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ABSTRACT
In this work, we focus on solving the problem of timbre transfer in audio samples.
The goal is to transfer the source audio’s timbre from one instrument to another
while retaining as much of the other musical elements as possible, including
loudness, pitch, and melody. While image-to-image style transfer has been used for
timbre and style transfer in music recording, the current state of the findings is
unsatisfactory. Current timbre transfer models frequently contain samples with
unrelated waveforms that affect the quality of the generated audio. The diffusion
model has excellent performance in the field of image generation and can generate
high-quality images. Inspired by it, we propose a kind of timbre transfer technology
based on the diffusion model. To be specific, we first convert the original audio
waveform into the constant-Q transform (CQT) spectrogram and adopt image-to-
image conversion technology to achieve timbre transfer. Lastly, we reconstruct the
produced CQT spectrogram into an audio waveform using the DiffWave model. In
both many-to-many and one-to-one timbre transfer tasks, we assessed our model.
The experimental results show that compared with the baseline model, the proposed
model has good performance in one-to-one and many-to-many timbre transfer tasks,
which is an interesting technical progress.

Subjects Artificial Intelligence, Multimedia
Keywords Timbre style transfer, Diffusion model, CQT spectrogram, DiffWave

INTRODUCTION
In recent years, researchers have been paying more and more attention to the use of
artificial intelligence in music creation. One important area of research in this discipline is
the study of music style transfer. Before delving into this inquiry, let us suppose for the
purposes of experimentation that there are two distinct aspects of music: style and content.
It is possible to construct whole new compositions with unique qualities from various
sources by dividing and recombining these two elements. Research on music style transfer
is broadly categorized into timbre style transfer (Lu et al., 2019; Cífka et al., 2021),
performance style transfer (Xiao, Chen & Zhou, 2023; Mukherjee & Mulimani, 2022), and
composition style transfer (Hung et al., 2019; Nakamura et al., 2019), among other
categories, with different definitions for content and style.

Timbre style transfer has garnered significant attention in the field of music style
transfer. Timbre is a significant characteristic of musical sound. However, the definition of
timbre is ambiguous, and there are multiple interpretations of its meaning in existing
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literature. The definition by the Acoustical Society of America describes timbre as a
perceptual attribute that enables listeners to differentiate between two similar sounds that
have the same loudness and pitch. For example, a person may play the same note on a
violin and a piano, yet people can still discern the differences between these two
instruments. This definition intuitively captures the human perception of timbre,
emphasizing its uniqueness and high recognizability. Despite the fact that this definition
makes it very evident what timbre is not, timbre is a very abstract concept that is
challenging to define succinctly. Although sometimes compared to visual colors, timbre is
more difficult to quantify than visual colors. Modeling timbre is a challenging task because
different instruments exhibit great differences in the time and frequency domains (Wessel,
1979). While there are well-designed physical models that can simulate sound production
using formulas and parameters (Karplus & Strong, 1983; McIntyre, Schumacher &
Woodhouse, 1983; Smith, 1992), hi-fi sample libraries are still preferred in virtual
instrument plugins.

Numerous techniques for creating new sounds from two or more sources are available
in the literature on music signal processing. Some of these algorithms include analysis-re-
synthesis (Jehan, 2004; Masri, Bateman & Canagarajah, 1997), cross-synthesis (Burred,
2013; Lazzarini & Timoney, 2009), vocoding (Mor et al., 2018), and hybridization (Donin
& Traube, 2016). Regarding style transfer techniques, parallel datasets with stylistic notes
in the target domain that correspond to each other in the source domain are typically
needed for feature interpolation (Caetano & Rodet, 2011) or matrix decomposition
(Driedger, Prätzlich & Müller, 2015; Su et al., 2017) based on conventional style transfer
techniques. Stated differently, style transfer requires supervised element-by-element
specification of content properties. The system’s application is severely limited by this
shortcoming. The latest advancements in deep learning models have unlocked new
opportunities for analyzing high-dimensional data and managing intricate subsequent
tasks. Researchers have recently put out a range of models for learning musical instrument
timbre and music style transfer that are based on machine learning techniques. For
example, Brunner et al. (2018) introduced a model called MIDI-VAE, which is based on a
variational autoencoder. This model achieves polyphonic music style transfer for multiple
instrument tracks. Although the genre is decomposed through the auxiliary classifier, other
musical attributes are intertwined. Huang et al. (2018) proposed Timbretron, which
utilizes Constant-Q Transform (CQT) spectrograms as the representation of the original
audio waveform. They employ CycleGAN as the timbre transfer model and then use a pre-
trained WaveNet to convert the transformed CQT features back into the original audio.
Their method captures higher resolution at lower frequencies while maintaining pitch
variance, but the synthesized audio contains unrelated artifacts, resulting in suboptimal
audio quality. Mor et al. (2018) modeled the original waveform and achieved timbre
transfer between multiple instruments by training a sharedWaveNet encoder and multiple
independent WaveNet decoders. However, this approach requires training multiple
decoders, incurring significant computational costs. The audio samples need to be
generated sequentially, which slows down the audio synthesis and makes it less suitable for
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real-time applications. Jain et al. (2020) proposed an attention-based method for timbre
transfer (ATT) that allows for the transfer of the timbre of the source audio from one
instrument to another. Chen & Chen (2021) proposed a musical instrument timbre transfer
model based on a multi-channel attention guidance mechanism.The application of a
multichannel attention guidance mechanism enhances the ability of the model guidance
generator to capture the most discriminative components (harmonic components) of the
spectrogram. Engel, Gu & Roberts (2019) proposed that a differentiable digital signal
processing (DDSP) model can also perform timbre transfer, but is limited to monophonic
music. Although these studies have achieved good results in their respective areas, they did
not propose explicit solutions for enhancing the quality of spectrogram generation.
Moreover, most of their methods can only perform one-to-one transfer operations
between two given instruments and cannot achieve more flexible control over timbre. In
multi-instrument timbre transfer operations, previous methods have complex structures,
high computational costs, and slow audio generation speed.

