
Submitted 15 December 2023
Accepted 23 June 2024
Published 20 August 2024

Corresponding author
R Balamanigandan,
balamanigandanr.sse@saveetha.com

Academic editor
Giovanni Angiulli

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2196

Copyright
2024 Thumilvannan and Balamani-
gandan

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A novel adaptive weight bi-directional
long short-term memory (AWBi-LSTM)
classifier model for heart stroke risk level
prediction in IoT
S Thumilvannan1 and R Balamanigandan2

1Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of
Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamilnadu, India

2Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of
Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamilnadu, India

ABSTRACT
Stroke prediction has become one of the significant research areas due to the increasing
fatality rate. Hence, this article proposes a novel Adaptive Weight Bi-Directional Long
Short-TermMemory (AWBi-LSTM) classifier model for stroke risk level prediction for
IoTdata. To efficiently train the classifier,HybridGenetic removes themissing datawith
KmeansAlgorithm (HKGA), and the data are aggregated. Then, the features are reduced
with independent component analysis (ICA) to reduce the dataset size. After the
correlated features are identified using the T-test-based uniform distribution-gradient
search rule-based elephant herding optimization for cluster analysis (GSRBEHO) (T-
test-UD-GSRBEHO). Next, the fuzzy rule-based decisions are created with the T-
test-UDEHOA correlated features to classify the risk levels accurately. The feature
values obtained from the fuzzy logic are given to the AWBi-LSTM classifier, which
predicts and classifies the risk level of heart disease and diabetes. After the risk
level is predicted, the data is securely stored in the database. Here, the MD5-Elliptic
Curve Cryptography (MD5-ECC) technique is utilized for secure storage. Testing the
suggested risk prediction model on the Stroke prediction dataset reveals potential
efficacy. By obtaining an accuracy of 99.6%, the research outcomes demonstrated that
the proposed model outperforms the existing techniques.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Security
and Privacy, Neural Networks, Internet of Things
Keywords Internet of Things (IoT), Stroke prediction, Improved restricted Boltzmann machine
(IRBM), Correlated features, Elephant herd optimization algorithm (EHOA)

INTRODUCTION
The Internet of Things (IoT) has been widely used in several applications, particularly
in recent decades (Gubbi et al., 2013). Many medical applications now extensively utilize
IoT to support individuals with their health conditions. As a result, the importance of
mobile health services has increased, as they are crucial for monitoring and managing
patients with chronic conditions such as diabetes and cardiovascular disease (Yuehong
et al., 2016; Guariguata et al., 2014). In smart health, specifically in patient monitoring,
it is essential that patient data are handled properly. Big data techniques enable patients
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with specific diseases to receive preventative medications—for example, for heart failure,
which can be caused by diabetes or hypertension (Dhillon & Kalra, 2017). There are many
chronic diseases such as diabetes, cancer, heart disease, and stroke that should receive more
attention due to their high fatality rates. Chronic disease is a deadly illness that has recently
topped the global list of killers and requires intensely vigilant surveillance to keep patients
healthy (Rghioui et al., 2019).

A significant risk factor for stroke is diabetes mellitus, characterized by chronic
hyperglycemia caused by an absolute or relative insulin deficit. There is a two to five-
fold increased risk of stroke in those with diabetes compared to those without the disease.
Cardiovascular risk reduction measures focus on preventing the development, recurrence,
and progression of acute stroke through extensive clinical trials conducted in adults with
diabetes.

According to Benjamin et al. (2017), a new or recurrent stroke affects 795,000 individuals
annually in the US, with one case occurring every 40 s on average. In the first year after
a stroke, one out of every five victims dies (Koton et al., 2014). The burden of paying for
the survivors’ rehabilitation and health care falls heavily on their families and the medical
field. From 2014 to 2015, stroke-related direct and indirect expenditures amounted to
approximately 45.5 billion US dollars (Benjamin et al., 2019). Accurate stroke prediction
is essential to reduce the expense of early medications and to minimize the risks of stroke.
Electronic health records and retinal scans are just two examples of the medical data used
to construct Stroke Risk Prediction (SRP) algorithms. Deep learning and conventional
machine learning techniques such as support vector machine (SVM), decision tree, and
logistic regression are widely used in healthcare applications (Khosla et al., 2010; Monteiro
et al., 2018; Sung, Lin & Hu, 2020). The best results for stroke prediction have reportedly
been attained by deep neural networks (DNN) (Cheon, Kim & Lim, 2019). However, it can
be challenging to find the volume of reliable data required in a practical situation (Wang,
Casalino & Khullar, 2019). The strict privacy protection laws in the medical field make it
difficult for hospitals to share stroke data.

Small subsets of the complete database of stroke data are usually scattered among
numerous institutions.Moreover, stroke statistics may show extremely imbalanced positive
and negative cases.

Machine learning (ML) techniques are typically selected for enhancing patient care
because they deliver faster, more accurate results. Due to its distinctive capacity to
integrate data from numerous sources and handle vast amounts of data, deep learning
(DL) improves predictive features (Nasser et al., 2021). However, they take longer to learn
and evaluate data, have long prediction periods, and use many processing resources for
training and recognition. Age, smoking, hypertension, cholesterol, and diabetes are among
the established risk variables that were forecasted in earlier models for forecasting the
chance of acquiring diabetes and heart disease. To determine if those with both risk of
cardiovascular disease and isolated impaired fasting or impaired glucose tolerance, they
did not include those with both as a separate group for analysis (Kumar et al., 2021).

Hence, a novel framework named an Adaptive Weight Bi-Directional Long Short-Term
Memory (AWBi-LSTM) classifier-based stroke risk level prediction model for IoT data is
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proposed in this article. Here, to efficiently train the classifier, theHGKA algorithm removes
the missing data, and the data are aggregated. After that, the characteristics are minimized
using independent component analysis (ICA). After the correlated features are identified
using the T-test-based Uniform Distribution-gradient search rule-based Elephant Herding
Optimization for cluster analysis (T-test-UD-GSRBEHO). The AWBi-LSTM classifier is
used to predict and classify the risk level of diabetes and heart disease based on the feature
values derived from the fuzzy logic. Data is safely saved in the database after the risk
level has been estimated. Here, more accurate safe storage is achieved by the use of the
MD5-Elliptic Curve Cryptography (MD5-ECC) technology.

