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ABSTRACT
Self-localization and pose registration are required for sound operation of next gener-
ation autonomous vehicles under uncertain environments. Thus, precise localization
andmapping are crucial tasks in odometry, planning and other downstreamprocessing.
In order to reduce information loss in preprocessing, we propose leveraging LiDAR-
based localization and mapping (LOAM) with point cloud-based deep learning instead
of convolutional neural network (CNN) based methods that require cylindrical pro-
jection. The normal distribution transform (NDT) algorithm is then used to refine the
former coarse pose estimation from the deep learning model. The results demonstrate
that the proposed method is comparable in performance to recent benchmark studies.
We also explore the possibility of using Product Quantization to improve NDT internal
neighborhood searching by using high-level features as fingerprints.

Subjects Artificial Intelligence, Autonomous Systems, Computer Aided Design, Robotics,
Neural Networks
Keywords Autonomous Driving, Loam, NDT, PointNet++, GNN, Product Quantization

INTRODUCTION
There has been a growing interesting in the study of autonomous vehicles in recent
years (Yoneda et al., 2014). Autonomous vehicles are seen as an emergent technology that
could help manage traffic efficiently and create new business opportunities amidst the
challenges of road safety, law and governance (Bagloee et al., 2016). The role and control
of autonomous vehicle are dependent on the levels of automation defined by the Society
of Automotive Engineers (SAE). There are six levels of control from no automation (0)
to full automation (5). For autonomous vehicles to operate safely, they need to be able to
sense, plan and act continuously in their environment (Ilci & Toth, 2020). Safety is thus of
utmost importance in automated driving. Reid et al. (2019) highlighted the importance of
localization where precise positioning is required for enabling an autonomous vehicle to
remain within its lane so that it can operate and navigate safely in various environments.

To mitigate the risks of road crashes, autonomous vehicles rely on a combination of
sensors to identify their current position and orientation (Meng, Wang & Liu, 2017) as
accurately as possible. While Global Navigation Satellite System (GNSS) has been popular
for providing localization details, loss of sensor data arising from signal blockage or
interference in Global Positioning System (GPS)means that the usability of GNSS is limited
to only clear sight environments (Jeong et al., 2019). In cases where GPS malfunctions,
autonomous vehicles need backup sensors of optimal modality to retain reliability of
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self-localization and/or further simultaneous localization and mapping (SLAM) (Hemann,
Singh & Kaess, 2016; Sumikura, Shibuya & Sakurada, 2019), which can be used to estimate
vehicle trajectory given a set of poses (Gomez-Ojeda et al., 2019). LiDAR is among the
most common sensors deployed in autonomous vehicles (Lohani & Ghosh, 2017) because
of its superior physical properties. LiDAR measures the distance to its origin using the
laser ranging technique. Reflection points with certain reflection intensity level and angles
compose an omni-directional point cloud scan.

Many traditional machine learning algorithms have been proposed for LiDAR-based
registration, including prevalent point-based methods like iterative closest point (ICP)
and normal distribution transform (NDT). In general, ICP is slow and not applicable in
SLAM because of its large computation time (Ilci & Toth, 2020). Because pre-establishing
correspondences is not required in NDT, it is robust against sensor noise (Sobreira et al.,
2019). Although NDT is also sensitive to the initial estimate, it is faster than ICP because it
performs point-to-distribution instead of point-to-point registration (Ilci & Toth, 2020).
While feature-based methods require huge computations, they are less affected by missing
spatial points in subsequent scans (Li et al., 2019a) and are able to operate in real-time with
high accuracy in pose estimation (Li et al., 2020). Deep learning methods have exhibited
good performance in recent years (Li et al., 2019a) against traditional machine learning
methods that require hand-crafted features (Li et al., 2020). Deep learning methods have
also recently been applied on LiDAR scans, especially in coarse pose estimation and place
recognition (Li et al., 2019b; Yin et al., 2018; Schaupp et al., 2019).

Dedicated contributions
The goal of the proposed solution is to reduce the number of iterations required for NDT
by introducing rough guesses. While there are limitations to each scan matching method,
the proposed solution combines both feature-based and distribution-based methods for
their complementary strengths. This article proposes employing deep learning on point
cloud data to estimate pose and subsequently use that estimate as the initial value in NDT
for scan matching. Figure 1 shows the general architecture of the proposed solution. The
novelty of this solution lies in its ability to optimize the time required to search for an
initial optimal value to be used in NDT, thereby achieving higher localization accuracy.
This solution does not require 3D to 2D image projection for point cloud scans, preventing
information loss during dimension reduction.

