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ABSTRACT

Accurate localization of objects of interest in remote sensing images (RSIs) is of
great significance for object identification, resource management, decision-making
and disaster relief response. However, many difficulties, like complex backgrounds,
dense target quantities, large-scale variations, and small-scale objects, which make the
detection accuracy unsatisfactory. To improve the detection accuracy, we propose an
Adaptive Adjacent Context Negotiation Network (A2CN-Net). Firstly, the composite
fast Fourier convolution (CFFC) module is given to reduce the information loss of
small objects, which is inserted into the backbone network to obtain spectral global
context information. Then, the Global Context Information Enhancement (GCIE)
module is given to capture and aggregate global spatial features, which is beneficial for
locating objects of different scales. Furthermore, to alleviate the aliasing effect caused
by the fusion of adjacent feature layers, a novel Adaptive Adjacent Context Negotiation
network (A?CN) is given to adaptive integration of multi-level features, which consists
of local and adjacent branches, with the local branch adaptively highlighting feature
information and the adjacent branch introducing global information at the adjacent
level to enhance feature representation. In the meantime, considering the variability in
the focus of feature layers in different dimensions, learnable weights are applied to the
local and adjacent branches for adaptive feature fusion. Finally, extensive experiments
are performed in several available public datasets, including DIOR and DOTA-
v1.0. Experimental studies show that A2CN-Net can significantly boost detection
performance, with mAP increasing to 74.2% and 79.2%, respectively.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Spatial
and Geographic Information Systems, Neural Networks

Keywords Remote sensing images, Object detection, Spectral context information, Global to local
aggregation enhancement, Adjacent context negotiation

INTRODUCTION

Benefiting from developments in fields like aviation and computers, the quantity and quality
of remote sensing satellite imagery have also improved dramatically. Localization and

identification of objects of interest in remote sensing images (RSIs) are essential for object
identification, resource management, decision-making, and disaster relief response. It plays
a catalytic role in military reconnaissance (Xie et al., 2024), ecological protection (Rodofili,
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Lecours & LaRue, 2022), unmanned vehicles (Lyu et al., 2022), urban planning (Shen et
al., 2023) to name a few. Although many researchers have proposed many algorithms for
remote sensing object detection (RSOD), this task still needs to overcome many difficulties,
mainly due to the complex backgrounds, dense target quantities, large-scale variations,
and small-scale objects. There is still a lot of work to be explored on how to sift through
the large amount of information to find useful information.

Unlike natural images (NIs), RSIs are obtained from an aircraft looking down on the
ground. Due to the influence of Earth’s gravity, objects in natural images generally have
specific a priori knowledge. For example, cars are parked on the ground with their wheels
facing downward, and trees and pedestrians are generally oriented vertically. If this prior
knowledge can be properly utilized then the detection performance of the algorithm can be
improved. Compared to NTs, RSIs can only yield a top view of the object as they are imaged
from a top-down perspective. In addition, RSIs contain much richer information since
they consist of many objects of different sizes and shapes on the ground, and the object
sizes are usually small. These differences prevent many algorithms proposed for natural
images from being well applied directly to RSIs.

Currently, deep learning-based RSOD algorithms mainly draw on the solution ideas of
object detection algorithms in generalized scenarios. The mainstream algorithms can be
sketchily classified into two types: two-stage methods and one-stage methods. The former
accomplishes the detection task in two steps. Firstly, the object regions of interest are
extracted, and then these regions are located and classified. For example, Girshick et al.
(2014) proposed R-CNN in 2014, followed by a family of R-CNN algorithms (Girshick,
2015; Ren et al., 2015), these algorithms perform well in terms of accuracy but have high
computational complexity, which is hardly applicable to devices with limited resources
and high real-time requirements. One-stage algorithms directly classify and localize each
pixel or region in the image, thus making the detection problem much simpler. One-stage
methods have lower computational complexity but may have a slight loss in accuracy.
Therefore, one-stage detection algorithms have not only received attention from researchers
but have also been widely applied in practical engineering projects Examples include
SSD (Liu et al., 2016), YOLOV3 (Redmon ¢ Farhadi, 2018), EfficientDet (Tan, Pang ¢ Le,
2020), YOLOV4 (Bochkovskiy, Wang & Liao, 2020), YOLOV6 (Li et al., 2022), YOLOSA (Li
& Huang, 2023), and YOLOvV7 (Wang, Bochkovskiy ¢ Liao, 2023), etc. Although these
algorithms perform well on generalized natural scenes, they are poor performers in direct
migration applications on RSIs, especially for small dense objects and multi-scale objects.

Considering RSIs’ various characteristics, many algorithms for RSOD tasks have been
proposed. For instance, Shi et al. (2021) combined deconvolution with position attention
to capture the external and internal feature information of the aircraft during feature
generation, respectively. Zhang et al. (2022) enhanced the feature representation of the
detector through internal knowledge (e.g., feature similarity, spatial location) and external
knowledge (e.g., co-occurrence, intrinsic properties). Huang ef al. (2023) adopted an offset
subnet to predict the offset position map on the query feature map, then sampled the most
relevant features from the input feature map based on the offset positions, and finally used
the sampled features to compute the self-attentive key and value maps and reconstruct the
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feature map. GU et al. (2023) stacked deformable convolution and adaptive spatial attention
in tandem through dense connections alternately and constructed a dense context-aware
module capable of modeling local geometric features to achieve the relationship modeling
between target and scene content based on fully utilizing the semantic and positional
information of different layers. Huang, Tian ¢ Li (2023) exploited global context-aware
object representations and fine-grained boundary structures to complement feature
information.

However, the performance of these methods in complex scenes is not satisfactory,
especially for small objects in RSIs. Recent studies have demonstrated that rich contextual
information plays a key role in detecting visually poor objects, such as small or occluded
objects. A common approach is to utilize the attention mechanism to target attention to the
regions where small objects are located by assigning different weights to different regions
in the image. In addition, multi-scale feature extractors can be introduced to capture
object information at different scales and combine them with contextual information for
comprehensive analysis. For instance, Cheng ef al. (2020) proposed a cross-scale feature
fusion detector for feature fusion and feature enhancement at each feature scale. Liu et al.
(2021c¢) proposed an adaptive FPN to capture more discriminative features, which combine
multi-scale features across different channels and spatial locations. Dong et al. (2022) used
feature pyramid networks and dilated convolutions to fuse contextual information in
multi-scale features. Zhang et al. (2019) and Wang et al. (2022) also draw on the strategy
of contextual information modeling to handle sophisticated scene issues and enhance
detection performance. Huo et al. (2023) replaced the intersection over union with the
normalized Wasserstein distance, which effectively mitigates the issue that extended
metrics based on intersection over union are very sensitive to small object positional
deviations. Although most of these algorithms improve the detection accuracy to a certain
extent, they often use upsampling and element-wise summation for adjacent feature layers
to merge feature maps of different scales. This makes feature confusion occur in feature
fusion between adjacent feature maps and also introduces interference information in
feature maps.