The main contribution of the article are as follows:

• Predicting strokes and analyzing medical data is significant as it enables the early
identification of individuals at high risk, allowing for rapid treatment and preventive
measures.
• The AWBi-LSTM technique is deployed to improve the accuracy of risk assessments for
illnesses, taking into account various risk factors among local populations.
• The proposed model uses a dataset with attributes such as patient’s gender, age, medical
history, and smoking status to determine the likelihood of a stroke. Important patient
information is included in the data packet.

The article is structured in the following manner: ‘Literature Review’ analyses the
pros and cons of the existing works associated with the proposed method. ‘Proposed
Methodology’ clearly describes methodology of the proposed model. ‘Results and
Discussion’ analyses the efficiency of the proposed model through simulation results.
Finally, ‘Conclusion’ concludes the research with the findings.

LITERATURE REVIEW
Data mining algorithms can forecast heart disease and diabetes in patients based on
patient medical information. The most recent findings on heart disease prediction utilizing
deep learning and machine learning methods are reviewed in this section. Hossen et
al. (2021) conducted a survey divided into three categories: deep learning models for
CVD prediction, machine learning models for CVD, and classification and data mining
methodologies. Additionally, this research gathers and summarizes the tools used for each
group of approaches as well as the datasets used for classification and prediction, and the
outcome metrics for reporting accuracy.

Ahuja, Sharma & Ali (2019) utilized SVM, MLP, random forest, logistic regression,
and decision tree, among other techniques. The PIMA dataset was used to forecast
patients’ diabetes more precisely. Significant results for naive Bayes were obtained by
another investigation that employed the PIMA dataset (Pranto et al., 2020). The stacking
method was used by Kuchi et al. (2019) to achieve a 95.4% accuracy. The diagnosis of
diabetes requires more research, as stated by Kavakiotis et al. (2017). By combining several
classifiers, the precision of predicting diabetes may be enhanced. An accurate disease
diagnosis is an essential component of medical care. Numerous researchers have produced
inaccurate diagnostic tools for cardiac disease.
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Khan (2020) developed a framework based on the IoT to address the accuracy issue
associated with cardiac disease. This structure evaluates multiple risk factors for heart
attacks, including blood pressure and electrocardiogram, using a heart monitor and
smartwatch. Additionally, a more effective Deep CNN is used to accurately forecast heart
attacks utilizing collected data. The IoT framework has an accuracy rate of over 95%.

Pan et al. (2020) introduced an improved deep learning and CNN-based method
for successfully treating heart disease via the Internet of Things. The aforementioned
combination aims to raise heart disease prognosis rates. The model’s efficiency is calculated
utilizing every disease-related attribute and its depreciation. Additionally, the suggested
combination is implemented via IoMT, outcomes are assessed utilizing accuracy and
processing speed, and the model yields improved outcomes.

Ahmed et al. (2020) demonstrated a real-time method for forecasting cardiac disease
using data streams that included patients’ current medical condition. The secondary
objective of the study is to determine the most effective machine learning (ML) methods
for heart disease prediction. To increase accuracy, ML algorithm parameters are also
adjusted. According to the findings, the random forest has a greater accuracy rate than
other ML techniques.

Yu et al. (2020a) and Yu et al. (2020b) created a stroke prediction method using each
person’s biosignals. Most stroke detection techniques consider visual data rather than
biosignals. In addition, the prediction system incorporates deep learning and random forest
algorithms for selecting the best features and performing the prediction task accordingly.
Findings showed that the LSTM system obtained 93.8% accuracy, whereas the random
forest-based system achieved 90.4% accuracy.

Bhattacharya et al. (2020) built a model using antlions and DNNs to manage the
multimodality in the stroke dataset. This framework considers the antlion technique to
optimize the hyperparameter DNN. Additionally, the parameter-tuned DNN is used to
forecast data from strokes. When outcomes are compared to training time, it is found that
the training time for that model is 38.13.

Ali et al. (2020) proposed a novel medical device to predict the probability of a heart
attack. Combined with ensemble deep learning methods, this architecture supports feature
fusion. The feature fusion approach involves fusing attribute information from electronic
records and sensor data. Additionally, the data-gathering strategy eliminates irrelevant data.
The algorithm is further developed via ensemble deep learning for even better outcomes.
Simulation findings demonstrate the value of an intelligent medical system for forecasting
heart attacks.

Heart disease and stroke are the second leading causes of death (Moghadas, Rezazadeh &
Farahbakhsh, 2020). If the condition is not identified in time, it worsens. Therefore, an IoT
and fog-based system for accurate diagnosis was created, taking the detection rate of heart
disease into consideration as a potential problem. Additionally, ECG signals are considered
for the accurate and prompt detection of cardiac illness, and k-NN is used to validate the
previously described framework.

Yu et al. (2020a) and Yu et al. (2020b) demonstrated the effects of stroke severity
on elderly persons older than 65 using the NIHSS. The C4.5 algorithm is taken into
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consideration to determine how severe a stroke will be for elderly people. In addition,
thirteen rather than the eighteen elements of the stroke scale are included in the assessment,
which shows that C4.5 has a 91.11% accuracy rate.

Yahyaie, Tarokh & Mahmoodyar (2019) examined the effectiveness of an IoT model
for accurately predicting cardiac illness. The ECG signal is considered in this research
while assessing the model’s efficacy. Utilizing a cloud-based internet application, a total
of 271 people’s data are gathered. Ninety features for heart disease are included in the
collected dataset. Additionally, the IoT model is trained to utilize an NN approach, and it
is stated that it achieves an acceptable accuracy level. Smart health products, IoT, IoMT,
and intelligent ML approaches like ANN, DNN, CNN, etc., can greatly enhance healthcare
systems.

According to the observations from the above-mentioned discussions, existing
approaches have various drawbacks, such as lower accuracy and maximal time
consumption. To overcome these constraints, a novel deep learning-based technique
is presented to enhance heart disease prediction performance.

PROPOSED METHODOLOGY
This article proposes a novel Adaptive Weight Bi-Directional Long Short-Term Memory
(AWBi-LSTM) classifier-based stroke prediction model for IoT data. The proposed flow
diagram is depicted in Fig. 1.

Input stroke prediction dataset
Using the stroke prediction dataset, the efficacy of the suggested risk prediction method
is evaluated. This dataset determines the likelihood of a person suffering from a stroke
based on 11 input characteristics, including age, gender, profession, marital status, BMI,
hypertension, glucose levels, chest discomfort, blood pressure, existing diseases, and
smoking status. The dataset comprises more than 5,000 samples. The Kaggle Stroke
Prediction dataset can be found here (https://www.kaggle.com/datasets/fedesoriano/stroke-
prediction-dataset).

