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ABSTRACT

Globally, glaucoma is a leading cause of visual impairment and vision loss, emphasizing
the critical need for early diagnosis and intervention. This research explores the
application of deep learning for automated glaucoma diagnosis using retinal fundus
photographs. We introduce a novel cross-sectional optic nerve head (ONH) feature
derived from optical coherence tomography (OCT) images to enhance existing
diagnostic procedures. Our approach leverages deep learning to automatically detect
key optic disc characteristics, eliminating the need for manual feature engineering. The
deep learning classifier then categorizes images as normal or abnormal, streamlining
the diagnostic process. Deep learning techniques have proven effective in classifying
and segmenting retinal fundus images, enabling the analysis of a growing number of
images. This study introduces a novel mixed loss function that combines the strengths of
focal loss and correntropy loss to handle complex biomedical data with class imbalance
and outliers, particularly in OCT images. We further refine a multi-task deep learning
model that capitalizes on similarities across major eye-fundus activities and metrics for
glaucoma detection. The model is rigorously evaluated on a real-world ophthalmic
dataset, achieving impressive accuracy, specificity, and sensitivity of 100%, 99.8%,
and 99.2%, respectively, surpassing state-of-the-art methods. These promising results
underscore the potential of our deep learning algorithm for automated glaucoma
diagnosis, with significant implications for clinical applications. By simultaneously
addressing segmentation and classification challenges, our approach demonstrates its
effectiveness in accurately identifying ocular diseases, paving the way for improved
glaucoma diagnosis and early intervention.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Neural Networks
Keywords Retinal fundus, Optic Nerve Head, Glaucoma, CNN, Multi-task deep learning

INTRODUCTION

Visual field loss, structural alterations to the optic nerve head, and changes to the thickness
of the RNFL, the ganglion cell layer, and the inner plexiform layer are all hallmarks of
glaucoma (Weinreb, Aung & Medeiros, 2014; Tay et al., 2005). Early glaucoma detection is
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notoriously tricky. Individuals with the illness may not be identified until severe functional

loss has occurred if a misdiagnosis is made in the early stages. Therefore, treating glaucoma

as soon as it is diagnosed is essential for preventing visual loss (Tay et al., 2005). Many
improvements are seen in the medical emergence (Aluvalu et al., 2023). Even in its early
stages, glaucoma can be difficult to diagnose. It is well-known that the disc shape and visual
field defect seen in myopic eyes and individuals with brain disorders such as brain tumors
make glaucoma diagnosis challenging. Clinicians might benefit significantly from a refined
machine-learning model for detecting glaucoma.

One of the most valuable tools for spotting glaucoma is digital fundus photography.
Recently developed deep learning (DL) models employing fundus pictures have shown
promising results for glaucoma detection (Vaswani et al., 2017), largely thanks to Al
advancements. Artificial neural networks, often known as ’deep learning models”, are
constructed using several layers of computational nodes, or “neurons”. Like genuine brain
cells, these “neurons” are basic algorithms that take input from other neurons, process that
input, and then output some result. While there have been significant developments in the
use of deep learning to handle processing and diagnosis in this area, Currently available
deep learning techniques may still not be able to entirely avoid the will effect of disparities
in data and anomalies in fundus pictures, leading to less than satisfactory performance in
some cases.

By combining focused loss and correntropy-induced loss coefficients, we propose a deep
learning-based classification network to overcome these limitations and give a more natural
method for identifying eye diseases from retinal fundus images. Focal loss is acceptable to
meet the rising interest in resolving the disparity and may cause the weight of challenging
samples to rise. Furthermore, correntropy loss has superior generalization and tolerance
to noise and outliers than other typical classification loss functions, such as cross-entropy
loss. The following is the article’s primary contributions, with explanations:

1. This article proposes a mixed loss function as a replacement for the traditional loss
function while analyzing biomedical data, considering the strengths of both the focal
loss and the correntropy loss functions in dealing with complicated datasets containing
class imbalance and outliers.

2. To help with the existing diagnostic assessment of glaucoma, we used OCT images to
examine numerous features and introduce a unique cross-sectional optic nerve head
(ONH) feature.

