly updated later while live)

Type instantiation is dealt with in the same way as variable equality, with the additional

check that if any sharing is introduced, the variable with the more general type is not

implicitly updated later while still live (it is sufficient to check there is no “!v2” annotation

attached to a later statement).

EXAMPLE
We now show how this sharing analysis algorithm is applied to the binary search tree

code given earlier. We give a core Pawns version of each function and the alias set before

and after each statement, plus an additional set at the end which is the union of the

pre- and post-conditions of the function. To save space, we write the alias set as a set of

sets where each inner set represents all sets containing exactly two of its members. Thus

{{a,b,c}} represents a set of six alias pairs: aliasing between all pairs of elements, including

self-aliases. The return value is given by variable ret and variables absL and absT are the

versions of abstract for type Ints and Tree, respectively.

list_bst xs = -- 0

v1 = TNil -- 1

*tp = v1 -- 2

list_bst_du xs !tp -- 3

ret = *tp -- 4

We start with the precondition: a0 = {{xs.[Cons.1], absL.[Cons.1]},

{xs.[], absL.[]}}. Binding to a constant introduces no sharing so

a1 = a0. a2 = a1∪{tp.[Ref.1]}. The function call has precondition a0 ∪

{{tp.[Ref.1]},{tp.[Ref.1,Node.2]}}, which is a superset of a2. Since tp is a mutable

argument the precondition sharing for tp is added: a3 = a2 ∪ {{tp.[Ref.1,Node.2]}}.

The final sharing includes the return variable, ret: a4 = a3 ∪ {{ret.[],tp.[Ref.1]},

{ret.[Node.2],tp.[Ref.1,Node.2]}}. After removing sharing for the dead (local)

variable tp we obtain a subset of the union of the pre- and post-conditions, which is

a0 ∪ {{ret.[],absT.[]},{ret.[Node.2], absT.[Node.2]}}.

list_bst_du xs !tp = -- 0

case xs of

(Cons *v1 *v2) -> -- 1

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 19/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

x = *v1 -- 2

xs1 = *v2 -- 3

v3 = bst_insert_du x !tp -- 4

v4 = list_bst_du xs1 !tp -- 5

ret = v4 -- 6

Nil -> -- 7

ret = () -- 8

-- after case -- 9

We start with the precondition, a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]},

{xs.[Cons.1],absL.[Cons.1]},{xs.[],absL.[]}}. The Cons branch of the

case introduces sharing for v1 and v2: a1 = a0∪{{xs.[Cons.1], absL.[Cons.1],

v1.[Ref.1], v2.[Ref.1,Cons.1]},{v2.[Ref.1],xs.[], absL.[]}}. The list

elements are atomic so a2 = a1. The next binding makes the sharing of xs1 and xs the

same: a3 = a2∪{{v2.[Ref.1],xs.[], xs1.[], absL.[]}, {v1.[Ref.1],xs.[Cons.1],

xs1.[Cons.1], absL.[Cons.1], v2.[Ref.1,Cons.1]}}. This can be simplified by

removing the dead variables v1 and v2. The precondition of the calls are satisfied and

a6 = a5 = a4 = a3. For the Nil branch, we remove the incompatible sharing for xs from

a0: a7 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]}, {absL.[Cons.1]}, {absL.[]}} and

a8 = a7. Finally, a9 = a6 ∪ a8. This contains all the sharing for mutable parameter tp and,

ignoring local variables, is a subset of the union of the pre- and post-conditions, a0.

bst_insert_du x !tp = -- 0

v1 = *tp -- 1

case v1 of

TNil -> -- 2

v2 = TNil -- 3

v3 = TNil -- 4

v4 = Node v2 x v3 -- 5

*!tp := v4 -- 6

ret = () -- 7

(Node *lp *v5 *rp) -> -- 8

n = *v5 -- 9

v6 = (x <= n) -- 10

case v6 of

True -> -- 11

v7 = (bst_insert_du x !lp) !tp -- 12

ret = v7 -- 13

False -> -- 14

v8 = (bst_insert_du x !rp) !tp -- 15

ret = v8 -- 16

-- end case -- 17

-- end case -- 18

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 20/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

Here a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]}} and a1 = a0 ∪ {{v1.[],

tp.[Ref.1]}, {tp.[Ref.1,Node.2], v1.[Node.2]}}. For the TNil branch we

remove the v1 sharing so a4 = a3 = a2 = a0 and a5 = a4 ∪ {{v4.[]}, {v4.[Node.2]}}.