To this end, we propose an efficient detector based on an adaptive adjacent context
negotiation network (A*CN-Net), which contains a series of components to boost detection
performance. Initially, to extract richer features of small objects, a composite fast Fourier
convolution module is given based on fast Fourier transform and inserted into multiple
stages of the backbone network to capture spectral contextual information. Then, a global
context information enhancement module is given to capture and aggregate global spatial
features, which is beneficial for locating targets of different sizes. Furthermore, to alleviate
the aliasing effect caused by the fusion of adjacent feature layers, a novel adaptive adjacent
context negotiation module is given to the adaptive integration of multi-level features,
which consists of local and adjacent branches, with the local branch adaptively highlighting
feature information and the adjacent branch introducing global information at the adjacent
level to enhance feature representation. In the meantime, considering the variability in
the focus of feature layers in different dimensions, learnable weights are applied to the
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local and adjacent branches for adaptive feature fusion. From our experimental results,
A2CN-Net can significantly boost detection performance for the RSOD task.

The key contributions of this work are summarized as follows.

e We propose an adaptive adjacent context negotiation network (A2CN-Net), which can
significantly boost detection performance on RSOD datasets.

e To reduce the information loss of small objects in deep networks, the composite fast
Fourier convolution module is given, which is inserted into the backbone network to
obtain spectral global information.

e To strengthen feature information representation, a global context information
enhancement module is given, which captures and aggregates global and local spatial
feature information.

e To alleviate the aliasing effect caused by the fusion of adjacent feature layers, an adaptive
adjacent context negotiation network is given, which adaptively combines contextual

feature information.

RELATED WORK

Remote sensing object detection

Early RSOD models typically relied on hand-crafted features or pre-existing geographic
information as a way to filter candidate areas. For instance, Liu et al. (2012) used template
matching to find out the areas where the aircraft might exist and then utilized principal
component analysis and kernel density function to identify the potential regions. Yao
etal. (2015) used the Hough transform to judge whether there is a potential airport
and then used the method based on salient region extraction to extract SIFT features
from the candidate region. Gu, Lv ¢ Hao (2017) used Markov Random Fields to model
the positional relationship between objects in space to classify objects. However, these
methods used hand-designed features or analyzed them based on previous geographic
data to find areas relevant to the target. Such methods are limited by the limitations of
hand-crafted features and the availability of prior geographic information. To overcome
these limitations, in recent years, as shown in Table 1, many research efforts have begun to
explore deep learning-based RSOD models according to the characteristics of RSIs.

For multiscale characteristics of RSIs, Li et al. (2019) aggregated feature information
of global spatial locations on multiple scales by introducing self-attention. Zhang, Lu ¢
Zhang (2019) design spatial and scale-aware attention modules to direct the network’s
attention to more information-rich regions and features, as well as more appropriate
feature scales. Xu et al. (2021) proposed a context-based feature alignment network, which
can effectively correct the misalignment between convolution kernel sampling points and
objects, thereby improving feature consistency. Zhang et al. (2023) employed a global-local
feature enhancement module to address the scale variation issue by capturing local features
with multiple receptive domains through pooling operations and obtaining global features
through non-local blocks. This module effectively captures local details and preserves global
contextual information, which contributes to more accurate and robust classification.
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Table 1 Some deep learning-based algorithms for remote sensing object detection.

Challenges Model Dataset Detection accuracy
(mAP%)
Lietal. (2019) DOTA-HBB (Xia et al., 2018) 75.38
SL:;g: Zhang, Lu & Zhang (2019) DOTA-HBB 69.9
variations Xuetal (2021) DIOR (Li et al., 2020) 71.1
Zhang et al. (2023) DIOR 73.8
Wang et al. (2019) DOTA-HBB 72.43
Small Lingyun, Popov & Ge (2022) DIOR 73.8
objects Chen et al. (2023) DOTA-HBB 63.02
Yang & Wang (2024) DIOR 73.9
Cheng et al. (2022a) DIOR-R 64.41
Arbitrary Cheng et al. (2022b) DIOR-R 65.1
directions Yao et al. (2023) DIOR-R 64.2
Cheng et al. (2023) FAIRIM-1.0 (Sun et al., 2022) 40.7

To increase sensitivity to small objects in RSIs, Wang et al. (2019) proposed a re-weighted
loss function to pay more attention to small. Lingyun, Popov ¢ Ge (2022) introduced
frequency domain convolution to extract richer small object features by sensing spectral
context information, thus enabling more accurate and detailed classification. Chen et
al. (2023) proposed a Multiple-in-Single-out feature fusion structure to enhance local
information interaction and used adaptive Intersection Over Uni-Tiny loss to enhance
the positioning accuracy of small objects. Yang ¢» Wang (2024) devised super-resolution
networks incorporating soft thresholding techniques to enhance small target features,
thereby elevating the resolution of the feature map while minimizing redundancy.

For the object rotation variations, Cheng et al. (2022a) produced coarse-oriented boxes
by a coarse location module in an anchor-free manner and then refined them into
high-quality oriented proposals. Cheng et al. (2022b) designed the localization-guided
detection head to mitigate the feature mismatch between classification and localization to
improve the accuracy and robustness of the model. Yao et al. (2023) proposed a simple
and effective bounding box representation using the idea of a polar coordinate system. It
naturally circumvents the boundary discontinuity problem and generates regular boxes
without post-processing. Cheng et al. (2023) proposed a spatial and channel converter to
capture remote spatial interactions and critical correlations hidden in feature channels and
designed a multi-interest region loss model based on a deep metric learning protocol to
enhance fine-grained class separability.