Note that parallel research that slightly overlaps with this work emerged during the
completion of this work. Comanducci, Antonacci & Sarti (2023). proposed a timbre
transfer method, DiffTransfer, based on denoising diffusion implicit models (DDIMs). The
work in this article has several key advances and differences compared to DiffTransfer
compared to DiffTransfer, there are several key advances and differences:(1) The method
in this article introduces a new cross-attention mechanism in the potential layer that allows
for more accurate learning of the timbre of the target instrument from the conditioning
mechanism. This enhancement can address some of the model’s limitations in capturing
complex timbre nuances. (2) In this article, we introduce a potential layer compression
strategy that can reduce the data dimensionality more efficiently, thus speeding up the
model inference. (3) The model in this article introduces a conditional mechanism that
enables the execution of unpaired timbre transfer, increasing the applicability of the model.

In this article, we delve into the issue of timbre style transfer, focusing on two main
aspects:(1) timbre transfer while maintaining musical content and sound quality. (2)
Achieving more flexible one-to-one and many-to-many timbre transfer in audio
waveforms containing only single and multiple instruments. Specifically, the possibility of
shifting between audio tracks containing only a single instrument and a mix of instruments
without a prior separation step is investigated. A perceived aspect of musical sound that is
distinct from pitch and amplitude contours is referred to as musical timbre (Colonel &
Keene, 2020). This work adopts a simplistic perspective, assuming an equivalency between
instruments and timbres. This work aims to achieve the conversion of a musical
composition from one vocal timbre type to another, while maintaining other qualities that
are significant to the music. In this study, three primary task types were implemented. The
first is the one-to-one transfer of a single timbre, which in this case refers to converting the
timbre of one instrument to that of another while maintaining the musical content (e.g.,
pitch, rhythm, and melody). For example, the timbre of a piano performance is converted
to the timbre of a violin, while maintaining the pitch and rhythm of the original
performance. The one-to-many transfer of a single timbre comes next. For example, a
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trumpet solo can be changed into a solo for a flute, cello, or guitar while keeping the same
melodic structure. Finally, there is many-to-many transfer of multiple timbres, where
given a source audio containing multiple timbres, the goal is to replace the timbre of each
sound according to a predefined mapping while preserving the content of all the sounds.
Specifically, all sounds that originally had a first input timbre will be replaced with a first
output timbre, all sounds with a second input timbre will be replaced with a second output
timbre, and so on. For example, a piece of music played by a piano, and a violin is
converted to a piece of music played by an electric guitar, and a flute, while maintaining the
pitch, rhythm, and melody of each instrumental part.

This study proposes a framework for music timbre transfer based on the diffusion
model (Ho, Jain & Abbeel, 2020) and conducts tests for both individual and multiple
instruments. To achieve the transfer of timbre from one instrument to another, an
intriguing strategy is to directly apply image-based style transfer techniques to the time-
frequency representation of audio. Here, we utilize a similar technique for image-to-image
style transfer (Saharia et al., 2022). We treat the music style transfer problem as a
multimodal conditional distribution of learning styles in the target domain given only one
unpaired sample in the source domain. Specifically, this article utilizes noise as the input
for the spread model and adjusts it by selecting the target timbre CQT spectrogram chart
as the input. It then gradually learns to reconstruct the desired timbre’s CQT spectrogram
through a denoising process. This process involves adjusting the CQT spectrogram based
on the selected target timbre. However, restoring the style-transformed CQT spectrogram
back to an audio waveform presents a fundamental obstacle. Accurate reconstruction
requires phase information, which is difficult to predict. Existing phase inference
techniques, such as Griffin & Lim (1984), introduce disturbances in the output waveform,
creating unnecessary artifacts that affect the quality of audio generation. Recently, deep
generative models based on neural networks, such as WaveNet (Oord et al., 2016; Rethage,
Pons & Serra, 2018) and WaveRNN (Paul, Pantazis & Stylianou, 2020; Gu et al., 2021),
have achieved significant success in generating high-quality audio. However, these models
suffer from slow inference generation speeds, which makes them inefficient for real-time
usage. Therefore, this article adopts the DiffWave model (Kong et al., 2020), which is based
on the Diffusion model, to restore the generated spectrogram to the original audio. The
DiffWave model has a faster inference speed compared to other models, while still being
able to generate high-quality audio. For time-frequency representation, this article utilizes
the CQT method to convert the original audio waveform into a spectrogram. Unlike the
short-time Fourier transform (STFT), the CQT has specific advantages in representing
music audio. It better captures the fundamental frequency of notes, which increases
exponentially with higher pitches. To validate the effectiveness of the proposed model, we
employ both objective measurements and subjective evaluations. The experimental results
demonstrate that the proposed model can successfully perform one-to-one and many-to-
many timbre transfers. This is an interesting technical advance compared to the baseline
model. The audio demonstrations for this article can be found at https://youtu.be/
DTINzPH_LBI.
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RELATED WORK
Timbre transfer
Previous deep learning models have addressed various aspects of music style transfer
research, such as timbre style transfer, composition style transfer, and performance style
transfer. In recent years, there has been a significant focus on timbre style transfer, which
involves converting the timbre of one instrument in audio to that of another instrument.
For music style transfer, broadly speaking, the implementation method mainly involves
two aspects: the transfer can be of symbolic music or audio signals. In this article, we will
focus on studying the timbre style transfer of audio signals.

Verma & Smith (2017) were the first to apply deep learning models to timbre transfer.
Subsequent studies have suggested a model that is founded on the WaveNet autoencoder
architecture (Mor et al., 2018) for the transformation of musical waveforms across various
stylistic domains, including different musical instruments. This approach entails direct
analysis of the audio waveform, whereas an alternative method involves utilizing the time-
frequency representation of the audio. The study in Jain et al. (2020) employs an attention-
based architecture to transform theMel-spectrogram, which is subsequently inverted using
the MelGAN (Kumar et al., 2019) architecture. Other studies employ CycleGAN-based
models (Lu et al., 2019; Chen & Chen, 2021; Yang, Cinquin & Sörös, 2021), which eliminate
the need for paired training data and integrate consistency loss terms in the reconstruction
process to achieve accurate content reconstruction. Several studies have also explored
variational autoencoders (Chang, Chen & Hu, 2021; Bitton, Esling & Chemla-Romeu-
Santos, 2019), which demonstrate the ability to transfer timbre across diverse domains.
Nevertheless, this method is restricted to monophonic musical compositions. Additionally,
there exists a category of techniques that involve the extraction of musical parameters
(Engel, Gu & Roberts, 2019) from the input track, including pitch and loudness. These
parameters are then transmitted through the process of sound resynthesis and are utilized
in conjunction with deep learning models to generate tracks with the desired timbre.
Contemporary research predominantly depends on generation models such as CycleGAN
(McAllister & Gambäck, 2022), VAE (Cífka et al., 2021), UNIT (Liu, Breuel & Kautz,
2017), and musicVAE (Roberts et al., 2018). Although these methods have contributed
significantly to the examination of timbre style, the outcomes of their application suggest
that certain limitations exist.