Overall architecture representation
The remaining of this report is arranged as follows: ‘Related Work’ introduces the related
works in scan registration for point- based, distribution-based, feature-based and point
cloud based feature learningmethods. ‘Methods’ describes our proposed approaches as well
as the odometry system architecture for runtime testing on the approach. ‘Experiments’
describes the experimental setup and reveals the outcomes of the experiments. ‘Reflections’
incorporates our reflections on the experimental results. It also highlights the limitations,
project enhancement and future works. ‘Conclusion’ provides the conclusion of this article.
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Figure 1 General architecture of the proposed solution.
Full-size DOI: 10.7717/peerjcs.2189/fig-1

RELATED WORK
Point-based method
Iterative closest point (ICP) (Ji et al., 2017) is a commonly used algorithm for matching
corresponding points between two point clouds by searching their corresponding relations
while minimizing square errors. As this search is based on the gradient descent method, the
algorithm requires a good initial value for convergence. Li et al. (2020) used ICP for LiDAR
scan matching. Their method aimed to remove unnecessary points generated during
LiDAR scanning to reduce computation search time when handling large-scale point
cloud data. This was accomplished by first extracting the image-based ground points and
then segmenting the remaining point cloud into disjoint sets. The six degrees of freedom
transformations between consecutive scans were then calculated using point-to-point ICP.
While standard point-to-point ICP exhibited better performance in an urban scene, all
variants of ICP methods performed poorly in highway scenes. Attempts to improve ICP
algorithms have been made (Li et al., 2014; Fieten, Radermacher & Heger, 2012; Jinxia &
Yuehong, 2011; Dai & Yang, 2011), but improvements are dependent on having sufficient
geometric features. Wan et al. (2018) highlighted that ICP cannot work in scenes such as
highways where there are minimal 3D features available.

Distribution-based method
Another scan matching algorithm, NDT, is less prone to sensor noise as it does not require
corresponding points for point-to-point registration (Sobreira et al., 2019). Instead, the
scanned point cloud data is matched to a set of normal distributions that is transformed
from the reference point cloud (Biber & Straßer, 2003).

Wen, Hsu & Zhang (2018) proposed using NDT-based graphs to perform SLAM in
urban environments. Their method first obtained odometry measurements from the
transformation between consecutive scans of point clouds, then built a graph using the
obtained measurements. This method then calculated the pose estimate by solving the
graph-based optimization problem. Similar to the solution proposed in the present study,
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their method focused on using LiDAR for pose estimation, however, the solution proposed
in the present study employs deep learning to estimate the initial value for NDT.

While NDT exhibits robustness against noise and has relatively good convergence speed
under specific cases (Sobreira et al., 2019), related works (Wang et al., 2020; Murakami et
al., 2020; Magnusson, 2009; Magnusson et al., 2009; Al-Nadawi et al., 2020) are inherently
sensitive to the initial estimate found in NDT (Ilci & Toth, 2020). Therefore, the proposed
solution establishes the initial value with a guided estimation approach instead of using a
randomly assigned value.

Feature-based method
LiDAR Odometry and Mapping (LOAM) is a feature-based solution. Geometric features
are first extracted from point cloud scans and then used to find the point correspondences
between scans (Ramezani et al., 2020).

Using the traditional LOAM method, Zhang & Singh (2014) implemented real-time
mapping without using high-accuracy ranging or inertial measurements by running two
algorithms that estimate LiDAR velocity and perform point cloud registration, respectively.
Deschaud (2018) proposed using 3D depth sensors to achieve low-drift LiDAR odometry
and improve map quality by using a scan-to-model matching framework. To handle
dynamically changing environments, Ding et al. (2020) combined both global matching
and LiDAR inertial odometry in a pose graph framework for prompt map updates. For
scenes with extrememotion, Chen et al. (2020) adopted semantic segmentation and LOAM
to estimate tree diameter. Several recent studies (Li et al., 2019a; Jinxia & Yuehong, 2011;
Ramezani et al., 2020; Cho, Kim & Kim (2020)) indicate that deep learning can be used
to improve estimate accuracy by offering automatic parameters that capture geometric
features.