Data-preprocessing
Initially, the input data in the dataset I ispreprocessed to enhance the working efficacy of
the classifier. In the proposed technique, preprocessing is done by removing the missing
values and aggregating the data.

Missing data removal using hybrid genetic with kmeans algorithm
One of the popular clustering techniques is the K-means approach, which has been applied
in various scientific and technological domains. The initial center vectors might cause
empty clusters using the k-means algorithm. GAs are flexible heuristic search algorithms
based on natural selection and genetics. The empty cluster problem is effectively solved by
the hybrid k-means technique presented in this research, which is also used to cluster the
data objects.

The following are the main issues with the K-means algorithm:
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Figure 1 Proposed flow diagram.
Full-size DOI: 10.7717/peerjcs.2196/fig-1

• Based on the original center vectors, it might yield empty clusters.
• It could converge to non-optimal values.
• With a considerable amount of computation work, finding global solutions to huge
problems is impossible.

This work introduces the hybrid genetic algorithm (HKGA) to effectively address the
above-mentioned disadvantages.

Phase 1: K-means algorithm
Step 1: K initial cluster centres z1,z2,z3,...,zk are selected arbitrarily from the n observations
{x1,x2,x3,...,xn}.

Step 2: A point x1,i =1 ,2,3,...,n is allotted to cluster Cj,j ∈ {1,2,alk} if∥∥xi−zj∥∥< ∥∥xi−zp∥∥,p= 1,2,...,K&j 6= p (1)
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Step 3: New cluster centres z1,z2,z3,...,zk are computed as follows:

z∗j =
1
ni

∑
xi∈Cj

xi,i= 1,2,...,K (2)

where ni is the number of aspects that belong to cluster Cj .

Step 4: If z∗i = zi,i =1 ,2,...,K then stop; if not, move on to step 2.
obtain an initial center for each selected cluster following this procedure.

Phase 2: genetic algorithm
Step 1: Population initialization

Every individual represents a row-matrix of 1ven where n is the number of observations,
and each gene contains the integer [1, K] that denotes the cluster to which this observation
pertains. For example, suppose there are ten observations {x1,x2,...,x10} that need to be
allocated to four clusters k= 4.

Step 2: Evaluation
Find cluster classifications that minimize the fitness function based on the specified

objective function. The fitness function for clustering in the K clusters Given is
C1,C2,C3,...,Ck .

f (C1,C2,...,Ck)=

k∑
i=1

∑
xj∈Ci

∥∥xj−zi∥∥ (3)

Step 3: Selection
The purpose of selection is to focus GA search on interesting areas of the search field.

In this work, roulette wheel selection is used, where individuals from each generation are
chosen based on a probability value to survive into the following generation. According to
the following formula, the likelihood of variable selection relates to the population’s fitness
value:

p(x)=
f (x)− fMin(9)∑

x∈9
{
f (x)− fMin(9)

} (4)

Where p(x), string’s selection probability x in a population 9 and

fMin(9)=Min{f(x)|x(x)} (5)

Step 4: Crossover operator
The crossover is performed on each individual in this stage using a modified uniform

crossover, whereby the individual chosen with a probability is used to make the offspring.
Step 5: Mutation operator
An implementation of the mutation operator is utilized for each individual. First, choose

two columns at random from the ith person. Then, generate two new columns.
Step 6: The most optimal solutions found so far throughout the procedure, as opposed

to GA keeping the best solutions found among the current population.
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Data aggregation
Once the missing data has been eliminated, the values are combined by applying mean (α),
median (β), variance (ν) and standard deviation (sd), to establish the dataset.

α=

∑b
x=1mx

b
(6)

β =median(mx) (7)

sd =

√∑b
x=1(mx−α)

2

b
(8)

ν2=

∑b
x=1(mx−α)

2

b−1
. (9)

Thus, the preprocessed dataset (Y ) is given as,

Y ={K1,K2,.....,KB}orKυ,υ = 1,2,...,B (10)

where, KB represents the preprocessed Bth patient data.

Independent component analysis for feature reduction
ICA is an unsupervised feature extraction technique that has been applied to many
applications. It transforms the original data using a transformation function. The model
of the ICA is defined as,

Y = sX (11)

where, Y–Transformed data. s–Scalar matrix. X–Original data.
Here, the original data is transformed into transformation data using the Tanh

transformation function as a scalar function. The non-linearity among the data will
be maximized, and orthogonality for each data vector will be achieved using this Tanh
transformation function. Selecting the number of independent components is a critical
problem in ICA. The components with an average greater than 0.1 in the newly transformed
dataset are selected.

Feature correlation using T-test-UD-GSRBEHO
After the feature reduction process, correlated features are identified using the T-test-based
Uniform Distribution Gradient Search Rule-based Elephant Herding Optimization for
Cluster Analysis (T-test-UD-GSRBEHO).

Initially, the obtained features {tr } undergo a T -test, and the T -test process is given as,

τr =
t r− t r+1√

δ2((dr+dr+1)/dr×dr+1)
(12)
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where, τ is the T-value for the feature r,δ depicts the pooled standard errors of
tr ,tr+1, and dr ,dr+1 illustrates the overall quantity of data associated with the given
attributes tr ,tr+1.t r ,t r+1 depicts the mean values of the features tr ,tr+1 (Thumilvannan &
Balamanigandan, 2023).

After the τ iscalculated for all samples, the Spearman correlation coefficient is used to
assess the correlation between features.

λr = 1−
6
∑
τ 2r

l
(
l2−1

) (13)

where l represents the overall quantity of characteristics. The non-zero values are mixed
with the reduced characteristics among the linked features. This process yields a valid
feature set. From the resulting feature sets, the optimal feature set is selected using the
Uniform Distribution-Gradient Search Rule-Based Elephant Herding Optimization for
cluster analysis (UD-GSRBEHO), as follows Thumilvannan & Balamanigandan (2023).

Initialization: The feature sets obtained consist of an initial group of elephants with a
predetermined number, denoted as,

U ={[u1],[u2],.......,[ud]}or
[
uφ
]
,φ= 1,2,...,d (14)

where, U depicts the elephant population and
[
uφ
]
depicts the φth elephant clan with

comparable elephant numbers. Every generation of elephants sees the males departing
from the tribe and relocating far from it, while the females stay with their group. The
matriarch of each elephant tribe is in charge (Thumilvannan & Balamanigandan, 2023).