The above algorithms enrich the solution ideas of remote sensing object detection tasks,
but these algorithms often use deep convolutional networks to fit complex features, which
makes the feature information of small objects easily lost when the feature information is
extracted by the deep network. At the same time, direct fusion methods between multi-layer
feature maps often also lead to more serious confusion on feature scales. To deal with these
issues, an adaptive adjacent context negotiation network (A2CN-Net) is given in this study.
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Visual attention mechanism

Attention mimics human attention to important information, focusing more on the
essential aspects of the data by highlighting key details. Researchers have adopted similar
concepts in many fields and have formulated various visual attention mechanisms to
strengthen the performance of the algorithm. The main purpose of visual attention is to
mimic the human visual cognitive system, which can be broadly categorized into Channel
Attention (CA) and Spatial Attention (SA).

The CA realigns the importance of each channel to decide which information to focus on,
just like when picking an item. This mechanism automatically selects the most important
information for better data processing. Hu, Shen & Sun (2018) first introduced the concept
of channel attention, which centers on a Squeeze-and-Excitation (SE) module. This module
automatically adjusts the weighting parameters for each channel to better capture the most
important information. Since the SE module can only use global average pooling to collect
limited global information, this may lead to information loss and computational bottleneck
problems. To solve these problems, Dai et al. (2019) used global 2D average pooling to
improve the squeezing module by reflecting the relationship between channels in the
form of covariance. Wang et al. (2020b) proposed an efficient channel attention, which
replaces the global average pooling with a one-dimensional convolutional, and thus it can
more efficiently capture global information and avoid information loss and computational
bottleneck problems. Since the SE attention module only focuses on the channel dimension,
it cannot capture the relationship between frequency channels well. For this reason, Qin et
al. (2021) introduced the frequency attention module to adaptively adjust the weights of
each frequency channel to better capture the most important information in each frequency
channel.

The role of SA is to adjust the weights of each position of the image to focus the model
more on those important regions. Generally, CA and SA are used in combination in
tandem or parallel, and the most representative one is the Convolutional Block Attention
Module (CBAM) (Woo et al., 2018). CBAM cascades CA and SA in two independent
dimensions (channel and spatial) and obtains the attention map by global average pooling
and maximum pooling. Then, the attention weights are multiplied by the input feature
map for pixel weighting. The Bottleneck Attention Module (BAM) (Park et al., 2018) uses
a parallel approach to integrate CA and SA. Fu et al. (2019) proposed a dual attention
network for scene segmentation, which introduces the CA and SA with an adaptive gating
mechanism, which allows the model to select and adjust the attention weights more flexibly,
thus making the model more accurately process images of different scenes.

In the field of RSIs, Li et al. (2023) designed a supervised attention module to re-weight
feature matrices at different scales respectively to efficiently aggregate multi-level features
from high to low levels. Liang et al. (2023) designed a hybrid attention mechanism that
combines the advantages of CA and SA to learn the spatial dependence of each channel
and obtain richer critical high-frequency information. Gu e al. (2023) cleverly merged
the non-local modules of self-attention into a unified unit, thus solving the problem of
information loss when implementing SA and CA respectively. Liu et al. (2023) proposed to
combine multiscale convolution with nonlocal spatial attention to construct more efficient
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multiscale-based nonlocal perceptual fusion networks. The above methods introduce the
attention mechanism in RSOD, which boosts the detection performance of the detector
to some degree, and provides a solid theoretical and experimental basis for subsequent
research, but limited by the characteristics of the RSIs, there is still a lot of work to be done
on how to utilize the attention mechanism to extract more discriminative features to be
explored.

PROPOSED METHOD

The schematic diagram in Fig. 1 illustrates the framework of A2CN-Net. The principle of
fast Fourier transform is first used to design a Composite Fast Fourier Convolution module
(CFFC), which is applied to each stage of the backbone network to perceive the spectrum
context information and extract more abundant small target feature information. Secondly,
based on self-attention theory, the global context information enhancement module is
proposed to obtain rich spatial context information. Finally, to take full advantage of
the feature correlation between adjacent feature layers, an adaptive adjacent context
negotiation network is given to obtain more discriminative features. The network consists
of local branches and adjacent branches. The local branches adaptively highlight the feature
information, and the adjacent branches introduce global information into the adjacent layer
to boost the feature representation and compensate for the information loss. Considering
the different focuses of the feature layers at different dimensions, learnable weights are
applied to the local and adjacent branches for feature fusion.

Composite fast fourier convolution

The Fourier Transform (FT) has been widely utilized in the field of image processing due to
its powerful analytical capabilities. FT is a mathematical tool that can decompose a signal
or image into a series of frequency components, thus providing a detailed description of the
signal or image frequency domain features. Inspired by this, recently a neural operator Fast
Fourier Convolution (FFC) (Chi, Jiang & Mu, 2020), has been proposed. The introduction
of FFC provides a powerful tool for neural networks to utilize the global contextual
information in an image more efficiently, improving the performance and accuracy of
image processing tasks. By using FFC, neural networks can analyze the entire image at a
global level, capturing a wider range of contextual information. Compared to traditional
convolution, FFC enables a larger range of sensory fields, leading to a better understanding
of the global structure and associations in the image. This ability for non-local inference
and generation allows neural networks to better handle long-range dependencies and
global features in images. In this article, we introduce FFC into the RSOD task and further
enhance the feature information of the target through frequency domain convolution to
facilitate sensitivity to small objects. The idea of the CSPNet (Wang et al., 2020a) structure
is used to design a Composite Fast Fourier Convolution (CFFC) module.

As presented in Fig. 2, for the CFFC module, the input feature layer is divided into
two parts. The upper branch uses CondConv, BN layer, and ReLU layer to extract local
deep refinement feature information. The lower branch uses dynamic convolution to
obtain feature information for large-scale objects and reduce the resolution of the feature
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Figure 2 Illustration of Composite Fast Fourier Convolution (CFFC).
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map, and then FFC is introduced to extract the feature information. Finally, the two
branches are merged using the cross-stage hierarchy structure, which enables the network
to achieve a richer gradient combination. For the FFC module, the local branch of FFC uses
traditional convolution for feature updating, and the global branch of FFC uses Fourier
transform for spectral updating. Specifically, first, FFC applies Real FFT2d to the frequency
dimension of the input feature graph and concatenates the real and imaginary parts of the
spectrum in the channel dimension. Second, convolution blocks (including convolution,
normalization, and activation functions) are applied in the frequency domain. Finally, the
inverse transform is applied to recover the spatial structure.
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Global context information enhancement

Remote sensing satellites are higher from the ground and have a wide field of view.
Therefore, RSIs contain larger scenes and more abundant information. Usually, these
messages have strong semantic information, which can represent the scene of the target
and form the prior knowledge of the object. In a scene, semantic information is usually
inseparable from the objects in the scene. Objects in a scene carry a wealth of semantic
information in their location, shape, size, color, and so on. Together, these objects constitute
the visual content of the scene and convey semantic meanings through their features and
interrelationships. By observing and understanding the objects in a scene, we can infer
the nature of the scene, the environment, the activity, or the context. Thus, for scene
comprehension and semantic reasoning, objects play a crucial role in a scene; they are
important cues for decoding and interpreting the semantics of a scene. For example, the
ship generally stays on the sea or the port, the aircraft stays at the airport, the windmill is
mostly located in the desolate Gobi Beach, and the vehicles in the parking lot are orderly
and densely distributed. Typically, small objects occupy relatively limited pixels and space
in an image or scene, and their representation at the pixel level usually involves only a small
amount of pixel points, so it is necessary to capture the context information around the
small object or further away to highlight the location information of the small object. By the
above findings, we combined the basic knowledge of self-attention and location-attention
mechanisms to design a global context information enhancement module.