After the destructive update, a6 = a5 ∪ {{v4.[], tp.[Ref.1]}, {v4.[Node.2],

tp.[Ref.1,Node.2]}} (v4 is dead and can be removed) and a7 = a6. For the

Node branch we have a8 = a1 ∪ {{v1.[], tp.[Ref.1], lp.[Ref.1], rp.[Ref.1]},

{tp.[Ref.1,Node.2], lp.[Ref.1,Node.2], rp.[Ref.1,Node.2], v5.[Ref.1],

v1.[Node.2]}}. The same set is retained for a9 ...a17 (assuming the dead variable v5 is

retained), the preconditions of the function calls are satisfied and the required annotations

are present. Finally, a18 = a17 ∪ a7, which contains all the sharing for tp, and after

eliminating local variables we get the postcondition, which is the same as the precondition.

DISCUSSION
Imprecision in the analysis of mutable parameters could potentially be reduced by allowing

the user to declare that only certain parts of a data structure are mutable, as suggested

in Naish (2015). It is inevitable we lose some precision with recursion in types, but it seems

that some loss of precision could be avoided relatively easily. The use of the empty path

to represent sub-components of recursive types results in imprecision when references

are created. For example, the analysis of *vp = Nil; v = *vp concludes that the empty

component of v may alias with itself and the Ref component of vp (in reality, v has no

sharing). Instead of the empty path, a dummy path of length one could be used. Flagging

data structures which are known to be acyclic could also improve precision for Case. A

more aggressive approach would be to unfold the recursion an extra level, at least for some

types. This could allow us to express (non-)sharing of separate subtrees and whether data

structures are cyclic, at the cost of more variable components, more complex pre- and

post-conditions and more complex analysis for Assign and Case.

Increasing the number of variable components also decreases efficiency. The algorith-

mic complexity is affected by the representation of alias sets. Currently we use a naive

implementation, using just ordered pairs of variable components as the set elements and a

set library which uses an ordered binary tree. The size of the set can be O(N2), where N is

the maximum number of live variable components of the same type at any program point

(each such variable component can alias with all the others). In typical code, the number

of live variables at any point is not particularly large. If the size of alias sets does become

problematic, a more refined set representation could be used, such as the set of sets of pairs

representation we used in ‘Example,’ where sets of components that all alias with each other

are optimised. There are also simpler opportunities for efficiency gains, such as avoiding

sharing analysis for entirely pure code. We have not stress tested our implementation or

run substantial benchmarks as it is intended to be a prototype, but performance has been

encouraging. Translating the tree insertion code plus a test harness to C, which includes

the sharing analysis, takes less time than compiling the resulting C code using GCC. Total

compilation time is less than half that of GHC for equivalent Haskell code and less than one

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 21/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

tenth that of MLton for equivalent ML code. The Pawns executable is around 3–4 times as

fast as the others.

RELATED WORK
Related programming languages are discussed in Naish (2015); here we restrict attention

to work related to the sharing analysis algorithm. The most closely related work is that

done in the compiler for Mars Giuca (2014), which extends similar work done for Mercury

(Mazur et al., 2001) and earlier for Prolog Mulkers (1993). All use a similar abstract domain

based on the type folding method first proposed in Bruynooghe (1986). Our abstract

domain is somewhat more precise due to inclusion of self-aliasing, and we have no sharing

for constants. In Mars it is assumed that constants other than numbers can share. Thus, for

code such as xs = []; ys = xs our analysis concludes there is no sharing between xs

and yswhereas the Mars analysis concludes there may be sharing.