Clan updating operator: Every elephant in a clan has an estimated level of fitness. As
the other elephants in the clan adjust their positions in accordance with the matriarch, the
elephant deemed most fit is regarded as the matriarch (Thumilvannan & Balamanigandan,
2023). In this clan, fitness is the new status

[
uφ
]
is given as NR+1

[uφ],ω which is evaluated as,

NR+1
[uφ],ω=NR

[uφ],ω+�
(
N ∗[uφ]−N

R
[uφ],ω

)
.γ . (15)

Here, R signifies the iteration, N ∗[uφ] depicts the best solution of clan, � signifies the
algorithm parameter, the presence of a matriarch in the group is γ indicated, and the
random number derived from a uniform distribution is denoted as,

γ =
1

NR
[uφ]+1−N

R
[uφ]

. (16)

The position of the best solution in each clan is updated with respect to the following
equation,

NR+1
[uφ]=1.N

c
[uφ] (17)

where,1 the second algorithm parameter represents the degree of influence exerted by the
clan center N c

[uφ]. The clan center is mathematically represented as,

N c
[uφ],<=

1
η[uφ]

.

η[uφ]∑
ω=1

N[uφ],ω,< (18)
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where, < represents the dimension of N[uφ],ω, and η[uφ] indicates elephants in the clan as
a whole

[
uφ
]
.

Clan separating operator: Male elephants disassociate from the clan, a phenomenon
that may be represented by the separation operator. In each cycle, the separation involves
the elimination of the most problematic elephants from the clans,

N ′[uφ]=Nmnm+(Nmxm−Nmnm+1) (19)

where, Nmxm,Nmnm depicts the upper and lower bound of the elephant in the clan[
uφ
]
.N ′[uφ] indicates the worst elephant position in the clan

[
uφ
]
which gets removed

from the clan.

Gradient search based optimization
The gradient approach is used to enhance the population-based technique known as
gradient search based optimization (GBO). In GBO, Newton’s algorithm determines the
search direction. Two primary operators and a collection of vectors are modified to explore
the search space more effectively. Only the worst-positioned agents are arbitrarily changed
by Eq. (10), as indicated in the research on EHO. This variation mechanism in such
methods results in adequate exploitation capability but also leads to sluggish convergence.
Additionally, the best-positioned agents are also altered (Eq. 8). However, this phenomenon
could decrease population diversity and become redundant once the population settles
into a local optimum.

Furthermore, EHO’s exploitation potential is only moderately strong, increasing the
probability of encountering a local optimum (Khalilpourazari et al., 2021). Integrating with
GBO may lead to an enhanced solution since it allows for guidance of the search direction
during iteration, preventing the possibility of being stuck in a local optimum. The local
escape operator (LEO) in GBO can enhance population diversity and prevent overly long
periods of stagnation. The suggested method can fully utilize the gradient data in this
scenario, thereby enhancing the program’s search efficiency (Hassan et al., 2021).

Gradient search rule
To regulate the vector search’s direction, Newton’s technique yielded the gradient search
rule (GSR). A few vectors are included to maintain equilibrium among exploration and
exploitation throughout the iterations and speed up convergence:

ρ1= 2 rand×∝−∝ (20)

∝=

∣∣∣∣β× sin[3π2 + sin(β× 3π
2
)
]∣∣∣∣ (21)

β =βmin+ (βmax−βmin)×
[
1−

(m
M

)3]2
(22)

when given values of 1.2 and 0.2, the variablesm andM represent the current andmaximum
number of iterations, respectively. The term ‘‘rand’’ refers to a random number chosen
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from the range of 0 to 1. The value of αmay be used to regulate the pace of convergence and
changes throughout the iterations. Because the value of α is large early in the iteration, the
approach may quickly converge on the area where it expects to uncover the optimal answer
and improve diversity. The value falls as the loop progresses. As a result, the program can
more effectively utilize the studied regions. Based on this, the GSR expression is as follows:

GSR= rand×ρ1×
21x×xn

(xworst −xbest +ε)
(23)

where and signify places of the best and worst agents, and ε is a small number in the range
of [0,0.1]. The suggested GSR’s capacity for an arbitrary search improves GBO’s capacity
for exploration and its capacity to depart from the local optimum, shown below:

1x = rand(1 :N )×
∣∣step∣∣ (24)

step=

(
xbest −xmr1

)
+δ

2
(25)

δ= 2× rand×
(∣∣∣∣xmr1+xmr2+xmr3+xmr44

−xmn

∣∣∣∣). (26)

Let N be a set of random numbers chosen from the interval [0,1]. The variable ‘‘step’’
represents the size of each step. The term ‘‘global optimal agent’’ refers to the agent that
achieves the best possible outcome on a global scale. It specifically symbolizes the mth
dimension of the nth agent. r1, r2, r3, r4 are various integers arbitrarily selected from [1,
N].

For a local search, a motion attribute called DM is also set in order to enhance the
exploitation capability.

DM = rand×ρ2× (xbest −xn) (27)

rand signifies a random number among [0,1], and ρ2 is the step size attribute shown below:

ρ2= 2rrand×∝−∝ (28)

Finally, the present location of the search agent (xmn ) improved by GSR and DM shown
as follow:

X1mn = xmn −GSR+DM. (29)

The following is another way of expressing Eq. (29) into the context of Eqs. 14 and 18:

X1mn = xmn − rand×ρ1×
2rx×xmn(

ypmn −yqmn +ε
)+ rand×ρ1× (wxbest −xmn ) (30)

where ypmn = ymn +1x,yqmn = ymn −1x, and ymn is a new created variable defined by the
average of xmn and zmn+1. Based on Newton’s technique, zmn+1 is expressed by:

zmn+1= xmn − randn×
2rx×xmn

(xworst−xbest +ε)
(31)
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where 1x is definite by Eq. (15), and xworstand xbest signify the present worst and best
agents, individually. After substituting the present vector xmn in Eq. (21) with xbest , a new
vector X2mn :

X2mn = xbest − rand×p1×
21x×xmn(

ypmn −yqmn +ε
)+ rand×p2× (xmr1−xmr2). (32)

According to Eqs. (21) and (23), the new solution xm+1n can be denoted as:

xm+1n = ra×
[
rb×X1mn +(1− rb)×X2

m
n
]
+ (12ra)×X3mn (33)

X3mn = xmn −ρ1×
(
X2mn −X1

m
n
)

(34)

where ra and rb are random numbers among [0,1].