In this study, we will employ a time-frequency representation approach to investigate a
flexible timbre style transfer framework that enables multi-instrument timbre transfer
without any source separation preprocessing. Simultaneously, this study also places greater
emphasis on the quality of the generated spectrogram in order to produce higher quality
audio.

Diffusion model
The denoising diffusion probability model (DDPM) (Ho, Jain & Abbeel, 2020) is widely
acknowledged as a prominent model for generative tasks at the forefront of current
research. Due to the simplicity and effectiveness of DDPM training and its superior
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generation results, it has increasingly replaced generative adversarial networks (GAN)
(Goodfellow et al., 2020) and variational autoencoders (VAE) (Peng et al., 2021) in the field
of image generation. Despite the potent generative capabilities of DDPM, its sampling
process is recognized for its sluggish pace. This requirement is necessary to ensure that the
sampling process conforms to the Markov chain. The DDIM model, which is an extension
of the DDPM, is designed to enhance the sampling process iteratively by employing non-
Markov methods (DDIM; Song, Meng & Ermon, 2020). A recent study introduced the
potential diffusion model (LDM) (Rombach et al., 2022) with the aim of reducing
computational complexity by compressing images from the pixel space to the potential
space for diffusion. Moreover, it demonstrates strong capabilities in generating images.
The remarkable generation capabilities of the diffusion model render this announcement a
noteworthy advancement for the field of music generation. In recent times, the diffusion
model has been applied in the field of audio technology. In a study conducted by
Hawthorne et al. (2022), the diffusion model was effectively utilized to transform MIDI
tracks into spectrograms, demonstrating its ability to modify audio representations.
Another study (Schneider et al., 2024) introduces a model for transforming text into music,
offering an innovative approach to translating written content into musical compositions.
Furthermore, the diffusion model has shown significant effectiveness in various audio-
related applications, such as symbolic music generation (Mittal et al., 2021), speech
synthesis (Kong et al., 2020; Chen et al., 2020), and song extraction (Plaja-Roglans, Miron
& Serra, 2022). The diverse applications of the diffusion model in the audio domain
demonstrate its capacity to provide innovative solutions for audio processing tasks.

This article will employ the latent diffusion model for timbre style transfer due to its
quicker sampling time and superior quality outcomes. In this respect, the work in this
article has some commonalities with DiffTransfer (Comanducci, Antonacci & Sarti, 2023),
as both use diffusion modeling to achieve the transfer of instrumental timbre styles. In
order to improve the quality of the generated audio, the vocoder model DiffWave (Kong
et al., 2020) based on diffuion model is used in this study. It is notably simpler to train
compared to GAN-based models (Kumar et al., 2019) and exhibits significantly faster
reasoning speed than WaveNet (Oord et al., 2016; Rethage, Pons & Serra, 2018).

METHODS
This article presents a flexible system for transferring music timbre, with the objective of
establishing a mapping from the source audio domain X to the target audio domain Y. It is
feasible to transform the timbre of an instrument from the source audio domain X to that
of the target instrument in the target audio domain Y while preserving characteristics such
as tone and loudness. The system has the capability to achieve one-to-one or many-to-
many timbre style transfers. As depicted in Fig. 1, the operation of the system is primarily
segmented into three components. Firstly, the input audio waveform employs CQT to
acquire the spectrogram representation of music. Furthermore, the CQT spectrogram does
not take into account the phase information and instead treats it as an image. We approach
the timbral transfer as a problem of converting one image to another. In this study, the
timbre transfer model LDM is utilized to perform the timbre transfer operation.
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Subsequently, the CQT representation produced following the transfer of timbres is
converted back into the audio waveform through the utilization of the trained DiffWave
model.

Subsequently, the three steps outlining the functioning of the system will be expounded
upon. This section will focus on the timbre transfer.

Time-frequency representation
Timbre is a complex and unquantifiable attribute, making it very challenging to directly
train models using raw audio waveforms. This article aims to solve the problem by
employing a method that transforms abstract concepts into concrete forms. It achieves
style transfer from image to image by obtaining the spectrogram diagram of audio and
ultimately restoring the processed spectrogram diagram to audio. In time-frequency
analysis, two very representative algorithms are the short-time Fourier transform (STFT)
and the CQT. STFT is one of the most commonly used time-frequency analysis methods,
while CQT is considered particularly suitable for analyzing music data. Therefore, this
article will utilize the CQT method to represent raw audio data.

Before introducing the CQT, it is important to briefly examine the concept of the
twelve-tone equal temperament. An octave pitch is uniformly divided into 12 semitones,
with the frequency ratio of the two adjacent notes being

ffiffiffi
212

p
. This suggests that the

distribution of music pitch follows an exponential pattern rather than linearly. The center
frequency of the CQT, an important method for time-frequency analysis, is distributed
according to an exponential law. This results in varying filtering bandwidths while
maintaining a constant Q ratio of center frequency to bandwidth. The main characteristic
of CQT that sets it apart from other popular time-frequency analysis techniques is its
frequency axis, which is scaled logarithmically instead of linearly. Additionally, the
window size of CQT varies with changes in frequency. This allows the CQT to align with
the distribution of scale frequencies, providing significant advantages when analyzing
musical signals.

In the context of time-frequency analysis, this article partitions the audio into 5-s
segments to facilitate processing. Each segmented audio clip undergoes a transformation
using CQT to convert it into a spectrogram. In this procedure, the article utilizes the
Hanning window with a sampling rate of 16 kHz and a step length of 256 for each column.
It acquires the 84-dimensional logarithmic scale CQT representation for each frame,
encompassing seven octaves, each of which comprises 12 dimensions.