As shown in Fig. 3, the global context information enhancement module consists of
the upper and lower branches splicing on the channel. The upper branch mainly learns
from the self-attention mechanism, which first divides the input features into different
image patches, and then uses the multi-head attention mechanism (Vaswani et al., 2017) to
realize the feature interaction between patches, to obtain the global long-term dependency.
Specifically, the upper branch consists of layer normalization (LN), multi-head self-
attention (MSA), residual structure, and multi-layer perception (MLP). The lower branch
captures distant spatial dependencies by directly calculating the correlation between two
locations. Specifically, first of all, the input feature map is linearly mapped to produce 9,
¢, and g eature map, then the similarity of 6, and ¢ is calculated, and the autocorrelation
feature is normalized to obtain the position relation weight. At the same time, the feature
matrix is processed by parallel dilated convolution of different convolution kernels to
expand the perceptual field of view. Finally, it is multiplied by the position attention weight
to get the output feature.

Adaptive adjacent context negotiation

With the deepening of the CNN, for small objects, since they occupy fewer pixels, the
amount of information they carry is relatively small. In the process of feature extraction,
such relatively small objects often face the risk of feature loss. This is because the
convolutional neural network may blur or weaken the subtle features of small objects
when performing convolution and pooling operations, resulting in their information not
being adequately captured and represented. Therefore, multi-scale features are often used
for object detection in RSIs, typically, shallow features are mainly utilized for sensing
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Figure 3 Illustration of Global Context Information Enhancement (GCIE).
Full-size & DOI: 10.7717/peerjcs.2199/fig-3

small objects, while deep features are used for sensing large objects. Researchers often
employ various feature fusion strategies to mitigate information loss, such as the top-down
feature pyramid, this can introduce redundant interfering information in the feature map,
leading to feature confusion between multi-scale objects, thus reducing the effectiveness in
detecting small targets.

To deal with the outlined issues, we design an adaptive adjacent upper-lower-layer
coordination network to capture more discriminative features. As illustrated in Fig. 4,
A2CN is made up of local branches and adjacent branches. Local branches adaptively
highlight feature information, and adjacent branches introduce global information into
the feature layer to boost feature representations. The whole process can be expressed as:

Fy=aF,+BF;+ x F; (1)

where F;_1, F; and F, represent shallow feature, deep feature and output feature respectively.
F, and F; represent the feature of deep feature after local branch processing and the feature
of deep feature after adjacent branch processing, respectively. o, 8, and x represent
learnable weight matrices.

Specifically, for local branches, multi-scale dilated convolution is first utilized to extract
the input features using the multi-scale cavity convolution, and then the features are
obtained by splicing the channel dimensions. Finally, It will be sent to channel attention
and spatial attention to assign feature map weights, extracting key information while
suppressing irrelevant information. The operation can be described as:

F; = Concat (DConv(Fi; W3lx3,rl)) ,1€{3,5,7} (2)

F3=SA(Fi O CA(F))) ® (F; © CA(Fy)) (3)
1 H W

CA=0 | Wix o0 ZIZIFlm,n (4)
m=1n=
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Figure 4 Illustration of Adaptive Adjacent Context Negotiation (A>’CN).
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SA = Conv(GMP (F, © CA(F1))) (5)

where Concat (.) is the cross-channel concatenation, DConv (.) is the dilated convolution,
W3, 5 is the parameters with 3x3 kernel, r is the dilation rate. In addition, CA and SA
represents channel attention and spatial attention, ® is the channel wise multiplication,
and ® is the elementwise multiplication. H and W are the height and width of the input
feature map F) respectively; W is the weight matrix, and o (.) is the sigmoid function.
GMP(.) is global max pooling.

For adjacent branches, the feature map resolution is adjusted first by using upper use,
and then each pixel is weighted by using spatial attention. The process can be expressed as:

F, =F, ® SA(Down(F;_})) (6)

where Down (.) is the 2 xdown sampling implemented by max-pooling.

To take full advantage of the feature correlation between adjacent feature layers, the
information loss caused by the target after sampling is compensated. Adaptive adjacent
upper and lower coordination network fuses feature of local fraction and adjacent branches.
Meanwhile, for the feature confusion resulting from the direct superposition of feature
layers with different depths, we adopt a learnable weight coefficient to alleviate the influence.

EXPERIMENTS

Datasets
The DIOR dataset (Li et al., 2020) and DOTA dataset (Xia et al., 2018) are used to validate
the effectiveness of our algorithms, both of which are large-scale datasets widely used for
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object detection in aerial imagery. The DIOR dataset is not only large in image size, but

also contains a wide range of different imaging conditions, including weather, seasons, and

image qualities, a wide range of inter- and intra-class size variations of the objects, and

a high degree of inter-class similarity and intra-class diversity, which gives the dataset a

rich variety of image diversity and variability. The DOTA dataset comes from a variety of

sources, including aerial imagery collected by different sensors and platforms, which makes
the dataset rich in scenario variations and practical applications. Secondly, the targets in

the images have a wide range of scale, orientation, and shape variations, which provides a

great challenge for object detection algorithms. The use of two different datasets enables

the performance of the model to be evaluated in different domain conditions and object
classes, providing a more comprehensive understanding of its effectiveness. Both datasets
are described in detail next.

1. DIOR: The DIOR dataset has a total of 23,463 remote sensing images and 190,288
object instances, comprising 20 object classes, as shown in Table 2, each object category
in DIOR is assigned an index (CR1-CR20). We selected 5,862 images as the training
set, 5,863 images as the verification set, and 11,738 images as the test set.