An LEO is a local egress operator
The method is tuned using the LEO, which increases the probability of obtaining the ideal
solution by allowing the program to move away from local optima.

The LEO introduces a solution Xm
LEO that performs better and is expressed as:

ifrand < prXm
LEO=


Xm+1
n + f1×

(
u1×xbest −u2×xmk

)
+ f2×p1×

[
u3×

(
X2mn −X1

m
n
)
+u2×

(
xmr1−x

m
r2
)]

2
rand < 0.5

xbest + f1×
(
u1×xbest −u2×xmk

)
+ f2×p1×

[
u3×

(
X2mn −X1

m
n
)
+u2×

(
xmr1−x

m
r2
)]

2
otherwise

(35)

end
pr is a predetermined threshold, here pr = predef1 and f2 is a random number that

conforms to the usual normal distribution and is a random number among [−1,1].
u1,u2,u3 are respectively represented by:

u1= L1×2× rand+ (1−L1) (36)

u2= L1× rand+ (1−L1) (37)

u3= L1× rand+ (1−L1) (38)

where µ1 is a random integer between [0,1] and L1 is a binary variable with values of 0 or
1 where µ1< 0.5, L1= 1; otherwise, L1= the

In conclusion, the resulting solution xmk is stated as:

xmk = L2×xmp + (1L2)×xrand . (39)

A randomly selected population solution is represented by xmp , p∈ [1,2,raN ].L2, µ2 is a
random number between [0,1] and is a binary variable with values of 0 or 1.

When µ2< 0.5,L2= .5, otherwise, L2= 0. xrand is the anew created solution.

xrand =Xmin+ rand× (Xmax−Xmin). (40)
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Finally, the best place of the clan is updated N ∗[uφ]eliminating the N ′[uφ]. Given is the

ideal feature set,

O={[κ1],[,κ2],......,[κtt ]}or [κx],x = 1,2.....,tt . (41)

The dataset is tt th represented after the best feature set has been chosen and O shows
the feature set that was chosen.

The pseudocode for UDEHOA is given as follows,

Input: Feature set {[u1],[u2],.......,[ud]}
Output: selected feature sets
Begin
Initialize {[u1],[u2],.......,[ud]}, population size, Maximum iteration Rmax

Set R = 1
While (R≤Rmax)do
Compute elephant’s Fitness
Determine clan updating operator N R+1

[uφ],ω with γ =
1

NR
[uφ]+1−N

R
[uφ]

Determine clan separating operator N ′[uφ]
Evaluate fitness of N R+1

[uφ],ω
If fitness of N R+1

[uφ],ωhigher Then
Update clan position N ∗[uφ]
for n=1:N do
for i=1: dim do
Arbitrarily selects r1,r2,r3,r4 in the range of [1,N]
Estimate GSR and DM based on (14) and (18)
Calculate , ,
Calculate
End for
If rand<pr then
Generate
End if Calculate and update the fitness according to each position
End for

Else
R = R + 1
End If
EndWhile
Return optimal feature set N ∗[uφ]
End
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Decision making
Fuzzy logic fuzzifies crisp inputs, develops decision-making rules, and fuzzes crisp feature
values when the associated feature sets {[κx]}are selected.

Initially, in the fuzzy logic, fuzzify the input feature set using the membership function.
Here, to fuzzify {[κx]} trapezoidal membership function is used, which is denoted as,

∇ ([κx],w,xx,Dia− cls,Hea− cls)=max
(
min

(
[κx]−w
xx−w

,1,
Hea− cls− [κx]

Hea− cls−Dia− cls

)
,0
)
(42)

where, ∇ () depicts the trapezoidal membership function. w,xx,dia− cls,z heart and
diabetes feature values, class, and input parameters. Rule-based decision-making follows,

normal ={1 if dia− cls= 0 & Hea− cls= 0 (43)

Dia− risk=

{
2 if dia− cls= 1&Hea− cls= 0&α(dia)> xx
3 if dia− cls= 1&Hea− cls= 0&α(0)< xx <α(dia)

(44)

Hea− risk=

{
5 if dia− cls= 0&Hea− cls= 1&α(Hea)>w
6 if dia− cls= 0&Hea− cls= 1&α(0)<w <α(Hea).

(45)

The normal patient, low risk of diabetes, high risk of diabetes, low risk of heart disease,
and high risk of heart disease have decision rules 1, 2, 3, 4, 5, and 6. Dia− risk,Hea−
riskdepicts the diabetic and heart risk respectively, Dia− cls,Hea− clsdepicts the diabetic
and heart-disease classes. The data aggregation means the value of heart disease and
diabetes is given as α(Hea) and α(Dia) respectively. Similarly, also established were
patients’ low and high heat and diabetes risk determination guidelines. The diabetic
patient has high risk of stroke. Finally, defuzzification gives the feature’s sharp value. For
all the feature sets, the crisp values are given as,

V =
{
g1,g2,.....,gcv

}
or gλ̄, λ̄= 1,2,....,cv. (46)

Here, gcv is crisp value of [κtt ] after applying fuzzy rules, and Vdepicts the defuzzified
feature values. The AWBi-LSTM classifier receives fuzzy logic feature values, which
predicts and classifies heart disease and diabetes.

Adaptive weight bi-directional long short-term memory for
classification and risk prediction
One aspect that sets a recurrent neural network (RNN) apart from a feed-forward
network is that the neurons in hidden layers receive feedback, incorporating both prior
and current states. Theoretically, RNNs can learn features from time series of any length.
However, experiments indicate that RNN performance may be limited due to vanishing
gradient or gradient explosion. To address these gradient problems, the LSTM network
was developed, introducing a core element known as the memory unit.
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Figure 2 LSTMP RNN architecture.
Full-size DOI: 10.7717/peerjcs.2196/fig-2

The recurrent hidden layer of the LSTM has specialized memory blocks as shown in
Fig. 2. These memory blocks include self-connected memory cells that store the network’s
temporal state and gates for information flow control. Each memory block in the actual
model includes input and output gates. While the output gate controls the output flow
associations of the cell activations into the remainder of the network, the input gate
controls the flow of input activations into the memory cell. To decide how much memory
cell should be decimated from the present memory cell, the forget gate was subsequently
added to the memory block. This method fixes LSTMmodels’ inability to interpret
continuous input streams without subsequences. To adaptively forget or reset the cell’s
memory, the forget gate adjusts its internal state before giving it back as input.