Figure 1 Piano to guitar timbre transfer. Full-size DOI: 10.7717/peerj-cs.2194/fig-1
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Timbre style transfer
This section will outline the proposed architecture for timbre style transfer. The
architecture accepts the CQT spectrogram diagram of the source instrument as input and
produces the corresponding target CQT spectrogram diagram. The CQT diagram
presented is derived from the performance of the same musical piece on the specified target
instrument. As depicted in Fig. 2, the timbre transfer model comprises three main
components. The first model is the VAE in pixel space, designed to capture the input and
output information of the CQT spectrogram for the purpose of effectively compressing
and reconstructing it. The second model is the diffusion model of potential space, which
primarily serves to facilitate the transfer of timbre. In order to accomplish domain
transformation, the model includes a cross-attention mechanism that makes it easier for
information to move from the conditional mechanism to the de-noising UNet. In the end,
the conditional mechanism is utilized to obtain the information from the CQT
spectrogram of the target instrument and transfer it to the latent space, providing vital data
for the entire timbre transfer procedure.

Perceptual compression
This work builds on the work of Rombach et al. (2022) by integrating the idea of perceptual
compression to improve the efficacy of training the diffusion model for generating high-
quality CQT spectrogram. This feature enhances the computational efficiency of the
diffusion model by conducting sampling in a low-dimensional space.

This article employs a convolutional VAE to formally encode the CQT spectrogram

X 2 RT�F into a potential space Z. Here, Z 2 RC�T
r�F

r , T, and F represent the time and
frequency dimensions, C denotes the number of channels, and r signifies the compression
level of the potential space. In order to achieve high computational efficiency and sample
quality, the values of C and r are set to 8 and 4, respectively. Both the encoder E and the
decoder D consist of stacked convolution modules, with each block comprising
convolution layers and residual connections. During the generation phase, the decoder is
utilized to reconstruct Z in order to produce a CQT spectrogram ~X 2 RT�F for a given
potential representation.

Figure 2 Models of timbre transfer. Full-size DOI: 10.7717/peerj-cs.2194/fig-2
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In order to train VAE, this study presents the creation of three loss functions: Gaussian
constraint loss, adversarial loss, and CQT spectrogram reconstruction loss. The CQT
spectrogram reconstruction loss is employed for computing the average
discrepancy between the input sample X and the reconstructed CQT spectrogram. The
PatchGAN (Demir & Unal, 2018) discriminator was employed to enhance the
quality of reconstruction in the context of adversarial loss. Gaussian constraints are
utilized to impose structure on the potential spaces of VAE, promoting the learning of
continuous and organized potential spaces that can better capture the underlying structure
of the data. In summary, the general training objectives of VAE can be delineated as
follows:

LVAE ¼ Lrecðx;DðeðxÞÞÞ þ kLadvðwDðeðxÞÞÞ þ cKLGauðl; r2Þ (1)

where LVAE denotes the reconstruction loss, Lrec represents the adversarial loss,
kLadv stands for the Gaussian constraint loss, w signifies the discriminator utilized
in the adversarial process, and l and r denote the mean and variance of the VAE potential
space.

Latent diffusion models
This article utilizes a methodology akin to the Palette (Saharia et al., 2022) image-to-image
conversion technology to instruct the LDM as a timbre transfer decoder. In the initial
phase, an efficient and low-dimensional latent space was successfully acquired through the
perceptual compression model, wherein high frequencies and subtle details are abstracted.
This has a significant impact on the extraction of musical attributes such as pitch, loudness,
and timbre. In the subsequent sections, the features extracted from the perceptual
compression model will be utilized as input for the constructed LDM model to represent
the CQT spectrogram within the potential space and to facilitate the transformation
between domain X and domain Y. Upon reflection of LDM, it can be broadly stated that
LDM operates by acquiring the ability to produce data from noise through two
distinct processes. The initial stage involves the forward process, during which Gaussian
noise c � Nð0; 1Þ is incrementally introduced to the input until the two become
indistinguishable. The subsequent stage involves the reverse process, also known as the
de-noising process, during which the decoder acquires the ability to undo the forward
process and reconstruct the data from the noise. LDM represents an enhanced iteration of
DDPM, sharing the same training process as DDPM. However, distinctions arise in the
modeling process. The training process for LDM occurs in a potential space, enabling
faster reasoning time.

Given a CQT spectrogram X with a compressed potential encoding Z0 � qðZ0Þ. In the
forward process, starting with the initial data Z0, the diffusion time can be represented as
t 2 f0; 1;…T � 1g when T steps are considered. The given code is subject to the
incremental introduction of Gaussian noise in accordance with the predefined variance
table b1;b2;…;bT . Following the iterative step T, a series of potential noise variables,
denoted as Z1;Z2;…;ZT , is subsequently generated
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qðZ1:T jZ0Þ :¼
YT
t¼1

qðZtjZt�1Þ (2)

qðZtjZt�1Þ :¼ NðZt;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
Zt�1:btIÞ (3)

where ZT 2 NðZT ; 0; IÞ is pure Gaussian noise.
In the inverse procedure, commencing with the Gaussian noise distribution ZT and the

desired instrument CQT spectrogram contained within Ey, the denoising process,
conditioned on Ey, progressively produces the potential encoding Z0 of the target CQT
spectrogram through the subsequent steps

pðZtjZt�1; E
yÞ :¼ NðZt�1; lhðZT ; t; E

yÞ; r2t IÞ (4)

phðZ0:T jEyÞ ¼ pðZTÞ
YT
t¼1

phðZt�1jZt; E
yÞ (5)

where h represents a parameterized neural network defined by Markov chains. In this
context, we utilize U-Net, a commonly used model in image synthesis. In practice, the
mean lh and variance r2t are parameterized as follows

lhðZT ; t; E
yÞ ¼ 1ffiffiffiffi

at
p ðZt � btffiffiffiffiffiffiffiffiffiffiffi

1� �a
p

t

ehðZt; t; E
yÞÞ (6)

r2t ¼
1� �at�1

1� �at
bt (7)

where at ¼ 1� bt , �at ¼
Qt
i¼1

ai, and ehðZt;tÞ are predicted generated noise.