One important distinction is that in Pawns sharing (and mutability) is declared in

type signatures of functions so the Pawns compiler just has to check the declarations

are consistent, rather than infer all sharing from the code. However, it does have the

added complication of destructive update. As well as having to deal with the assignment

primitive, it complicates handling of function calls and case statements (the latter due to

the potential for cyclic structures). Mars, Mercury and Prolog are essentially declarative

languages. Although Mars has assignment statements the semantics is that values are

copied rather than destructively updated—the variable being assigned is modified but

other variables remain unchanged. Sharing analysis is used in these languages to make the

implementation more efficient. For example, the Mars compiler can often emit code to

destructively update rather than copy a data structure because sharing analysis reveals

no other live variables share it. In Mercury and Prolog, the analysis can reveal when

heap-allocated data is no longer used, so the code can reuse or reclaim it directly instead of

invoking a garbage collector.

These sharing inference systems use an explicit graph representation of the sharing

behaviour of each segment of code. For example, code s1 may cause aliasing between (a

component of) variables a and b (which is represented as an edge between nodes a and

b) and between c and d and code s2 may cause aliasing between b and c and between d

and e. To compute the sharing for the sequence s1;s2 they use the “alternating closure” of

the sharing for s1 and s2, which constructs paths with edges alternating from s1 and s2, for

example a-b (from s1), b-c (from s2), c-d (from s1) and d-e (from s2).

The sharing behaviour of functions in Pawns is represented explicitly, by a pre- and

post-condition and set of mutable arguments but there is no explicit representation

for sharing of statements. The (curried) function alias s represents the sharing

behaviour of s and the sharing behaviour of a sequence of statements is represented by

the composition of functions. This representation has the advantage that the function can

easily use information about the current sharing, including self-aliases, and remove some if

appropriate. For example, in the [] branch of the case in the code below the sharing for xs

is removed and we can conclude the returned value does not share with the argument.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 22/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

map_const_1 :: [t] -> [Int]

sharing map_const_1 xs = ys pre nosharing post nosharing

map_const_1 xs =

case xs of

[] -> xs -- can look like result shares with xs

(_:xs1) -> 1:(map_const_1 xs1)

There is also substantial work on sharing analysis for logic programming languages

using other abstract domains, notably the set-sharing domain of Jacobs & Langen

(1989) (a set of sets of variables), generally with various enhancements—see Bagnara,

Zaffanella & Hill (2005) for a good summary and evaluation. Applications include

avoiding the “occurs check” in unification (Søndergaard, 1986) and exploiting parallelism

of independent sub-computations (Bueno, Garćıa de la Banda & Hermenegildo, 1999).

These approaches are aimed at identifying sharing of logic variables rather than sharing

of data structures. For example, although the two Prolog goals p(X) and q(X) share X,

they are considered independent if X is instantiated to a data structure that is ground

(contains no logic variables). Ground data structures in Prolog are read-only and cause

no problem for parallelism or the occurs check, whether they are shared or not. The

set-sharing domain is often augmented with extra information related to freeness (free

means uninstantiated), linearity (linear means there are no repeated occurrences of any

variable) and/or groundness (Bagnara, Zaffanella & Hill, 2005). In Pawns there are no logic

variables but data structures are mutable, hence their sharing is important.