2. DOTA-v1.0: The DOTA-v1.0 dataset contains 2,806 images, each with a pixel size
ranging from 800 x 800 to 4,000 x 4,000, in a total of 15 categories, as shown in
Table 3, each object category is assigned an index (CA1-CA20). Since the DOTA-V1.0
dataset contains images with large resolution, the distribution of objects in the images is
uneven and there are alot of background regions, so in this study, standard development
tools of DOTA are uniformly adopted to cut the images, and the cutting step is set
to 256. After cutting, the output image size is 1,024 x 1,024, and data cleaning is
performed. The cut data set comprises a comprehensive collection of 25,391 images,
15,235 images designated for the training set, 5,078 images allocated for the verification
set, and an additional 5,078 images specifically reserved for the test set. In this article,
objects whose width and height are both less than 50 pixels are considered small objects
(Wang et al., 2019). Concerning this standard, Tables 2 and 3 analyze the proportion of
small objects for each category in the DIOR and DOTA-v1.0 datasets. It is not difficult
to find from the table that both of these two public data sets contain a large amount of
remote sensing small target examples, and the experiment results of small targets are
persuasive to a certain extent when conducted on this dataset.

Implementation details and evaluation metrics

In this article, the basic learning rate is set to 0.01, the training epochs are set to 150, the
batch size is set to 32, and the size of each image is adjusted to 800 x 800. A stochastic
gradient descent algorithm (SGD) is adopted to optimize the parameters of the model. The
initial learning rate of SGD is set to 0.01. The input images are preprocessed by random
rotation, Mosaic data enhancement, random cropping, and color dithering. During the
test, the NMS is used to detect the enclosure. The confidence threshold is set to 0.5,
and the threshold of the bounding enclosure IoU is set to 0.5 when the AP is calculated.
When testing the detection results of the model, the NMS confidence threshold is set
to 0.5. The selection of these parameters was based on a comprehensive analysis of the
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Table 2 Detailed information on each class of the DIOR dataset.

CR1 CR2 CR3 CR4 CR5
Class Airplane Airport Baseball field Basketball court Bridge
Small object 5712 1 1185 202 2070
Total object 10104 1327 5815 3225 3965
Ratio 0.565 0.0007 0.203 0.062 0.522
CR6 CR7 CR8 CR9 CR10
Class Chimney Dam Expressway service area Expressway toll station Golf field
Small object 105 74 145 498 0
Total object 1681 1049 2165 1298 1086
Ratio 0.062 0.0705 0.066 0.383 0
CR11 CR12 CR13 CR14 CR15
Class Ground track field Harbor Ship Stadium Storage tank
Small object 806 721 55201 74 21080
Total object 3038 5455 62157 1268 26262
Ratio 0.265 0.132 0.888 0.058 0.802
CR16 CR17 CR18 CR19 CR20
Class Tennis court Train station Vehicle Windmill Overpass
Small object 2623 2 36035 3493 884
Total object 12260 1011 40304 5363 3112
Ratio 0.213 0.001 0.894 0.651 0.284
Table 3 Detailed information on each class of the DOTA-v1.0 dataset.
CAl CA2 CA3 CA4 CA5
Class Plane Baseball diamond Bridge Ground track field Small vehicle
Small object 13223 478 6546 343 93217
Total object 47187 2266 8953 2342 94408
Ratio 0.28 0.21 0.731 0.146 0.987
CAG6 CA7 CA8 CA9 CA10
Class Large vehicle Ship Tennis court Basketball court Storage tank
Small object 33414 117741 922 547 26792
Total object 67084 145420 8625 2387 31598
Ratio 0.498 0.809 0.106 0.229 0.847
CAll CA12 CA13 CAl4 CA15
Class Soccer ball field Roundabout Harbor Swimming pool Helicopter
Small object 414 1291 9333 5932 1967
Total object 2426 2122 31966 7628 2922
Ratio 0.17 0.608 0.291 0.777 0.673

literature, previous experimental results, and fine-tuning processes. Multiple experiments

were conducted to optimize these hyperparameters and determine the most effective

configurations for our object detection task. The hardware and software environments are

shown in Table 4.
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Table4 Hardware and software configuration.

Hardware Software
CPU Intel Xeon E5-2698 v4 System Ubuntu 18.04 CUDA 10.0
GPU Tesla V100 Python Python 3.7 cudnn 7.6.5
Memory 6T Pytorch Pytorchl.7.1

The experiments use mAP (Mean Average Precision) and AP (Average Precision) for
each type of detection as evaluation metrics, which is the main evaluation metric in the
field of object detection. AP represents the average precision under different recall rates.
Precision (P) refers to the ratio of the number of correctly detected samples to the total
number of detections, and Recall (R) refers to the ratio of the number of correctly detected
samples to the number of all true value samples, and mAP is the average value of all
categories of APs. The formulas are as follows:

TP
P=— "~ (7)
TP +FP
R (8)
TP +FN
1
AP :/ P(R)dR 9)
0
N
mAP = "Api/N (10)

i=1
where TP represents the number of correctly classified samples in the class, FP represents
the number of samples from other classes that were incorrectly identified as samples from
the class, and FN represents the number of samples from the class that were incorrectly
identified as samples from other classes.

Results for DIOR dataset and DOTA-v1.0 dataset

Tables 5 and 6 present the performance metrics of our A2CN-Net architecture on the
DIOR and DOTA-v1.0 datasets, respectively. These tables highlight the average accuracy
(AP) values for each category within the datasets, providing a quantitative assessment of
the model’s ability to accurately classify objects across various classes. Additionally, the
tables include precision and recall values for each category on both datasets. As shown in
Table 5, there are 11 categories of targets with AP values above 75%, and only CR5 (bridge)
has an AP value below 60%. By looking at the confusion matrix, almost more than half
of the targets like bridges are missed. As shown in Table 3, more than half of the targets
with small sizes among the targets like bridges bring a great challenge to the detection task.
As shown in Table 6, there are 11 categories of targets with AP values over 75%, and CA6
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Table 5 AP values for the DIOR dataset.