In this article, a reweighted noise training objective is used in practice

LsimpleðhÞ ¼ EeðxÞ;e�Nð;Þ;tjjehðZt; t;E
y � eÞjj22 (8)

where e � Nð0; IÞ is derived from a diagonal Gaussian distribution.
The style transfer module is utilized for modeling the CQT spectrogram in potential

space and executing complete style transfer, as depicted in Fig. 3. Given a source audio
sample CQT spectrogram X, its potential representation Zt0 is calculated by adding step
t0 < T noise according to Formula (3). Subsequently, commencing with Zt0 as the initial
stage of the reverse process, the conditional mechanism is employed to access the potential
encoding of the target instrument CQT spectrogram Y

phðZ0:t0 jEyÞ ¼ pðZt0Þ
YT
t¼1

phðZt�1jZt;E
yÞ (9)

Therefore, in order to accomplish the transformation of style. If t0 controls the
outcomes, the original audio information will not be preserved in the case of t0 � T .

This research employs a 2� 2 convolution layer, which is a two-dimensional
convolution layer, in experiments to enhance the capabilities of the underlying U-Net. To
improve the U-Net backbone, a cross-attention mechanism is incorporated so that it can
produce CQT spectrogram of the target domain according to the requirements needed to
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accomplish timbre transfer. Three subsampling blocks, each with four filters and residual
blocks of 64, 128, and 256, make up the encoder in U-Net. To condense the possible
encoding of the CQT spectrogram, average pooling with a pooling size of two is applied
after each subsample block’s output. A cross-self-attention block follows the encoder’s last
block. The bottleneck part obtained by the encoder is processed by a residual block with
512 filters and then passed to the decoder. The only difference between the symmetric
decoder and encoder is that the decoder uses transposed convolution to create an
upsampled layer that increases the feature dimension. The cross-self-attention layer
succeeds the last subsampling block, the encoder’s bottleneck, and the decoder’s first
higher sampling layer.

Conditioning mechanisms

The conditional mechanism primarily comprises encoder sh, which is structured in a
manner similar to the encoder used in perceptual compression. The encoder sh projects the
input target instrument CQT spectrogram, represented by y, into an intermediate
representation shðyÞ 2 RM�ds after encoding it. The cross-attention layer is then used to
map this intermediate representation to the middle layer of the U-Net, making it easier to
create a CQT diagram that depicts the target instrument’s timbre under condition y. The
formula for the cross-attention mechanism is expressed as follows

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffi

d
p

� �
� V (10)

where Q ¼ WðiÞ
Q � uiðZtÞ, K ¼ WðiÞ

K � shðyÞ, V ¼ WðiÞ
V � shðyÞ. uiðZtÞ 2 RN�die represents

the U-Net intermediate representation that implements eh:W
ðiÞ
V 2 Rd�die ,WðiÞ

K 2 Rd�ds and

WðiÞ
Q 2 Rd�ds are projection matrices that map intermediate representations from shðyÞ to

the target domain, thereby enabling the transfer of timbre. The objective function can be
rewritten as

LLDMðhÞ ¼ EeðxÞ;y;e�Nð0;1Þjje� ehðZt; t; shðyÞÞjj22 (11)

where sh and eh can be optimized by the objective function.

Figure 3 Timbre style transfer architecture. Full-size DOI: 10.7717/peerj-cs.2194/fig-3

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2194 11/26

http://dx.doi.org/10.7717/peerj-cs.2194/fig-3
http://dx.doi.org/10.7717/peerj-cs.2194
https://peerj.com/computer-science/


Waveform reconstruction
In the preceding section, we successfully analyzed the input CQT spectrogram and
acquired the CQT spectrogram generated after the timbre transfer by following the
processes outlined. Converting the CQT spectrogram into an audio waveform is
challenging due to the absence of phase information. This restriction can be overcome by
creating waveforms using neural networks. Numerous neural vocoders, including
WaveNet (Oord et al., 2016; Rethage, Pons & Serra, 2018), WaveGAN (Yamamoto, Song &
Kim, 2020), MelGAN (Jain et al., 2020), and other models, are composed of neural
networks. Among the various models, DiffWave is notable for its compact size and
capacity to rapidly produce high-quality speech waveforms. However, limited research has
been conducted on its capability to generate music audio (Kandpal, Nieto & Jin, 2022).

DiffWave is a neural vocoder and waveform synthesizer that operates on a diffusion
model. The process commences with Gaussian noise and subsequently transforms it into
speech through iterative refinement. The generation of speech can be controlled by
providing a conditional signal, such as a log-scale Mel-spectrogram. Diffwave comprises a
sequence of residual layers featuring a biaxially expanded convolution structure. A
schematic representation of the DiffWaves model is depicted in Fig. 4. In order to produce
this, the characteristics of the input are upsampled to match the dimensions of the
anticipated waveform. Subsequently, the transition distribution in the inverse process is
systematically sampled to acquire the waveform. In this study, the generation process is
dependent on the CQT representation.

As proposed in Jain et al. (2020), the objectives of minimization in the training process
are defined as follows

min
h

LunweightedðhÞ ¼ Ex0;e;tjje� eh
ffiffiffiffi
�at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �at

p
e; t

� �jj22 (12)

where t 2 f0; 1;…;T � 1g, eh represents a neural network. For more comprehensive
information, readers are encouraged to refer to the citations.

EXPERIMENTS
This section outlines the experiments conducted to validate the performance of the
proposed timbre transfer technique in both single-instrument and multi-instrument
application scenarios.

Figure 4 DiffWave architecture. Full-size DOI: 10.7717/peerj-cs.2194/fig-4
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Experimental setting
Description of the data
We used the MusicNet and MAESTRO datasets, together with the real-world recordings
from other instruments that we gathered from YouTube, to train and assess the model
described in this research. The dataset comprises instruments such as piano, flute, guitar,
clarinet, violin, trumpet, organ, strings, and vibraphone. Each instrument collected
approximately 2 h of data, during which the tracks underwent quasi-switching to mono
and resampling to 16 kHz. The WAV format was used for preprocessing on all data sets.
The data set was split up in an 8:1:1 ratio between a training set, a test set, and a validation
set.