Many recent studies have leaned on deep-learning approaches, especially convolutional
neural networks (CNN), for more robust feature extraction. Yin et al. (2018) proposed
LocNet, a pioneer model that leverages point cloud data with CNN for 3D point cloud-
based place recognition. Place recognition is a task closely related to LOAM. Registering a
frame of a local LiDAR scan into the segmentation of the globalHD-mapwhere that frame is
likely being scanned can improve LOAM. In LocNet, each frame of a LiDAR scan is divided
into groups of horizontal rings. A histogram is then formed with the number of points and
their LiDAR intensities falling into each group of rings. The histogram is then rearranged
into a 2D image as a reduced representation of each reading; this process is called cylindrical
projection (Chen et al., 2017). The CNN then takes in a pair of scans that corresponds to
either the same or different places, and uses contrastive loss to perform pairwise learning to
maximize distance between different places in the metric space. Although this CNN-based
place recognition is an automated learning process via supervised learning, the rotation
invariance is achieved by handcrafting the 2D histogram. The 3D to 2D projection can
also lead to information loss. Oreos (Schaupp et al., 2019) is a variant of LocNet (Yin et al.,
2018) for both place recognition (3-DoF registration) and yaw angle estimation, but it also
requires 3D to 2D projection.
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Li et al. (2019b) proposed LO-Net, a deep learning model for 6-DoF pose estimation.
LO-Net regresses 6-DoF transformation between consecutive frames of scans and performs
point-wise normal estimation and point cloud semantic segmentation. For pose estimation,
LO-Net first projects each 3D point onto a 2D plane, and preserves the LiDAR intensity and
depth information in multiple channels. Then, a CNN-based Siamese network is trained
on the projected scan, supervised with odometry regression loss, as described in Kendall,
Grimes & Cipolla (2015).

Point cloud-based feature learning
Unlike regular structural data, including speeches in linear structure and 2D images in
2D lattice structure, point cloud data is unstructured and has only received attention
from researchers in recent years because of the exponential growth seen in computational
power.Models have been proposed that effectively use point cloud data alongside successful
standard deep learning techniques for normal data formats. PointNet (Qi et al., 2017a) is
a deep learning network model that directly processes 3D point cloud data. It was initially
proposed to address classification and segmentation tasks on point cloud data, applying
multi-layer perceptron (MLP) point-by-point to learn permutation invariant features for
each point and then performing feature aggregation from all points. PointNet++ (Qi et al.,
2017b) took PointNet a step further to aggregate neighborhood information instead of only
learning point-specific features, improving the discovery of texture clues and reducing the
effects of noise.

METHODS
As mentioned in the previous section, previous 2D image-based approaches (Li et al.,
2019b; Schaupp et al., 2019;Chen et al., 2017) suffer from information loss in the cylindrical
projection step. Therefore, we propose an end-to-end point cloud-based deep learning
network for LiDAR odometry that directly learns features by encoding the structural
information of the point cloud scan from the 3D space and then uses the encodings of two
frames to estimate their relative positions. The objective of this model is to estimate the
6-DoF transformation parameters between two scans.

Several things were considered in the design of the network architecture. First, in order
to make full use of the local regional information adjacent to each point on the scan, the
model should be aware of spatial adjacency. Second, point-wise feature extraction should
output the same results regardless of the order of the 3D point in the input space. This
precludes sequential models like recurrent neural networks (RNNs). RNN is a special
neural network structure for processing sequence data, such as natural language or time
series. RNNS can require excessive processing time when processing point cloud data and
are not intuitive or efficient at extracting spatial features. Third, the scale of translational
distance between two input frames of a scan should be confined in a relatively small scope
to make regression easier. PointNet can efficiently capture the hierarchical structure and
correlations of point cloud data, but has poor local feature extraction capability, which
may be limited when dealing with more complex scenarios and requires more computing
resources and time when dealing with large-scale or complex point clouds. Because of these
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Figure 2 Proposed pipeline for coarse pose estimation with consecutive LiDAR scans.
Full-size DOI: 10.7717/peerjcs.2189/fig-2

limitations to Pointnet, we used the feature extractor in PointNet++ (Qi et al., 2017b) to
encode the LiDAR scans and fine-tune the scan-level encodings of both frames to infer the
relative 6-DoF position using a set of dense layers. For spatial continuity, we only chose
consecutive pairs of frames in the odometry sequences as input scans. To our knowledge,
this is the first study to introduce point cloud-based deep learning models to LiDAR
odometry.