However, the set-sharing domain (with enhancements) has been adapted to analysis

of sharing of data structures in object oriented languages such as Java (Méndez-Lojo

& Hermenegildo, 2008). One important distinction is that Pawns directly supports

algebraic data types which allow a “sum of products”: there can be a choice of several

data constructors (a sum), where each one consists of several values as arguments (a

product). In Java and most other imperative and object oriented languages, additional

coding is generally required to support such data types. Products are supported by objects

containing several values but the only choice (sum) supported directly is whether the

object is null or not. Java objects and pointers in most imperative languages are similar to a

Maybe algebraic data type, with Nothing corresponding to null. A Ref cannot be null. The

abstract domain of Méndez-Lojo & Hermenegildo (2008) uses set-sharing plus additional

information about what objects are definitely not null. For Pawns code that uses Refs

this information is given by the data type—the more expressive types allow us to trivially

infer some information that is obscured in other languages. For code that uses Maybe, our

domain can express the fact that a variable is definitely Nothing by not having a self-alias

of the Just component. The rich structural information in our domain fits particularly

well with algebraic data types. There are also other approaches to and uses of alias analysis

for imperative languages, such as Landi & Ryder (1992) and Emami, Ghiya & Hendren

(1994), but these are not aimed at precisely capturing information about dynamically

allocated data. A more detailed discussion of such approaches is given in Giuca (2014).

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 23/25

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.22

CONCLUSION
Purely declarative languages have the advantage of avoiding side effects, such as destructive

update of function arguments. This makes it easier to combine program components, but

some algorithms are hard to code efficiently without flexible use of destructive update.

A function can behave in a purely declarative way if destructive update is allowed, but

restricted to data structures that are created inside the function. The Pawns language uses

this idea to support flexible destructive update encapsulated in a declarative interface. It

is designed to make all side effects “obvious” from the source code. Because there can be

sharing between the representations of different arguments of a function, local variables

and the value returned, sharing analysis is an essential component of the compiler. It is also

used to ensure “preservation” of types in computations. Sharing analysis has been used in

other languages to improve efficiency and to give some feedback to programmers but we

use it to support important features of the programming language.

The algorithm operates on (heap allocated) algebraic data types, including arrays and

closures. In common with other sharing analysis used in declarative languages it supports

binding of variables, construction and deconstruction (combined with selection or “case”)

and function/procedure calls. In addition, it supports explicit pointers, destructive update

via pointers, creation and application of closures and pre- and post-conditions concerning

sharing attached to type signatures of functions. It also uses an abstract domain with

additional features to improve precision. Early indications are that the performance is

acceptable: compared with other compilers for declarative languages, the prototype Pawns

compiler supports encapsulated destructive update, is fast and produces fast executables.

ACKNOWLEDGEMENTS
Feedback from reviewers, particularly Gianluca Amato, was very helpful in ironing out

some important bugs in the algorithm and improving the presentation of this paper.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author declares there was no funding for this work.

Competing Interests
The author declares there are no competing interests.

Author Contributions
• Lee Naish conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, performed the computation work, reviewed drafts of

the paper.

Data Availability
The following information was supplied regarding the availability of data:

http://people.eng.unimelb.edu.au/lee/src/pawns/.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 24/25

https://peerj.com/computer-science/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://people.eng.unimelb.edu.au/lee/src/pawns/
http://dx.doi.org/10.7717/peerj-cs.22

REFERENCES
Bagnara R, Zaffanella E, Hill P M. 2005. Enhanced sharing analysis techniques: a comprehensive

evaluation. In: Theory and practice of logic programming. vol. 5. 1–43. Available at http://journals.
cambridge.org/article S1471068404001978.

Bruynooghe M. 1986. Compile time garbage collection or how to transform programs in an
assignment free languages into code with assignments. In: iFIP TC2/WG2.1 working conference
on program specification and transformation, Bad-Tölz, Germany, 1986. Available at https://lirias.
kuleuven.be/handle/123456789/134112.

Bueno F, Garcı́a de la Banda M, Hermenegildo M. 1999. Effectivness of abstract interpretation
in automatic parallelization: a case study in logic programming. ACM Transactions on
Programming Languages and Systems 21(2):189–239 DOI 10.1145/316686.316688.

Emami M, Ghiya R, Hendren LJ. 1994. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In: Proceedings of the ACM SIGPLAN 1994 conference
on programming language design and implementation, PLDI’94. New York: ACM, 242–256.
DOI 10.1145/178243.178264.