Keyhole connections from internal cells to gates in the same cell enable the contempo-
rary LSTM to learn output timing. The final gate, ’o’, called after the output gate, controls
the memory unit’s output activation information and flows into the network.

The following equations are used iteratively from t = 1 to T to estimate the network
unit activations and convert an input sequence x= (x1,.., xT) to an output sequence y=
(y1,.., yT). In the LSTM, W terms indicate weight matrices (e.g., Wix), diagonal weight
matrices (Wic, Wfc, Woc), bias vectors (bi), logistic sigmoid function (σ ), and input,
forget, output, and cell activation vectors (i, f, o, c), the cell input and output activation
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functions are g and h, respectively, while the network output activation function is
Softback.

In the LSTM classifier, weights can be considered as the connection strength. Weight is
accountable for the degree of effect that will be put on the output when a modification
in the input is seen. A lesser weight value will not change the input, whereas a larger
weight value will significantly modify the output. Every component includes weights
corresponding to all its inputs from the earlier layer, in addition to the input from the
earlier time step. Associative memory applying fast weights is a short-term memory
technique, which considerably enhances the memory capability and time scale of RNNs.

Bi-LSTM extends LSTM; it is helpful in discovering the associations between datasets.
The same output layer is connected to two LSTM networks, one of which is forward-
looking and the other of which is backward-looking. The same output layer is connected
to two LSTM networks, one of which is forward-looking and the other of which is
backward-looking. to select the features optimally. In this research work, Rand Index (RI)
is regarded as the fitness function for optimally selecting the features from the dataset.
The same sequence of data is used for training both. Three gates exist, which are known
as input, forget, and output gate, in an LSTM unit. These gates operate on the basis
expressions (Eqs. (47)–(52)),

it = σ
(
wi
[
ht−1,xt

]
+bi

)
(47)

ft= (wf[ht ,xt]+bf) (48)

ot= 4(wo[ht48,xt]+bo) (49)

c̃t= tanh(wc[htta,xt]+bc) (50)

ct= ft∗ct50+ it∗c̃t (51)

ht= ot∗tanh(ct) (52)

Here, wi, wf, and wo refer to the weights of LSTM, and bi, bf, and bo indicate the biases.
it stands for the input gate, ft signifies the forget gate, and ot represents the output gate.
xt signifies the input vector and ht stands for the output vector. ct refers to the cell state
and t c̃t implies the candidate of the cell state. In the case of the forward LSTM, expressed
as Eht→ liext,Eht . In accordance, the backward LSTM is with Ehtith acxt,Ehtt. Both Eh and Eh
constitute the output of Bi-LSTM at a time,

ht=
[
Eht;Eht

]
(53)
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Especially, the optimization of the Bi-LSTM (i.e, weight values) is performed dynam-
ically. Therefore, the fitness function is modifiable and may evaluate the fitness score
of each Bi-LSTMmodel throughout the weight formation process in their different
training processes. This suggests that the fitness ratings evaluated in different generations
are not comparable. In the AWBi-LSTM algorithm, the mutation parameter is used
for generating new weights according to the mean value of a feature. The selection
technique of AWBi-LSTM is denoted as {BiTMiMi}

λ
i=1, and it is ranked based on their

fitness function Fi, the highest mean weight values (µ) are chosen as the top feature. The
pseducode for AWBi-LSTM is as follows:

AdaptiveWeight Bi-Directional Long Short-TermMemory (AWBi-LSTM)
Input: Total quantity of samples in the dataset N, the quantity of mutations nm, the batch size m,
dataset D, and initial weight w0,
Output: Best chosen features from the dataset
Start w= w0

Initialize model parameter w0

for i= 1 to m/(Nnm)
param←−w save model parameters
for j = 1 to N
for k= 1 to nm

M(param) allocate parameters to the system
obtain a set D as input xi of AWBi-LSTM;
switch(k)
case1: losssquare, paramsquare←−M(xi, square, param)
case2: lossabs, paramabs←−M(xi, abs, param)
case3: losshuber, paramhuber←−M(xi, huber, param)
end switch
if k= 1 to nm

lossmin←−min(losssquare, lossabs, losshuber)
paramnew←−(lossmin, paramsquare, paramabs, paramhuber)
w←−paramnew

end for
end for
End
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Data security using MD5-ECC
After predicting the risk level, the database securely stores the data. For secure storage,
the MD5-ECC technique is utilized. Elliptic curve cryptography (ECC) algorithm, despite
requiring very little computation and a very small key size compared to other techniques,
is secure. However, the complexity and difficulty of this algorithm increase the probability
of implementation errors and reduce the system’s security. Therefore, MD5-ECC is
suggested to enhance the security level of ECC. In ECC, only the public and private types
of keys are produced; however, MD5-ECC adds a third type of key known as the secret
key by using the MD5 hash function to increase the framework’s safety. The use of MD5
is intended to increase the complexity of ECC. As attackers attempt to assault the data, the
complexity of the algorithms rises. The produced secret key is used for decryption as well
as encryption. Thus, the MD5-ECC, whose mathematical description is shown here,

m2
= x3+ax+b (54)

here, a and b mean the integers. In the suggested study, ‘3’ different types of keys must be
established.

Step 1: regarded point Bp as the curve’s base point. Create the public key A using
Eq. (20).

A= (K ∗Bp) (55)

here, according to K, the chosen private key falls between (1 and n− 1).
Step 2: By adding the salt value to the public key and using the MD5 hash method to

get a hash value from this value, you may establish a unique secret key. The novel key Sk is
developed as

Sk =MD5(A‖Sd ) (56)

here Sd indicates a salt value that is randomly preferred.
Step 3: Encrypt data using the secret key and public key, a curve point. The secret key is

combined with the encryption algorithm in the suggested MD5-ECC. The encrypted data
consists of ‘2’ ciphertexts, which are mathematically denoted as,

E1=
(
R∗Bp

)
+Sk (57)

E2=D+(R∗A)+Sk (58)

E1 and E2 represent encrypted text 1 and 2, respectively, whereas R represents a
random integer, and D represents data. Since the decryption, the original data has been
obtained.