Our model takes in two consecutive frames of scans (St−1; St ), where each scan
S={X ι,I ι}N ι= 0 contains the 3D coordinates χεRN×3 and LiDAR intensities IεRN×1 for
all points. The same PointNet++ feature extractor f θ :RN×4→ f θ : RN

′
×K (N ′ is the point

number altered by PointNet++, K is feature dimension) is used with the same parameter
set θ for both scans to obtain the encodings:

P t = fθ (St ),P t−1= fθ (St−1). (1)

Then, a global pooling operation is applied to aggregate all point-wise features for both
scans P t , P t−1 into a fixed length global feature F t ,F t−1εR1×K respectively. Finally,
a multi-layer perceptron takes in the global encodings of both scans and outputs pose
parameters, including translational pose prediction x̂ and 3D rotational pose q̂ represented
by a quaternion, using the mapping

x̂,q̂= f pose({F t ;F t−1}). (2)

Because the PointNet++ feature extractor fθ concentrates salient features corresponding
to key shapes in the point cloud, the scans must be compared using fpose, similar to the
LO-Net model (Li et al., 2019b). The architecture of our proposed model is illustrated in
Fig. 2.
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Supervision
Odometry regression loss, originally used in visual odometry tasks, was used to
simultaneously learn the parameters of the end-to-end pose estimation network for
translations and orientations (Li et al., 2019b; Kendall, Grimes & Cipolla, 2015). The
odometry regression loss calculations are as follows, excerpted for clarity:

Lpose(St ,St−1)= e−λxLtr+e−λqLrot +λx+λq (3)

Ltr (St ,St−1)=‖X̂t −Xt‖2 (4)

Lrot (St ,St−1)=‖q̂t −
qt

[[qt ]]1
‖2 (5)

where λx and λq are learnable loss weights of translational error and rotational error,
respectively, which can help stabilize the degrees of penalty applied to them.

Holistic framework with NDT
Despite the novelty in the design choices of odometry regression loss, it still struggles with
reliable pose prediction in empirical circumstances. However, odometry regression loss
can serve as a hint provider for UGV localization in mature algorithms (see ‘Point-based
method’), including NDT. Since NDT is non-deterministic and relatively sensitive to initial
conditions, providing a reasonable heuristic for NDT could reduce the iterations required
to converge theNDT and improve its accuracy. As shown in Fig. 3, our proposedmodel uses
both odometry regression and point-based NDT in a holistic system, with NDT generating
a refined pose for odometry. Figure 4 explains the specific algorithm flow of NDT.

EXPERIMENTS
Dataset
The KITTI odometry benchmark dataset (Geiger, Lenz & Urtasun, 2012) was used in all the
experiments for deep model training as well as the holistic pipeline (‘Holistic framework
with NDT’). The KITTI odometry dataset provides 11 sequences of empirical urban scenes
taken from different locations for training and validation. Each sequence includes LiDAR
point clouds, binocular RGB and grayscale images, and frame-by-frame ground truth
poses. In these experiments, only the LiDAR point clouds were used in all the training and
validation sequences and all other modalities were ignored.

Training details
Following the dataset split for comparison described by Li et al. (2019b), Sequence 00-06
in the KITTI dataset was used for training and Sequence 07–10 was used for validation.
For training sequences, in the preprocessing phase of the point cloud, the size of the grid
directly affects the effect and accuracy of downsampling. A smaller grid can retain more
details, but has a higher computation time. A larger grid will oversimplify the data of the
point cloud, resulting in the loss of important features. After repeated trial and error, a
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Figure 3 Implementation of coarse and refine pose estimation cooperation under robot operating sys-
tem (ROS) system.

Full-size DOI: 10.7717/peerjcs.2189/fig-3

voxel grid with a grid size of 3 m in all three dimensions was chosen to first sample each
scan. To improve the accuracy and stability of the data, while also decreasing computation
time, the scale of the point coordinates were normalized into [ −1, 1] intervals in all
three axes, and the coordinates of the points were randomly shifted with the maximum
translation in each axis set to 1×10−3. The same data augmentation was also applied to
validation sequences, except random coordinate shifting was not performed.