Class CR1 CR2 CR3 CR4 CR5 CRé6 CR7 CR8 CR9 CR10

Precision (%) 97.2 93.1 95.6 92.8 67.1 94.4 74.3 94.8 94.4 87.9

Recall (%) 70.8 63.0 63.1 73.1 36.3 67.7 50.7 39.0 49.0 68.5

AP (%) 84.6 79.5 80.5 85.0 53.2 82.8 62.4 67.7 72.7 79.3

Class CR11 CR12 CR13 CR14 CR15 CR16 CR17 CR18 CR19 CR20 All

Precision (%) 76.7 77.6 94.8 90.7 93.7 97.0 72.1 79.1 86.0 74.5 86.7

Recall (%) 66.4 53.5 78.9 30.7 64.1 76.2 56.1 43.2 76.7 46.8 58.7

AP (%) 74.5 67.6 87.9 61.3 79.9 87.3 65.9 63.2 84.8 63.9 74.2
Table 6 AP values for the DOTA-v1.0 dataset.
Class CAl CA2 CA3 CA4 CA5 CA6 CA7 CA8
Precision (%) 95.1 81.1 73.8 86.2 72.8 82.1 91.8 95.5
Recall (%) 63.6 80.4 63.8 70.6 61.8 47.5 59.1 69.9
AP (%) 80.6 86.6 71.1 79.6 70.5 66.7 76.9 84
Class CA9 CA10 CAll CA12 CA13 CAl4 CA15 All
Precision (%) 91.6 92.2 87.2 85.3 90.5 85.6 77.5 85.9
Recall (%) 63.4 82.1 64.2 79.4 63.7 86.1 55.6 67.4
AP (%) 79.4 89.6 76.8 85.8 78.7 89.5 71.7 79.2
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Figure 5 Precision—recall curves of the A2CN-Net for different classes on the DIOR (A) and DOTA-
v1.0 (B) datasets, respectively.
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(large vehicle) has the lowest AP value of 66.7%. By looking at the confusion matrix, half
of the targets among the large vehicles are missed, which is the worst missed detection

among all the categories. Also, 3% of the large vehicles were mistakenly detected as small

vehicles. Figure 5 shows the precision—recall curves of the proposed algorithm for different
categories on the DIOR and DOTA-v1.0 datasets, respectively.
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Table 7 Comparison of ablation results in the DIOR dataset.

CR1 CR2 CR3 CR4 CR5 CRé6 CR7 CR8 CR9 CR10
Baseline 81 59.9 81.8 84.4 47 81.3 42.1 59.5 74.3 54
CFEC 83.5 62.9 81.6 83.5 49.7 80.9 45.6 62.6 74.3 63.5
GCIE 86.1 72 80.2 84.2 52.1 81.5 50.7 65.3 73.6 72.8
A’CN 86.4 70.9 81.6 84.7 49 81.8 48.7 66.1 72.5 72.1
CFFC+GCIE 86.4 75.7 80.4 84.7 53.1 82.7 56.8 66.8 74.3 76.5
CFFC+ A’CN 83.7 74.2 80.1 84.9 51.5 81.8 54.9 66.8 71.5 76.6
GCIE+ A2CN 86.4 77.4 80.7 84.8 50.1 82.5 58.5 67.2 71.9 77.5
A’CN-Net 84.6 79.5 80.5 85 53.2 82.8 62.4 67.7 72.7 79.3

CR11 CR12 CR13 CR14 CR15 CR16 CR17 CR18 CR19 CR20 mAP (%)
Baseline 63.5 57.3 87.5 62.8 81.4 87.8 47.3 62.5 85.1 58.3 68.4
CFFC 65 59.8 87.7 70.6 81 87.3 44.7 60.8 85.6 60.8 69.6
GCIE 70.6 64.1 87.8 62.9 83 87.2 59.2 64 84.9 60.7 72.1
A’CN 70 62.7 87.7 67.4 80.2 87.6 51.9 58.6 85.5 62.3 71.4
CFFC+GCIE 73.4 66.5 87.4 61.8 80.9 87.1 60.1 63 85.3 64.2 73.3
CFFC+ A’CN 73 65.1 87.3 63 78.9 87 61.5 61.6 84.1 62.1 72.5
GCIE+ A2CN 72 65 87.6 63.9 80.7 87.7 59.6 59.1 84.6 61.7 72.9
A?CN-Net 74.5 67.6 87.9 61.3 79.9 87.3 65.9 63.2 84.8 63.9 74.2

Ablation studies

Under the same experimental conditions, ablation experiments are performed to verify the

effectiveness of the designed modules one by one. Table 7 shows the results of A°CN-Net’s

ablation experiments in various categories on the DIOR dataset.

1. Baseline setup: The baseline network is a single-stage detector, including a backbone
network, feature fusion, and multi-scale detection head. The baseline network is a
single-stage detector, including a backbone network feature fusion, and multi-scale
detection head. The backbone network uses the general Resnet50 network, due to the
ResNet50 model has been widely adopted for many computer vision tasks including
remote sensing object detection. It offers a powerful and effective feature extraction
capability, enabling the model to learn high-level representations from input images.
Its depth and complexity make it particularly suitable for capturing intricate patterns
and context in the visual domain. The feature fusion part only uses the FPN structure.
For the detection layer, CIOU is used as boundary box regression loss, and binary
cross-entropy is used for classification loss. From the results of the baseline experiment
in Table 7, it is not difficult to find that using a simple network structure while
minimizing the use of up and downsampling can effectively alleviate the information
loss of small objects, such as the detection accuracy of 81% for airplanes (CR1), 87.5%
for ships (CR13), and 85.1% for windmills (CR19). However, for objects with more
complex backgrounds and large-scale changes, the detection accuracy can be improved,
such as airports (CR2), bridges (CR5), dams (CR7), golf fields (CR10), ground track
field (CR11), and overpasses (CR20).
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. Compound fast Fourier convolution (CFFC): On the basis of the fast Fourier

transform principle, the CFFC module fuses the frequency domain convolution and
spatial convolution to make full use of the spatial structure information and spectrum
context information of the target, effectively enhancing the feature representation of
the small object. Compared with the results of the benchmark experiment, the insertion
of FFC modules in different stages of the backbone network effectively improves the
detection effect of small targets, such as the detection accuracy of airplanes (CR1) from
81% to 83.5%, the detection accuracy of bridges (CR5) from 47% to 49.7%, and the
detection accuracy of ships (CR13) and windmills (CR19) has been slightly improved.
The CFFC module improves the overall average accuracy by 1.2% mAP.