Implementation details
In this study, the Adam optimizer with a batch size of 16 was employed to train the
proposed timbre transfer model over 50,000 iterations, with a learning rate set at 2e-5. The
compression ratio of the potential space is 64. During the timbre transfer process, the
denoising size was configured to 0.55, the seed size to 42, the steps per sample to 50, and
the guidance to 7. The DiffWave model trained over 20,000 iterations at an initial learning
rate of 2e-5 using the CQT spectrogram condition and an Adam optimizer with a batch
size of 32. It is important to note that all models developed in this study are built upon the
Pytorch library. All models were trained using thre NVIDA RTX3090Ti graphics
processing units.

Evalutaion metrics
The performance of the proposed model is assessed using both objective evaluation and
subjective evaluation methods in this study.

In the objective evaluation, the following indicators were adopted:

. Jaccard distance: The Jaccard distance is utilized to quantify the disparity between two
sets of pitches, A and B, in order to evaluate the extent to which the produced tracks vary
in pitch profile. The Jaccard distance can be computed using the following formula:

JDðA;BÞ ¼ 1� jA \ B
A [ B

j (13)

The Jaccard distance values range from 0 to 1, where lower values indicate fewer
mismatches, indicating a greater degree of similarity between the generated pitch
profiles. The pitch profile is determined through the utilization of the multi-pitch version
of MELODIA (Salamon & Gómez, 2012) incorporated in the Essentia library (Bogdanov
et al., 2013), with the pitch being rounded to the nearest semitone.

. SSIM: The SSIM (Structural Similarity Index) (Setiadi, 2021) is employed for assessing
the perceived quality disparity between the original image and its reconstructed
counterpart. Here, the reconstructed CQT spectrogram are compared with the original
spectrogram to evaluate the fidelity of the model reconstruction. The SSIM value ranges
from −1 to 1, with a higher value indicating greater structural similarity between images.
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. Fréchet Audio Distance (FAD): FAD (Roblek et al., 2019) is utilized to quantify the
similarity between synthesized audio and authentic audio. Based on the PyTorch
implementation, the FAD was calculated by embedding the VGGish model (Shi et al.,
2019). The approach considers the embeddings as a continuous multivariate Gaussian
distribution and computes the Frechet distance between the real and generated data. The
formula for calculating FAD is as follows:

FAD ¼ jjlr � lg jj2 þ tr
P

r þ lg � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r

P
g

q� �
(14)

where ðlr;
P

rÞ represents the embedded mean and covariance of the real data, and
ðlg ;

P
gÞ represents those of the generated data. A smaller FAD value results in a more

realistic sample set being generated.

. Accuracy: We have developed multiple instrument classifiers through training. A
network resembling AlexNet (Iandola et al., 2017) was trained using audio clips
extracted from a dataset to categorize the transmitted audio based on different
instruments. The output of the classifier undergoes processing by the Sigmoid function,
which yields the classification probability for each segment. In this article, the
classification probability is articulated as a measure of confidence.

The mean opinion score (MOS) was utilized for subjective evaluation. The MOS score
was calculated based on an anonymous listening test involving 50 participants. The scoring
system ranges from 1 (low) to 5 (high) and encompasses three dimensions:

1. Success in style transfer (ST): evaluating the degree to which the timbre of the transfer
version aligns with the target in perception.

2. Content retention (CP): the degree to which the transmitted version of the music
content matches the original version.

3. Sound quality (SQ): How does the audio sound as a whole?

Experimental analysis
Evaluation of timbre transfer
This section will assess the impact of timbre transfer. As demonstrated in the prior study
(Lu et al., 2019), our objective was to assess our methodology using three criteria: (1)
content retention, which measures the degree to which the tonal content of the input is
preserved in the output; and (2) style fit, which evaluates the extent to which the output
aligns with the target timbre. (3) The quality of the audio. In this regard, we employed both
subjective and objective indicators to assess the measurements.

Subjective evaluation. To subjectively evaluate the ability of timbre transfer, the MOS
of the listening test was gathered from 50 participants. The participants in the study
primarily consisted of individuals with a strong affinity for music. The target mixture was
utilized as the reference standard for each work in each evaluation cycle, and the
appropriate translated output was given after that. The conditions and examples were
presented in a random order in each segment, which the tester was not aware of
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beforehand. The test is segmented into two parts, involving one-to-one and many-to-many
conversions.

The initial stage of the assessment involved a one-on-one instrument conversion
segment, during which the participant listened to eight musical pieces representing four
types of transitions: piano to guitar, flute to trumpet, trumpet to piano, and flute to organ.
In each round of scoring, the order of conditions and examples in each individual part of
the test was randomized. The results obtained through the hearing test in the first stage are
presented in Table 1.

The results indicate that our model demonstrates strong performance in the task of one-
to-one instrument timbre transfer. The MOS for both style transfer and content retention
are around four, indicating that our model performs well on these tests. It has been noted
that our approach works well in cases where the target instrument has a relatively “stable”
sound, such as in the conversion of a piano. Meanwhile, the sound quality scores for all
one-to-one conversion tasks are high, indicating that our method performs well in
generating audio, although the generated audio is quite a bit different from real-world
recordings.

In the subsequent phase, we assessed the task of one-to-many timbre style transfer. In
the context of one-to-many timbre style transfer, this study has chosen six instruments
from the test set and conducted transfers between each instrument and the other five
instruments, as well as the original instrument, resulting in a total of 36 transfer pairs
(6� 6 ¼ 36). Simultaneously, we also took into account four different tracks. Two of the
tracks pertain to the conversion from vibraphone/clarinet to piano/violin, while the other
two are related to the reverse conversion. The conditions and examples in the test were
randomized, and the order was not known to the participants beforehand. Also, all
participants rated the output in isolation. The MOS score is presented in the three
dimensions of ST, CP, and SQ and subsequently averaged to obtain the final assessment
score. A heat map was generated to illustrate the hearing test outcomes of one-to-many
transfer for a single timbre, as depicted in Fig. 5. Table 2 presents the auditory test results
of multi-pair multi-transfer for mixed instruments.

Differences in performance can be observed among various timbre transfers in the
context of many-to-many transfers of a single timbre. Additionally, it is evident that the
timbre reconstruction effect surpasses the transfer effect. The transfer of timbre from other
instruments to the piano is notably effective, while the transfer to the trumpet is
comparatively less successful. One possible explanation is that the timbre of the piano

Table 1 Five-scale MOS of one-to-one timbre transfer.