PyTorch1 was used as the platform for model construction, optimization, and inference,
and the PointNet++ module was implemented with the torch-geometric library (Fey &
Lenssen, 2019). Adjusting the sampling ratio effectively controls the network’s ability to
capture local and global features of point cloud data at different levels. Radius search
determines the size of the local neighborhood of each sampling point and affects how finely
the model can capture local features. After repeatedly adjusting the parameters, the final
finetuned PointNet++ feature extractor structure parameters were set: the FPS sampling
ratio of two SA modules was set to 0.5 and 0.25, and the radius of the radius search was set
to 0.2 and 0.4, respectively. The output dimensions in each layer of the point-wise MLP in
the first SA module were 1 + 3, 64 and 128, and the output dimensions in each layer of the
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Figure 4 The specific algorithm flow of NDT.
Full-size DOI: 10.7717/peerjcs.2189/fig-4

point-wise MLP in the second SA module were 128 + 3, 128 and 256. In the top regression
MLP, the output dimensions of two dense layers were 128 and 64, with a dropout layer
after the first layer and a dropout rate of 0.5. The dropout rate of 0.5 effectively reduced
overfitting of the model; if the dropout rate is too large or too small, the model cannot learn
the features of the data and overfitting can occur. LeakyReLU was used to avoid gradient
vanishing when encountering negative activations.

The Adam optimizer was used to train the network with a base learning rate of 10−4

and reduce the learning rate by a factor of 0.8 on plateau. The minimum learning rate
possible was set to 10−5. The initial values of the two loss weights in Eq. (3) were set to
λx =−2.5, λq =−2.5, differing from those used by Kendall, Grimes & Cipolla (2015) as
the translations in our specific dataset were more diverse than rotational datasets, and thus
harder to train. After a few training iterations, the two loss weights stagnated at around 1.5
and 1.8, respectively. To furthermitigate overfitting in training, the L2-norm of all trainable
parameters (loss weights not included) was introduced as the regularization term in total
loss function, with regularization term weight set to 5×10−3. The model was trained for
over 50 epochs with a batch size of three on a GTX1060 GPU personal laptop with 6 GB of
VRAM.

NDT settings
The C++ implementation of NDT in Point Cloud Library (PCL)2 was used in this model.
Before NDT started to align the input point cloud St to the target point cloud St−1, a
Kd-Tree was constructed using the target point cloud. To speed up the internal searching
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Figure 5 ROS graph.
Full-size DOI: 10.7717/peerjcs.2189/fig-5

of NDT without losing too much precision, the input point cloud was downsampled with
a voxel grid size of 0.2 m in all three dimensions.

ROS system settings
Since the deep regression model was implemented in Python while NDT was implemented
in C++, both models were deployed in two robot operating system (ROS) nodes and ROS
topic was used to communicate between them. ROSMelodic3 underUbuntu 18.04was used
for ROS distro. An ROS system was constructed, as shown in Fig. 5, where /cloud Publisher
was the point cloud IO and deep model inference node, /sub_pcl was the NDT processing
node and /CAP was the customized ROS message encapsulating sensor_msgs/PointCloud2
and geometry_msgs/TransformStamped messages. These structures were set up for easy
communication between individual nodes. In the deep learningmodel, the rough estimated
position was /est_pose, /ndt_pose was the position after the NDT scan matching algorithm,
and /gt_pose was the real position. The final nodewas the vtz_markers_node, which displayed
the rough estimated position, the NDT scan matched position, and the real position.

Quantitative results
We compared the translational and rotational errors of our methods with baseline methods
on each sequence. As shown in Table 1, for translational measurements, the proposed deep
pose coarse estimation performed better than the LO-Net with mapping method on four
out of seven training sequences and all validation sequences, reflecting overall stronger
average scores for all corresponding sets of sequences. For rotational error, only the NDT
method with customized initialization slightly outperformed the best baseline method. In
terms of runtime performance, as shown in Table 2, the holistic pipeline of the proposed
model was able to reduce the total time of localization. The NDT algorithm converged
faster when taking the coarse pose from the deep model, and the total runtime for each
frame also dropped around 1.32 s on average. Since the runtime test was performed inside
Virtual Machine, the speed improvement would be more pronounced if running on a
full-stack, physical machine.