Step 4: By performing the encryption’s reverse operation, the data can be decrypted.
Decryption subtracts the secret key from the equation, represented as

D= ((C2−K )∗C1)−Nk . (59)

Hence, with the ECC cryptography technique, he medical database properly stores
healthcare outcomes.
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RESULTS AND DISCUSSION
This section presents an evaluation of the performance of the proposed approach.
The proposed approach is implemented using MATLAB. Performance analysis and
comparative analysis were conducted to demonstrate the effectiveness of the work. The
Stroke Prediction dataset, accessible at https://www.kaggle.com/datasets/fedesoriano/
stroke-prediction-dataset, is used to evaluate the efficacy of the suggested risk prediction
model.

This dataset determines the likelihood of a person having a stroke based on 11 input
characteristics, including age, gender, marital status, hypertension, profession, glucose
level, BMI, blood pressure, existing diseases, chest discomfort, and smoking status.
The dataset comprises more than 5,000 samples. Here is the link to the Kaggle Stroke
Prediction Dataset.

CSV dataset: The heart stroke prediction dataset from Kaggle was utilized as a CSV
dataset. The dataset contains 11 parameters such as age, ID, gender, work type, hyper-
tension, residence type, average level of glucose, heart disease, body mass index (BMI),
smoking behavior, marital status, and stroke.

Description of the dataset: There are 11 attributes in the dataset, and each one identifies
whether the data is categorized or numerical.

ID: This component displays a person’s distinctive identifier. Information that can be
computed.

Age: This trait serves as a proxy for the person’s age. details on classifications
Gender: This attribute reveals the person’s gender. Information that is obtainable.
Hypertension: This characteristic shows if the person has high blood pressure or not.

details regarding the classifications.
Work type: This characteristic describes a person’s employment. details regarding the

classifications.
Residence type: This characteristic reflects the person’s current situation.
Heart disease: This characteristic suggests that the person may have heart disease.

Information that is calculable.
Average glucose level: This statistic shows the average level of a person’s blood sugar.

Information that is calculable.
BMI: The acronym BMI stands for ‘‘numerical data.’’ The BMI (body mass index) of a

person is referred to in this attribute.
Ever married: details from the group. This attribute denotes a person’s marital status.
Smoking status: Statistical data broken down by category. This trait reveals a person’s

smoking status.
Stroke: This characteristic indicates whether someone has suffered a stroke. The com-

plete attribute dash represents the target class, while the remaining attributes represent the
feature classes.

A training dataset, which makes up 80% of the total, is separated from a testing dataset
in the input dataset. The term ‘‘training dataset’’ refers to the collection of data that a
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machine learning model learns from. Testing datasets are used to show how successful
the trained model.

Evaluation metrics
The proposed research method is applied on this dataset and performance evaluation is
made of metrics such as precision, accuracy, error rate, recall, F-measure, and number of
rules. These metrics are evaluated based on correct and wrong prediction parameters with
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).

The performance evaluation in the graphical representation is defined in the following.
Precision: The accuracy of a forecast is determined by the number of predicted positive

observations. A small rate of false positives indicates great precision. The formula below
explains it (3.10),

Precision=TP/TP+FP. (60)

Precision is used to calculate the ratio among the correctly predicted stroke data and
the stroke prediction data given in database.

Recall: The percentage of accurately anticipated positive results to all class findings is
recalled.

Recall =TP/TP+FN (61)

It computes the ratio of successfully predicted stroke data to database-positive stroke
data.

Sensitivity: Sensitivity is the fraction of relevant data that were regained.

Sensitivity =
TP

(TP+FN )
(62)

Specificity: Specificity refers to the probability of negative matches, conditioned on
truly being negative.

Specificity =
TN

(TN +FP)
(63)

F-Measure: The precision and recall weighted average is termed the F-Measure. This
means that erroneous positives and negatives are reflected in this score.

F-measure= 2∗ (Recall∗Precision)/(Recall+Precision) (64)

Accuracy: Since accuracy is the logical efficiency metric, it can be defined as the ratio of
properly predicted data to all data.

Accuracy = (TP+TN )/(TP+FP+FN +TN ) (65)

The ratio between the entire amount of stroke data and the accurately anticipated
stroke data is measured by this statistic. Here, the correctly predicted stroke data would
be divided with total number of stroke data for measuring the accuracy value.

Negative predictive value (NPV): The negative predictive value is definite as follows,

NPV =
TP

(TN +FN )
(66)
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Table 1 Comparative analysis of the proposed HKGAmodel.

Techniques Clustering time (sec)

Proposed HKGA 1.181
DH-CC-KC 1.239
K-means 1.293
GMM 2.636
KNN 5.174

Matthews correlation coefficient: This method of determining the Pearson product-
moment correlation coefficient among actual and predicted data utilizes a contingency
matrix. Regarding M’s entries, MCC is:

MCC =
TP.TN −FP.FN

√
(TP+FP).(TP+TN ).(TN +FP).(TN +FN )

(67)

Performance analysis of HKGA
The suggestedHKGAperformance is analyzed with the existing methods, such as K-means,
Gaussian Mixture Model (GMM) algorithm, and K-Nearest Neighbor (KNN) based on
the time consumed for clustering.

The clustering times of the suggested and current techniques are illustrated in Table 1.
The proposed HKGA method takes a clustering time of 1.181 s. However, existing
methods consumed a significantly longer time for clustering. The partial derivative of
the Hamiltonian in conventional K-means showed improvement in clustering time. The
above analysis indicates that the proposed method requires less time for clustering than
existing methods.

Performance analysis of ICA
The suggested ICA performance is compared with the prevailing technique like SS-PCA,
PCA, Linear Discriminative Analysis (LDA), and Gaussian Discriminative Analysis (GDA)
based on the metrics, such as Peak Signal-to-Noise Ratio (PSNR), Mean Square Error
(MSE) and R-Square.

The performance of the suggested ICA along with present approaches is assessed in
Table 2 regarding the quality metrics, PSNR and MSE. Higher PSNR and lower MSE
values indicate the superior performance of the feature reduction strategy. Compared to
the current SS-PCA, PCA, LDA, and GDA techniques, the PSNR value obtained by the
suggested approach is 2.7 dB higher. With a low error value of 0.01010, the suggested
ICA outperforms the traditional frameworks. The current PCA performs better now that
the shell sorting procedure has been used. As a result, the recommended ICA effectively
reduces the characteristics.

Table 2’s performance numbers can only be improved when R-Square, a statistical
metric, is high. The R-Square values of the current models were 0.756 (SS-PCA), 0.653
(PCA), 0.374 (LDA), and 0.175 (GDA), whereas the recommended approach had an R-
Square value of 0.810. Thus, the analyses show that the suggested strategy is significantly
superior to others.
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Table 2 Performance analysis of the proposed ICA.