Giuca M. 2014. Mars: an imperative/declarative higher-order programming language with
automatic destructive update. PhD dissertation, University of Melbourne.

Jacobs D, Langen A. 1989. Accurate and efficient approximation of variable aliasing in logic
programs. In: Lusk EL, Overbeek RA, eds. MIT press. 154–165. Available at http://dblp.uni-trier.
de/db/conf/slp/slp89.html#JacobsL89.

Jones SP, Hughes J, Augustsson L, Barton D, Boutel B, Burton W, Fasel J, Hammond K,
Hinze R, Hudak P et al. 1999. Report on the programming language Haskell 98, a non-strict
purely functional language, February 1999. Available at http://www.haskell.org/definition/.

Landi W, Ryder BG. 1992. A safe approximate algorithm for interprocedural aliasing. ACM
SIGPLAN Notices 27(7):235–248. DOI 10.1145/143103.143137.

Lippmeier B. 2009. Type inference and optimisation for an impure world. PhD diss.,
Australian National University. Available at http://cs.anu.edu.au/∼Ben.Lippmeier/project/thesis/
thesis-lippmeier-sub.pdf.

Mazur N, Ross P, Janssens G, Bruynooghe M. 2001. Practical aspects for a working compile time
garbage collection system for Mercury. In: Codognet P, ed. Proceedings of ICLP 2001, Lecture
notes in computer science, vol. 2237. Springer, 105–119. Available at https://lirias.kuleuven.be/
handle/123456789/131659.

Méndez-Lojo M, Hermenegildo M. 2008. Precise set sharing analysis for Java-style programs.
In: Logozzo F, Peled D, Zuck L, eds. Verification, model checking, and abstract interpretation,
Lecture notes in computer science, vol. 4905. Berlin Heidelberg: Springer, 172–187. Available at
http://dx.doi.org/10.1007/978-3-540-78163-9 17.

Milner R, Tofte M, Macqueen D. 1997. The definition of standard ML. Cambridge: MIT Press.

Mulkers A. 1993. Live data structures in logic programs, derivation by means of abstract
interpretation. Springer-Verlag. Available at https://lirias.kuleuven.be/handle/123456789/134658.

Naish L. 2015. An informal introduction to Pawns: a declarative/imperative language. Available at
http://people.eng.unimelb.edu.au/lee/papers/pawns (accessed 16 March 2015).

Søndergaard H. 1986. An application of abstract interpretation of logic programs: occur check
reduction. In: Proceedings of the European symposium on programming on ESOP 86. New York:
Springer-Verlag New York, Inc., 327–338. Available at http://dl.acm.org/citation.cfm?id=20952.
20977.

Wright A. 1995. Simple imperative polymorphism. LISP and Symbolic Computation 8(4):343–356
DOI 10.1007/BF01018828.

Naish (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.22 25/25

https://peerj.com/computer-science/
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
http://journals.cambridge.org/article_S1471068404001978
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
https://lirias.kuleuven.be/handle/123456789/134112
http://dx.doi.org/10.1145/316686.316688
http://dx.doi.org/10.1145/178243.178264
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#JacobsL89
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://dx.doi.org/10.1145/143103.143137
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
http://cs.anu.edu.au/~Ben.Lippmeier/project/thesis/thesis-lippmeier-sub.pdf
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
https://lirias.kuleuven.be/handle/123456789/131659
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
http://dx.doi.org/10.1007/978-3-540-78163-9_17
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
https://lirias.kuleuven.be/handle/123456789/134658
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://people.eng.unimelb.edu.au/lee/papers/pawns
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dl.acm.org/citation.cfm?id=20952.20977
http://dx.doi.org/10.1007/BF01018828
http://dx.doi.org/10.7717/peerj-cs.22

	Sharing analysis in the Pawns compiler
	Introduction
	An Overview of Pawns
	The low level view
	The high level view

	Core Pawns
	The Abstract Domain
	The Sharing Analysis Algorithm
	Example
	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References