Despite the promising precision scorings, the translational RMSE measure did not
completely reflect the compliance of the whole odometry track to the ground truth.
Figure 6 shows that our model generated volatile predictions in a large time span, with gt
representing the real trajectory and est representing the trajectory output by the proposed
model. In the beginning, the error between the output trajectory of the proposed model
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Table 1 Transition and rotational RMSE comparison between the proposed approach and baseline.

Methods Metrics Training sequences Validation sequences Train
mean

Validation
mean

0 1 2 3 4 5 6 7 8 9 10

LO-Net (Li et al., 2019b) TL 1.47 1.36 1.52 1.03 0.51 1.04 0.71 1.70 2.12 1.37 1.80 1.09 1.75
LO-Net + mapping (Li et al., 2019b) TL 0.78 1.42 1.01 0.73 0.56 0.62 0.55 0.56 1.08 0.77 0.92 0.81 0.83
PN++ only TL 0.64 0.92 0.77 0.81 0.85 0.59 0.58 0.56 0.72 0.75 0.66 0.76 0.67
NDT TL 1.11 1.28 1.16 1.01 1.08 1.09 0.96 1.04 1.18 1.01 1.26 1.09 1.12
PN++ + NDT TL 1.07 1.28 1.24 1.01 1.08 1.09 0.94 0.92 1.12 1.23 1.16 1.11 1.11
LO-Net (Li et al., 2019b) RL 0.72 0.47 0.71 0.66 0.65 0.69 0.50 0.89 0.77 0.58 0.93 0.63 0.80
LO-Net + mapping (Li et al., 2019b) RL 0.42 0.40 0.45 0.59 0.54 0.35 0.33 0.45 0.43 0.38 0.41 0.44 0.42
PN++ only RL 0.67 0.64 0.68 0.5 0.29 0.64 0.64 0.85 0.7 0.7 0.69 0.58 0.74
NDT RL 0.61 0.21 0.55 0.37 0.2 0.54 0.53 0.86 0.57 0.55 0.43 0.43 0.60
PN++ + NDT RL 0.51 0.21 0.55 0.37 0.2 0.54 0.51 0.84 0.57 0.41 0.41 0.42 0.57

Notes.
Abbreviations: tl and rl, stand for translational RMSE score (%) and rotational RMSE score (deg/100 m), respectively, using the KITTI odometry benchmark; pn++, the results of the proposed point
cloud-based coarse pose estimation model; NDT, the results using NDT with the default initial guess; pn++ + ndt indicates the results using NDT with coarse estimation as the initial guess.
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Table 2 Average required frame-based running time for all frames in sequence 10 in KITTI dataset.

Approach Inference [s] NDT [s] Total [s]

w/o PN++ – 2.77 2.77
with PN++ 0.352 1.096 1.448

Notes.
(pn++ stands for for our point cloud based coarse pose estimation model).

Figure 6 Bird’s-eye view of odometry trajectories of Sequence 06 comparing ground truth and coarse
pose estimation.

Full-size DOI: 10.7717/peerjcs.2189/fig-6

and the real trajectory was relatively large, but after a period of time, these values converged
with the output trajectory of the proposed model gradually approaching the true trajectory.
This indicates that as the data increases, the estimated position output by the proposed
model gets closer to the true estimate.

REFLECTIONS
Limitations of PointNet++ finetuned model
The hyper parameter settings used in this model were by no means the optimal selections,
but were an initial attempt to introduce emerging point cloud-based deep learning
techniques. As shown in the above section (‘Quantitative results’), the proposed method
still faces challenges in terms of prediction diversity and robustness compared to de facto
image-based methods. To fully demonstrate the benefit of leveraging LiDAR data with
point cloud-based deep learning, the limitations of the proposed model were analyzed and
methods of mitigating these limitation were proposed:

Imbalanced dataset
In the ground truth trajectories in the dataset recorded in well-developed urban traffic, the
frames with straightforward transition and small rotation overpowered the poses generated
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by turning around, making it hard for the model to fit such imbalanced prior distribution.
Future works should apply a hard-negative mining training strategy to mitigate this
imbalance problem.