. Global context information enhancement module (GCIE): For remote sensing

images, small targets are often densely distributed together, resulting in blurred
edges between objects and easy-to-miss detection. The GCIE module captures
global background information by mapping the degree of association between pixels.
Simultaneously, the receptive field is expanded by dilated convolution with different
dilatation rates. This not only reduces the problem of missing small objects. For
example, the detection accuracy of airplanes (CR1), storage tanks (CR15), bridges
(CR5), and vehicles (CR18) have been improved by 5.1%, 1.6%, 4.1%, and 1.5%,
respectively. It is also very helpful for objects with large-scale changes and objects
with complex backgrounds. For example, the detection accuracy of airports (CR2),
expressway service areas (CR8), golf fields (CR10), ground track fields (CR11), and train
stations (CR17) are increased by 12.1%, 5.8%, 8.8%, 7.1%, and 11.9%, respectively.
The GCIE module improves the overall average accuracy by 3.7% mAP.

. Adaptive adjacent context negotiation network (A2CN): Since shallow feature and

deep feature have their advantages and shortcomings in the detection of small and
large targets, how to comprehensively utilize the characteristics of the two becomes
the key to optimizing performance and robustness of target detection. The A2CN
module fully uses the feature correlation between adjacent layers and uses an attention
mechanism to suppress context-independent information and highlight the relevant
information of target features. Simultaneously, considering the different focus of
feature maps of different scales, we do not simply add feature pixels of different scales
directly, but assign learnable weight matrices to different branches for adaptive feature
fusion. By observing Table 7, the A>CN module enhances the detection capability of
most categories, among which the improvement effect is obvious for airplanes (CR1),
airports (CR2), golf fields (CR10), ground track fields (CR11), and harbors (CR12).
The A2CN module improves the overall average accuracy by 3% mAP.

. The algorithm proposed in this study (A%2CN-Net): Based on the baseline network,

CFFC, GCIE, and A*CN modules are used simultaneously. It can be observed from
Table 7 that aircraft, Bridges, and ships with a relatively high proportion of small
objects have all improved, increasing by 5.4%, 2%, and 0.4% respectively. airports
(CR2), expressway service areas (CR8), golf fields (CR10), harbors (CR12), ground
track fields (CR11), train stations (CR17), and dams (CR7) with high objects have been
significantly improved, increasing by 20%, 6.6%, 8.1%, 5.4%, 6.5%, 4.6%, and 6.6%
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respectively. The A2CN-Net improves the overall average accuracy by 5.8% mAP. In
summary, A’CN-Net has a good detection effect on multi-class remote sensing objects
of different scales.

Comparisons with other approaches

A?CN-Net is used to compare results with mainstream detectors on the DIOR dataset.
Among them, the detectors involved in the comparison include Two-stage methods:
Faster RCNN (Ren et al., 2015), CSFF (Cheng et al., 2020), GLNet (Teng et al., 2021), and
MFPNet (Yuan et al., 2021). One-stage methods: SRAFNet (Liu et al., 2021a), AFDet (Liu
et al., 2021b), FFPFNet (Lingyun, Popov ¢ Ge, 2022), GAB-Net (Zhang et al., 2023), QETR
(Ma, Lv & Zhong, 2024), and SRARNet (Yang &~ Wang, 2024).

Table 8 gives the detection accuracy of different algorithms for different objects on
the DIOR dataset. It is not difficult to find that the Faster RCNN has the worst detection
ability. This is mainly due to Faster RCNN’s low detection performance for small target
objects (e.g., windmill (CR19) AP value is only 5.3%) and poor ability to deal with
intra-class similarity problems (e.g., bridges (CR5) and overpasses (CR20)). The mAP
values of CSFF, GLNet, MFPNet, and GAB-Net are all higher than 65%, which is mainly
because they adopt multi-scale feature fusion or multi-scale feature prediction, which
makes full use of the feature information and thus significantly improves the accuracy of
the detectors. SRAFNet shows excellent detection results compared to other networks in
multiple categories such as airplanes (CR1), baseball fields (CR3), chimneys (CR6), and
windmills (CR19). However, the detection effect of this detector on some targets is poor.
For example, ground track fields (CR11) and bridges (CR5) have AP of only 16.2% and
35.8%, respectively. In the comparison, the algorithms presented in this article perform
better, with AP values of 74.5% and 53.2%, respectively. QETR uses multiple self-attention
and cross-attention mechanisms to learn object features and location information, which
significantly improves detection accuracy for targets with large scales, e.g., airport (CR2),
harbor (CR12), stadium (CR14), and train stations (CR17). However, QETR has lower
detection accuracy for smaller targets. For example, storage tank (CR15) and vehicle
(CR18). And our algorithm has more than 60% detection accuracy in these two categories.
AFDet uses an elliptic Gauss kernel to generate key point heat maps to adapt to targets with
large aspect ratios and shows good detection performance for tennis courts (CR16), vehicles
(CR18), and windmills (CR19). FFPFNet uses a bilateral spectrum-aware feature pyramid
network to enhance feature extraction from objects, which achieves the best detection
performance for the dam (CR7), expressway service area (CR8), and golf field (CR10).
SRARNet combines super-resolution techniques with dynamic feature fusion to improve
detection accuracy, using a super-resolution network with soft thresholding to refine
small target features and shows the best detection results on several categories, including
basketball court (CR4), expressway toll station (CR9), ship (CR13), storage tank (CR15),
and tennis court (CR11).

Although these detection algorithms effectively enhance the precision of remote sensing
objects through multi-scale fusion, multi-scale detection, thermal map-guided attention,
and other methods, the effectiveness of these algorithms in detecting multi-scale and
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Table 8 AP for different algorithms on the DIOR dataset.