Task ST CP SQ

Piano to Guitar 4.02 3.95 4.12

Flute to Trumpet 3.92 4.04 4.06

Trumpet to Piano 4.05 4.10 4.15

Flute to Organ 3.96 4.01 4.14
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changes more regularly compared to the trumpet, because the decay of the piano timbre
after each note is struck is relatively predictable. This relative regularity of timbral
characteristics makes piano timbral characteristics easier to learn in timbre space.
Conversely, the trumpet’s timbre exhibits such significant variation that it is challenging to
master and manipulate. The data presented in the table indicates that our approach is
comparatively less effective in facilitating many-to-many conversion of multi-instruments
as opposed to single-instrument many-to-many conversion. This disparity may be
attributed to the challenges associated with extracting and distinguishing the timbre of
mixed instruments.

Objective evaluation. In the objective evaluation, this study will employ the Jaccard
distance to assess the content retention ability of the model, and FAD to examine the
perceived similarity between the generated audio and the original audio. The SSIM is used
to measure the perceived similarity between the reconstructed CQT spectrogram and the
original spectrogram in order to evaluate the model’s ability to generate a high-quality
CQT spectrogram. An instrument classifier is utilized to assess the precision of the model’s
timbre transfer. The Mel-frequency cepstrum coefficient (MFCC) is widely regarded as a

Figure 5 MOS for one-to-many timbre transfer outcomes.
Full-size DOI: 10.7717/peerj-cs.2194/fig-5

Table 2 MOS of multi-timbre transfer.

Task ST CP SQ

Vibraphone/Clarinet to Piano/Violin 3.68 3.71 3.91

Piano/Violin to Vibraphone/Clarinet 3.71 3.69 3.92
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reliable approximation of timbre (Richard, Sundaram & Narayanan, 2013). To facilitate a
more intuitive observation of the timbre transfer of the instrument, Fig. 6 displays the
MFCC diagram of several sets of input and output audio. The results of the objective
evaluation are presented in Table 3.

The timbre transfer between the input and output audio may be clearly seen in the
picture. Consistent with the subjective evaluation, the objective evaluation statistics show
that one-to-one conversions for single instruments perform better than many-to-many
conversions for mixed instruments. From the data, it can be observed that the model
proposed in this article has high values in terms of accuracy, indicating that the model
performs well in the forced-choice classification task. Although high accuracy means that
the output sound is closer to the timbre of the target instrument, accuracy alone does not
provide a comprehensive measure of the quality of timbre transfer, and further sonic
assessment and subjective evaluation are necessary. It is also noteworthy that the generated
pitch contour closely resembles the pitch contour of the target input, as indicated by the
low JD values. This illustrates how well the content was retained between the input and the

Figure 6 Diagram of Mel-frequency cepstral coefficients (MFCC) for input and output audio. Full-size DOI: 10.7717/peerj-cs.2194/fig-6
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generated audio. Higher SSIM values indicate that the CQT spectrograms generated by the
model are of good quality, which is one reason why subsequent music generation has a
lower FAD. Concurrently, the low FAD value indicates that, as expected, the audio output
of the model has better perceptual quality.

The analysis of the objective results largely corresponds to the subjective reviews, which
is as we expected. This suggests that our model is capable of handling both one-to-one and
many-to-many timbre transfer tasks. This confirms that the diffusion model performs well
on timbre transfer and music synthesis tasks, offering researchers a more intriguing
direction for their work. However, in contrast to the one-to-one style transfer task, the
many-to-many task was relatively poor, suggesting that the model is underperforming for
learning and extracting timbres from mixed instruments. This suggests that the model
struggles to accurately separate and learn the timbres of mixed instruments, which is a
direction that needs to be pursued in the future.

Additional properties
Apart from the primary assessment outcomes, we investigated several aspects of the model,
specifically the compromises between sampling step and quality, as well as the relationship
between compression ratio and quality. Figure 7 displays the outcomes of our trials, which
involved the piano2guitar and vibraphone/clarinet2piano/violin tasks. These tasks
represent one-to-one and many-to-many timbre transfer tasks, respectively.

Trade-off between sampling steps and quality. From the results in the Fig. 7, it can be
noticed that increasing the number of sampling steps in the potential diffusion model
improves the quality, which may be due to the fact that the generated potential space is
more detailed and at the same time produces better overall structured music. However, at
50-100 sample steps, there is no significant decrease in the FAD values with increasing
sample steps, which may be related to the fast fitting of the model. Considering the speed
relationship, we weighed the selection of 50 as the sampling step. This is because model
generation becomes slower as the number of sampling steps increases.

Trade-off between compression ratio and quality. From the results in Fig. 7, we can
see that lowering the compression ratio improves the quality of the generated music,
because a low compression ratio is closer to the original data, but it also slows down the
running speed of the model. Considering that we need to process higher dimensional data
later, we weigh the performance of the model and choose a compression ratio of 64.

Table 3 Findings of an objective assessment.

Task FAD# Accuracy" SSIM" JD"
Piano to Guitar 3.16 98.5% 0.82 0.32

Flute to Trumpet 4.12 95.7% 0.84 0.39

Trumpet to Piano 4.25 94.1% 0.79 0.43

Flute to organ 3.23 98.2% 0.88 0.30

Vibraphone/Clarinet to Piano/Violin 6.56 91.1% 0.77 0.48

Piano/Violin to Vibraphone/Vlarinet 7.05 90.6% 0.78 0.49
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Comparison with baseline model
To validate the effectiveness of the method proposed in this article, we consider a
comparison with three baseline models. For the baseline models, we consider VAE-GAN
(Bonnici, Benning & Saitis, 2022), Music-Star (Alinoori & Tzerpos, 2022) and DiffTransfer
(Comanducci, Antonacci & Sarti, 2023) in this article. The VAE-GAN architecture
combines a variational encoder and a generative adversarial network for constructing
meaningful representations of source audio and generating realistic target audio. It enables
many-to-many timbre style transfer, where the dataset of this article is used for training
according to the procedure described in Bonnici, Benning & Saitis (2022). Music-Star is an
audio translation system based on the WaveNet autoencoder, which is capable of
converting audio waveforms into the styles of different musical instruments. The model
used in this article was trained based on the description found in the literature (Alinoori &
Tzerpos, 2022). DiffTransfer is a timbre transfer method for both single and multi-
instrument use that is based on a denoising diffusion implicit model. In this study, the
model is trained using the description of Comanducci, Antonacci & Sarti (2023). The
findings of an objective and subjective assessment of the proposed method in comparison
to the baseline model are given. We consider piano-to-guitar and piano-to-vibraphone
timbre transfers, for one-to-one instrument transfers. For many-to-many transformations
involving audio from multiple instruments, we consider timbre transfer from vibraphone/
clarinet to piano/strings. Table 4 presents the outcomes of the subjective assessment. In
every section of the test, the conditions and examples were presented in a random order,
and the participants were unaware of the method used to generate them. Table 5 and Fig. 8
show the outcomes of the objective assessment, where the results in Fig. 8 are presented to
verify the accuracy of the proposed model with respect to the success of the style transfer