Limited scene and perspective diversity of the dataset
The dataset we used mainly contains point cloud data of urban driving scenes, and the
perspective is relatively fixed, usually from the top-down perspective of the vehicle. This
can lead to limitations in the PointNet++ network’s ability to generalize when dealing with
other scenarios or point clouds from different perspectives. For tasks that need to deal with
a wider range of scenarios and perspectives, more diverse training data may be required.

Little constraints on relevant pose feature extraction
Although point cloud-based methods prevent information loss during the preprocessing,
they may not be able to prevent information loss in feature extraction. The proposed model
used PointNet++ to obtain encoding in parallel for two input scans, without interactions
in between. The underlying assumption was that the feature extractor would be competent
enough to generate a discriminative global encoding of the scan for downstream odometry
regression. However, this assumption may not be true with large-variance empirical data,
where standard point-wise methods stated in ‘Point-based method’ are more prevalent.
Sharing intermediate features between feature extractors, especially shallow point-wise or
local features, is likely to help extract more relevant pose features.

PointNet++ is sensitive to point density during training
Pointnet ++ treats each point as a separate entity, regardless of its density or distribution.
This can lead to performance degradation when dealing with non-uniform or sparse
point clouds. In these cases, the model may have difficulty learning to distinguish features
effectively, resulting in reduced accuracy. To improve performance with non-uniform or
sparse point clouds, the grid size can be dynamically adjusted, and the number of sampling
points can be reduced in a dense area and increased in a sparse area. This would allow the
model to focus evenly on regions of different densities.

Limitations of current project
Aside from the limitations mentioned in the previous section, the proposed model’s
cooperation with NDT also has potential for further improvements. The current standard
NDT algorithm performs neighbor point searching using a Kd-Tree in the original 3D
space, but the results of PointNet++ with NDT could be improved by employing an
alternative searching algorithm that can use high-level features as fingerprints. This could
further boost searching efficiency within NDT.

Enhancing the current search method
The vector quantization (VQ) (Gray & Neuhoff, 1998; Gray, 1984) method is an example
of a searching algorithm that could improve the results of the proposed model as VQ
can effectively search in high-dimensional embedding space. Product quantization (PQ)
(Douze, Jegou & Schmid, 2011) is a VQ method particularly good at handling a large
number of code words. The key idea of PQ is to decompose the original vector space into
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the cartesian product ofM low-dimensional sub-spaces and quantize each subspace into k
code words. The effective number of code words in the original space is kM, but the cost
of storing them is merely O (Dk) for D-dimensional vectors, making it relatively space
efficient.

PQ has been used for compact encoding and approximate distance computation in
nearest neighbor searches, and has recently been used in combination with the inverted
indexing method (Babenko & Lempitsky, 2012) to prevent exhaustive searches and speed
up the search process. Given the time complexity of the O (Mk) per distance computation
using lookup tables for PQ, the methods presented by Douze, Jegou & Schmid (2011)
and Babenko & Lempitsky (2012) are state-of-the-art methods for compact encoding and
inverted indexing, respectively. Indexing and searching the database using the above
method could be concisely described as follows:

Indexing a vector y :
1. Quantize y to qc (y)
2. Calculate residual r (y) = y - qc (y)
3. Quantize r (y) to qp (r (y)), which for the product quantizer is equivalent to assigning

uj(y) to qj (uj(y)), for j = 1...m.
4. Add a new entry to the inverted list corresponding to qc(y) containing the vector (or

image) identifier and the binary code (the product quantizer’s indexes).
Searching the nearest neighbor(s) of a query x:

1. Quantize x to its nearest neighbors (w) in the codebook qc ; r (x) denotes the residuals
associated with these w assignments. The following two steps are applied to all w
assignments:

2. Compute the squared distance d (uj(r (x)), c j,i)2 for each subquantizer j and each of
its centroids cj,i;

3. Calculate the squared distance between r (x) and all the indexed vectors of the inverted
list. Using the subvector-to-centroid distances computed in the previous step, the sum
of them look-up values is calculated and then the K nearest neighbors of x are selected
based on the estimated distances. This is implemented efficiently by maintaining a
Maxheap structure of fixed capacity that stores the smallest K values seen so far.
After each distance calculation, the point identifier is added to the structure only if its
distance is below the largest distance in the Maxheap. where qc is a quantizer learned
using k-means, referred to as the coarse quantizer; qp is the product quantizer used to
encode the residual vector; and uj is the jth subvector of vector x.