Techniques/Metrics PSNR (dB) MSE R-Square

ICA 40.99 0.01010 0.810
SS-PCA 39.87 0.01015 0.756
PCA 38.85 0.01141 0.653
LDA 37.94 0.01268 0.374
GDA 31.25 0.02738 0.175

Figure 3 Performance analysis of the proposed AWBi-LSTM classifier method.
Full-size DOI: 10.7717/peerjcs.2196/fig-3

Performance analysis of AWBi-LSTM classifier
The performance of the proposed AWBi-LSTM classification model is examined and
compared with other existing techniques like RBM, Convolutional Neural Networks
(CNN), Deep Neural Networks (DNN), and Recurrent Neural Networks (RNN). Based
on quality metrics like F-measure, False Positive Rate (FPR), False Recognition Rate
(FRR), False Negative Rate (FNR), Net Present Value (NPV), MCC, and confusion
matrix, the suggested technique is compared with the current methods.

In Fig. 3, the performance of the proposed and existing approaches are analyzed
according to Sensitivity, Specificity, accuracy, and precision values shown in Table 3.
The proposed method achieved a sensitivity of 98.81%, whereas the existing PLD-SSL-
RBM, RBM, CNN, DNN, and RNN have 98.42%, 88.25%, 87.28%, 85.83%, and 85.71%,
respectively, Likewise, the suggested technique has sensitivity, specificity, accuracy, and
precision of 98.81%, 99.80%, 99.65%, and 98.64%, respectively, which is higher than the
existing methods. Semi-Supervised Learning and Power Lognormal Distribution have
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Table 3 Performance analysis of the proposed AWBi-LSTM classifier method.

Techniques/Metrics Sensitivity Specificity Accuracy Precision

ProposedAWBi-LSTM 98.81 99.80 99.65 98.64
PLD-SSL-RBM 98.42 99.73 99.55 98.42
RBM 88.25 99.61 99.02 97.56
CNN 87.28 99.40 98.52 97.03
DNN 85.83 99.12 98.31 96.31
RNN 85.71 99.03 98.01 96.21

Notes.
The bold values indicate that the proposed system achieves the highest results for all metrics.

Table 4 Performance analysis of proposed AWBi-LSTM.

Techniques/Metrics F-measure (%) NPV (%) MCC (%)

ProposedAWBi-LSTM 98.89 99.84 98.52
PLD-SSL-RBM 98.42 99.73 98.16
RBM 88.25 98.04 86.29
CNN 87.29 97.88 85.16
DNN 85.83 97.63 83.47
RNN 85.71 97.61 83.33

enhanced the performance of the classifier to a greater extent. Overall, the performance
analysis reveals that the proposed method accurately classified the risk classes.

Table 4 exhibits the performance of the suggested AWBi-LSTM according to F-
Measure, MCC, and NPV. The proposed method’s F-Measure, NPV, and MCC values
are 98.89%, 99.84%, and 98.52%, respectively, whereas the existing methods provide
comparatively lower performance. The proposed AWBi-LSTM approach outperformed
all other current methods in this performance comparison.

Figure 4 illustrates the analysis of the proposed method alongside existing methods
based on F-measure, NPV, and MCC, which are values contributing to false predictions.
The proposed model attained higher F-measure, NPV, and MCC values. Hence, it can
be concluded that the proposed method achieved better performance and accurately
classified the classes.

Figure 5 illustrates the performance of the classification model using the confusion
matrix. The confusion matrix is employed to evaluate the model’s accuracy by comparing
the predicted class with the actual class. The classifier’s accuracy is calculated as the
percentage of occurrences that are successfully classified. The confusion matrix clearly
demonstrates that the proposed AWBi-LSTM provides better accuracy. Thus, the phases
are more effectively categorized by the proposed framework.

Comparative measurement with literature papers
Here, the effectiveness of the proposed approach is compared with traditional approaches
like Classification and Regression Tree (CART) (Carrizosa, Molero-Río & Morales, 2021),
Stacked Sparse Auto-Encoder and Particle Swarm Optimization (SSAE-PSO) (Mienye &
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Figure 4 Comparative analysis of the proposed AWBi-LSTM and the existing methods.
Full-size DOI: 10.7717/peerjcs.2196/fig-4

Table 5 Comparative analysis of the proposed model and previous studies.

Techniques/Metrics Accuracy (%) Precision (%) F-Measure (%)

CART 91 92 91
SSAE- PSO 97.3 94.8 97.3
SA 90.24 92 90
PLD-SSL-RBM 99.55 98.42 98.42
Proposed AWBi-LSTM 99.65 98.64 98.89

Sun, 2021), and Stacking Algorithm (SA) (Abdollahi & Nouri-Moghaddam, 2022) based
on precision, accuracy and F-Measure obtained using the Framingham dataset.

Table 5 presents a comparative analysis of the AWBi-LSTMmodel suggested in this
study with the models used in previous research. The analysis reveals that the suggested
framework was more efficient than other frameworks in predicting diabetes and heart
disease.
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Figure 5 Confusionmatrix for the proposed AWBi-LSTM.
Full-size DOI: 10.7717/peerjcs.2196/fig-5

CONCLUSION
This work proposes a novel framework termed AWBi-LSTM-based stroke disease
prediction model for IoT. Pre-processing, feature reduction, feature correlation, decision-
making, optimum feature set selection, classification, risk prediction, and encryption
are the stages through which the framework functions. Subsequently, performance
assessment uses the stroke prediction dataset to compare the proposed technique to
existing systems. From the experimental analysis, the proposed framework achieves
an accuracy of 99.65%, precision of 98.64%, and F-measure of 98.89%. The proposed
approach required 1 s less clustering time than the current system. Thus, the proposed
approach proves to be better and more efficient than other present techniques. However,
the proposed work, which focuses solely on diabetes and heart stroke risk analysis,
provides better results. The future scope of this work is to apply this proposed algorithm
to a larger dataset and explore other deep learning models. The use of larger datasets
could significantly enhance the reliability of the model. The deployment of deep learning
architectures would help determine the likelihood of a stroke in adult patients. Early
identification allows individuals to promptly obtain stroke treatment and then reconstruct
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their lives after the incident. Hence, future research endeavors to enhance the precision of
early identification while minimizing the occurrence of errors.
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