Figure 7 (A) The relationship between sampling step and quality. (B) The relationship between compression ratio and quality.
Full-size DOI: 10.7717/peerj-cs.2194/fig-7
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Table 4 MOS with the baseline comparison model.

Model Task

Piano to Guitar Piano to Vibraphone Vibraphone/Clarinet to Piano/Strings

ST CP SQ ST CP SQ ST CP SQ

VAE-GAN 3.96 � 0.09 3.84 � 0.10 3.82 � 0.09 3.78 � 0.08 3.82 � 0.10 3.75 � 0.09 3.65 � 0.11 3.56 � 0.08 3.52 � 0.09

Music-Star 4.02 � 0.10 3.92 � 0.11 3.85 � 0.08 3.92 � 0.06 3.95 � 0.08 3.94 � 0.07 3.56 � 0.10 3.54 � 0.11 3.61 � 0.11

DiffTransfer 4.08 � 0.09 4.01 � 0.08 4.10 � 0.07 4.01� 0.06 4.03 � 0.08 4.12 � 0.10 3.80 � 0.08 3.71 � 0.07 3.84 � 0.10

ours 4.12 � 0.10 4.05 � 0.10 4.13 � 0.11 4.02 � 0.07 4.06 � 0.08 4.15 � 0.08 3.78 � 0.06 3.69 � 0.08 3.92 � 0.09

Table 5 Results of the objective evaluation contrasted with baseline models.

Model Task

Piano to Guitar Piano to Vibraphone Vibraphone/Clarinet to Piano/Strings

FAD JD FAD JD FAD JD

VAE-GAN 8.41 0.54 9.16 0.56 12.52 0.67

Music-Star 6.47 0.39 7.43 0.41 10.93 0.57

DiffTransfer 3.34 0.31 4.56 0.28 6.73 0.46

DiffTransfer (DiffWave) 3.20 0.30 4.31 0.28 6.43 0.47

ours 3.16 0.32 4.22 0.29 6.37 0.48

Figure 8 Accuracy with the baseline comparison model. Full-size DOI: 10.7717/peerj-cs.2194/fig-8
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from the baseline model. The classification criteria use the same instrument classifiers
trained on a network similar to AlexNet (Shi et al., 2019).

The suggested approach performs better than the two baseline models, VAE-GAN and
Music-Star, according to the subjective scores in Table 4. On the other hand, in
comparison to the DiffTransfer model, the performance is comparable. This demonstrates
the favorable performance of our method. We note that our method shows good sound
quality relative to the baseline model, suggesting that DiffWave is a promising direction for
the field of music synthesis.

The classification results presented in Fig. 8 demonstrate that the audio output from the
approach suggested in this research performs much better in terms of resemblance to the
target instrument timbre than both VAE-GAN and Music-Star. Regarding DiffTransfer,
the classification outcomes show a slight gain over the baseline model, but the difference is
not significant. This demonstrates that within the topic of music style transfer, diffusion
modeling is a promising direction. The technique suggested in this article performs much
better in constructing single and multiple instrument timbre transfer tasks than the two
baseline models, VAE-GAN and Music-Star, as can be seen by a brief review of the data
provided in Table 5. The results also demonstrate that, in terms of FAD values, the
approach suggested in this research marginally outperforms the DiffTransfer baseline
model; this result may be explained by the usage of the DiffWave vocoder model in this
work. Nevertheless, the approach suggested in this article is somewhat less than the
DiffTransfer baseline model when the JD value is taken into account. This could be
because the latent diffusion model used in this article necessitates compression in the
potential space.

Consider that the choice of vocoder may have an impact on the performance of timbre
transfer. For a more comprehensive comparison, we used the DiffWave vocoder with the
original SoundStream vocoder in our experiments with the baseline model DiffTransfer.
The results show a slight performance advantage of DiffWave over SoundStream in terms
of sound quality. Specifically, in the Piano2Guitar task, the DiffWave version of
DiffTransfer had a FAD value of 3.20, which was slightly better than the SoundStream
version of DiffTransfer at 3.34. In the Piano2Vibraphone and Vibraphone/Clarinet2Piano/
Strings tasks, the performance is also slightly better. This shows that DiffWave is a
promising direction in the field of music synthesis.

Upon conducting a concise analysis of both subjective and objective outcomes, it is
evident that the proposed approach demonstrates favorable performance in the transfer of
timbre. Compared to the baseline model, the diffusion model performs better in the timbre
transfer task. This illustrates how effectively diffusion models perform in music synthesis
and timbre transfer tasks when compared to models like VAEs and GANs, and it offers an
appealing option for subsequent research.

CONCLUSIONS
In this research, we offer a diffusion model-based flexible-timbre transfer method. This
technique enable the timbre transfer of both single and multiple instruments. This study
provides potential layers to minimize the dimension of the data, therefore accelerating the
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model’s inference. A cross-attention mechanism is concurrently added to the potential
layer to learn the target instrument timbre from the conditional mechanism, thereby
achieving the timbre transfer. This work uses the CQT spectrogram approach for the time-
frequency representation of audio. Lastly, the CQT spectrogram created after conversion is
restored using the DiffWave model. Through objective evaluation and subjective hearing
tests, we compare the proposed method with the baseline model; the experimental results
indicate that the new method performs better. We want to adjust the conditional approach
in the future to enable the model to learn and implement the transfer of genres and
composition styles.
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MusicNet data is available at Zenodo: John Thickstun, Zaid Harchaoui, & Sham M.
Kakade. (2016).
MusicNet (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5120004.
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