Enhancement experiments and result
We conducted the experiments on both Autoware (Molina et al., 2017) and Baidu Apollo
(Wan et al., 2018) platforms on a local PC. These platforms are currently the only two well-
known open-source platforms for the whole lifecycle in autonomous vehicle development.
We modified the NDT implementations in both platforms, using PQ to replace the default
Kd-Tree-based searching method, and used the point cloud datasets provided by the
platforms for verification. For Autoware, the dataset was found on page 4 of its project
wiki. For Baidu Apollo, we downloaded source code5 and used the dataset under the
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Figure 7 NDT align time comparison based on different nearest neighbor search algorithms.
Full-size DOI: 10.7717/peerjcs.2189/fig-7

NDT module for verification. As shown in Fig. 7, we compared the searching time of the
PQ method with those of the Kd-Tree method and brute-force method on the Autoware
dataset of three-dimensional point cloud data. Notably, the results suggested that PQ
performed slightly worse than the Kd-Tree method, but still vastly better than brute-force
method. However, PQ’s search speed would likely be significantly shorter than the Kd-tree
method if tested on point cloud datasets with high-dimensional features (e.g., around
1,024 dimensions). As the data dimension increases, the performance of the Kd-Tree
tree method decreases sharply. In a high-dimensional space, the data points are very
sparse, making the distance calculation inaccurate and resulting in poor partitioning of
the Kd-Tree tree. The ‘‘dimensional curse’’ problem in high-dimensional data also makes
the Kd-Tree method less efficient because as the dimension increases, the distribution of
data points on each node becomes more uniform, causing the depth of the Kd-Tree tree
to increase and the search efficiency to decrease. In large-scale datasets, the construction
and search process of a Kd-tree requires a lot of computing resources. First, building a
Kd-tree involves the recursive partitioning of data, which requires a lot of computation
time and memory. Second, in the search process, the distance between the query point and
each node in the Kd-tree needs to be calculated, and many comparisons and judgments
are made, which also increases the number of calculations. Third, for large datasets, a
Kd-tree uses a lot of memory to store data structures and intermediate results. As data
size increases, memory consumption can also grow rapidly, which can lead to insufficient
computational resources or performance bottlenecks (Sariel, Indyk & Motwani, 1998;Muja
& Lowe, 2014). In contrast, when dealing with high-dimensional large-scale data, the PQ
algorithm can decompose the original high-dimensional space into Cartesian products
of several low-dimensional vector spaces and quantize them individually, significantly
reducing memory storage requirements and computational complexity and improving
computational efficiency.
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Future work
Based on the results of the enhancement studies, the following steps could also improve
the proposed model:
1. Modifying the PCL in the NDT module code so that it can support the processing of

high-dimensional point cloud data.
2. Adaptively adjusting the radius search value. LiDAR points are traditionally retrieved

by finding k nearest neighbors or all points included in a small confined environment
centered on the point of interest. However, k and ambient radius values are usually
selected heuristically and are assumed to be constant for the entire point cloud, rather
than guided by data. This does not ensure that all of the identified neighbors belong
to the same object as the current point. Therefore, when several different structures
are included, their local descriptions may be biased and provide the wrong feature
descriptors.

3. Because the three main approximate nearest neighbor (ANN) methods have different
adaptation scenarios, these three main methods could be implemented in the NDT
module then the method to run could be chosen dynamically based on the surrounding
environment at runtime.

CONCLUSION
Driving an autonomous vehicle safely requires the vehicle to perceive its surroundings
and localize itself accurately so that sound and agile decisions can be made in real world
environments. InGPS-denied locations, autonomous vehicles need an alternate sensor. This
article focuses on LiDAR as the primary sensor for simultaneous localization and mapping.
To improve pose estimate accuracy, PointNet++ was implemented to extract geometric
features in point cloud data and output the initial pose estimate. The localization output was
then generated by initializing NDT with the initial pose estimate. The system architecture
of the proposed model comprises a deep learning framework and scan registration method
for localization. The proposed model was then tested using a ROS and the estimated pose
results were compared against the ground truth using the RVIZ visualizer. In the attempt
to improve internal neighborhood search in NDT, the PQ method was also explored to
maximize the high-dimensional features of PointNet++.
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