Method CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10
Two-stage methods
Faster RCNN 37.2 62.2 64.1 70.9 20.6 72.4 45.8 56.5 429 69.6
CSFF 57.2 79.6 70.1 87.4 46.1 76.6 62.7 82.6 73.2 81.6
GLNet 62.9 83.2 72.0 81.1 50.5 79.3 67.4 86.2 70.9 83.0
MFPNet 76.6 83.4 80.6 82.1 44.3 75.6 68.5 85.9 63.9 77.2
One-stage methods
SRAFNet 88.4 76.5 92.6 87.9 35.8 83.8 58.6 86.8 66.8 82.8
QETR 73.3 90.3 77.6 88.2 47.2 82.5 76.6 86.9 72.8 84.5
AFDet 82.4 81.5 81.9 89.8 51.7 74.9 58.7 84.2 73.3 81.0
FFPFNet 65.5 86.7 79.4 89.0 50.3 79.2 73.3 87.6 73.6 85.1
GAB-Net 85.9 83.3 84.4 89.1 44.9 78.7 67.2 66.7 64.0 74.5
SRARNet 88.1 69.6 84.6 91.6 50.0 79.4 49.5 78.2 77.3 80.5
A’CN-Net 84.6 79.5 80.5 85.0 53.2 82.8 62.4 67.7 72.7 79.3
Method CR11 CR12 CR13 CR14 CR15 CR16 CR17 CR18 CR19 CR20 mAP (%)
Two-stage methods
Faster RCNN 41.6 42.6 46.3 7.0 64.1 13.8 60.9 45.5 5.3 30.8 45.1
CSFF 50.7 78.2 73.3 63.4 58.5 85.9 61.9 429 86.9 59.5 68.0
GLNet 51.8 81.8 72.0 75.3 53.7 81.3 65.5 43.4 89.2 62.6 70.7
MFPNet 62.1 77.3 77.2 76.8 60.3 86.4 64.5 41.5 80.2 58.8 71.2
One-stage methods
SRAFNet 16.2 76.4 59.4 80.9 55.6 90.6 52.0 53.2 91.0 58.0 69.7
QETR 51.0 86.4 51.8 84.2 39.7 85.0 71.8 39.3 85.9 62.2 71.5
AFDet 44.2 79.5 77.8 63.2 76.9 91.0 62.0 59.3 87.1 62.0 73.2
FFPFNet 57.3 83.5 74.1 78.4 59.3 88.6 71.0 43.3 87.4 63.5 73.8
GAB-Net 64.7 78.2 91.1 74.1 78.4 90.9 62.1 54.7 81.8 60.3 73.8
SRARNet 59.7 68.2 91.8 78.2 81.1 93.1 45.4 60.2 90.9 60.0 73.9
A?CN-Net 74.5 67.6 87.9 61.3 79.9 87.3 65.9 63.2 84.8 63.9 74.2

multi-category remote sensing objects could be improved. As shown in Table 8, A2CN-Net
has shown excellent detection results in several categories, such as bridges (CR5), ground
track fields (CR11), vehicles (CR18), and overpasses (CR20). At the same time, A2CN-Net
has a more balanced detection effect across multiple categories, especially for objects with
relatively few pixels, such as increasing the mAP of airplanes (CR1) to 84.6% and that of
vehicles (CR18) to 63.2%. On the whole, the average detection accuracy of A>’CN-Net still
maintains a high level.

To verify the generalization ability, A2CN-Net is compared with the DOTA-v1.0 dataset
containing more small objects. The detectors involved in the comparison include Two-
stage methods: CAD-Net (Zhang, Lu ¢» Zhang, 2019), SCRDet (Yang et al., 2019), FADet
(Lietal, 2019), and APE (Zhu, Du & Wu, 2020). One-stage methods: APS-Net (Zhou
et al., 2022), AFD (Shamsolmoali et al., 2023), CoF-Net (Zhang, Lam ¢ Wang, 2023) and
ASEM-Net (Liu et al., 2024). Table 9 gives the detection results of the different algorithms.
To summarize, A>’CN-Net achieves the highest average detection accuracy and also shows
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Table 9 AP for different algorithms on the DOTA-v1.0 dataset.

Method CAl CA2 CA3 CA4 CA5 CA6 CA7 CA8
Two-stage methods

CAD-Net 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9

SCRDet 90.18 81.88 56.2 73.29 72.09 77.65 78.21 90.91

FADet 90.15 78.6 51.92 75.23 73.6 71.27 81.41 90.85

APE 89.96 83.62 53.42 76.03 74.01 77.16 79.45 90.83

One-stage methods
ASEM-Net 89.26 82.26 51.33 68.49 78.88 74.14 85.59 90.88

AFD 89.81 77.68 56.17 70.65 78.94 81.62 84.28 90.35
CoF-Net 89.6 83.1 48.3 73.6 78.2 83 86.7 90.2
APS-Net 89.75 81.26 58.12 72.84 80.74 83.29 88.05 90.9
ACN-Net 80.6 86.6 71.1 79.6 70.5 66.7 76.9 84
Method CA9 CA10 CAll CA12 CA13 CAl4 CA15 mAP (%)
Two-stage methods
CAD-Net 79.2 73.3 48.4 60.9 62 67 62.2 69.9
SCRDet 82.44 86.39 64.53 63.45 75.77 70.06 60.11 75.35
FADet 83.94 84.77 58.91 65.65 76.92 79.36 68.17 75.38
APE 87.15 84.51 67.72 60.33 74.61 71.84 65.55 75.75

One-stage methods
ASEM-Net 84.94 85.73 60.78 64.76 65.72 71.32 59.08 74.21

AFD 75.23 76.9 51.65 75.24 75.92 82.54 86.67 76.91
CoF-Net 82.3 86.6 67.6 64.6 74.7 71.3 78.4 77.2
APS-Net 86.19 86.41 65.26 67.39 76.65 74.49 65.44 77.79
A2CN-Net 79.4 89.6 76.8 85.8 78.7 89.5 71.7 79.2

the best detection performance for multiple categories of targets, which mainly include:
storage tanks (CA10), swimming pools(CA14), bridges (CA3), and helicopters (CA15).
Carefully observing these categories, the detection accuracy of most of these categories
improved by the A2CN-Net is less than 80%, while the detection ability of other algorithms
for these categories is worse, which directly indicates the effectiveness of the A2CN-Net
for detecting more difficult categories. In addition to enhancing the detection capability of
small objects, the effect of large-size complex objects is also improved. A2CN-Net shows
good detection performance in all categories of the DOTA-v1.0 dataset, which fully proves
its strong detection and classification ability.

CONCLUSIONS

To tackle the problem of low detection accuracy of RSIs, this study analyzes the causes
of small and medium-sized object information loss in convolutional neural networks in
detail and proposes an A2CN-Net detector based on adaptive adjacent context negotiation
network. Based on the principle of fast Fourier transform, a composite fast Fourier
convolution module is designed to extract the context information of the target on the
spectrum and enhance the feature representation. Then, a global context information
enhancement module based on a self-attention mechanism is designed to get rich spatial
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context information. Secondly, considering the different focus of feature layers at different
scales, an adaptive adjacent-context coordination network is designed to alleviate the
feature aliasing problem caused by multi-scale feature fusion, and the features lost by small
targets are replaced by the correlation of adjacent feature layers. Finally, the advances and
effectiveness of A2CN-Net are proved on DIOR and DOTA-v1.0 datasets. Although A2CN-
Net achieves good detection results in RSIs, it needs to sacrifice the parameter number and
inference speed. Therefore, our next step is to look into efficient and lightweight solutions.
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