3. Using similarities across important eye-fundus activities and metrics, we create and
tune a novel multi-task DL framework for detecting glaucoma.

4. Accuracy, sensitivity, specificity, and area under the receiver operating distinctive curve
(AUC) are only a few metrics utilized to thoroughly test the efficacy of the suggested
model after its initial evaluation on a real-world ophthalmic dataset. Additionally, we
talk about how well our model classifies data on ocular illnesses.
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What follows is a brief synopsis of the remaining material. The following part provides
a basic overview of the exciting technologies. ‘Results’ offers our deep learning model
based on the previously mentioned technologies. In ‘Result and Discussion’, we present
the experimental outcomes and accompanying comments. The final portion of the article
wraps everything up.

Glaucoma may be appropriately diagnosed using machine learning’s categorization
method. Chan et al. (2002) tested many visual field analysis-based categorization systems.
In addition, Goldbaum et al. (2002) examined several machine-learning classifiers and
concluded that a Gaussian mixture was the most effective. Using RNFL thickness
characteristics, Bizios et al. (2010) evaluated artificial neural networks (ANNs) and support
vector machines (SVMs). Machine learning classifiers (MLCs) and random forest (RF)
were studied by Barella et al. (2013) for their diagnostic accuracy on RNFL and optic nerve
data. Using RF, they were able to get an AUC of 0.877. Silva et al. (Thompson, Jammal ¢
Medeiros, 2020) have conducted extensive tests of practically all classifiers utilizing Spectral
Domain OCT and conventional automated perimetry. Using RF, they were able to get an
a receiver operating characteristic (ROC) of 0.946. Both SVM and RF have been shown
to have strong predictive ability. In machine learning, the conflict between the two is an
internationally recognized problem of how well a model can predict and explain it.

Black-box models like SVM and deep learning make accurate predictions (Chen et al.,
2015; Claro et al., 2016). It needs to be clarified why the model predicts that. These methods
fail for medical diagnosis because doctors want to know the logic behind a prognosis and the
forecast. State-of-the-art (SoTA) convolutional neural networks (CNNs) use convolutional
layers to characterize fundus images using 1-dimensional visual information (Yu et al.,
2019). An integrated, fine-tuned layer classifies these visual features as glaucoma-related or
healthy (Fan et al., 2023). CNNs can be deceived when an observed image’s visual feature is
similar to one of the taught instances, even when they have pretty different spatial structures
because such visual qualities are learned without recording pixel relationships (Fan et al.,
2022).

Initially designed for machine translation (Dosovitskiy et al., 2020), transformers are now
the standard SoTA technique for many NLP projects (Fan et al., 2022). They do well in
NLP tasks because their self-attention mechanism (Dosovitskiy et al., 2020) weights different
sequences of incoming data differently. Transformers may handle data concurrently, unlike
recurrent neural networks. Instead, the self-attention mechanism provides a situation for
any input category to demonstrate its ability to perceive input links. Transformers may
struggle to evaluate images due of the necessity for self-attention between pixels.

Another deep-learning (DL) method was established in Orlando et al. (2020) to identify
glaucoma by extracting numerous properties. A deep feed-forward neural network (FNN)
was used as a DL classifier. The scientists also used random forests (RF), gradient boosting
(GB), support vector machines (SVMs), and neural networks (NNs) with this DL classifier.
Their deep ensemble glaucoma detection solution was created for that. Deep FNN classifiers
achieved an AUC 0f92.5, according to the report. A different approach was offered in Asaoka
et al. (2016). The optic disc (OD) was used to study glaucoma and retinal vein obstruction.
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Eventhough, black-box models offer accurate predictions but lack transparency in their
decision-making process, posing a challenge for medical diagnoses where understanding
the rationale is crucial (Yu et al., 2019; Fan et al., 2023). Advanced CNNs, used for analysing
fundus images, classify visual features as glaucoma-related or healthy but may be misled due
to their focus on isolated optical characteristics without considering pixel relationships. This
limitation highlights the need for more interpretable models in healthcare applications (Fan
et al., 2022). Initially designed for machine translation, transformers have become the
standard in many NLP tasks due to their self-attention mechanism (Dosovitskiy et al.,
2020), allowing for non-sequential data processing and context understanding (Alghamdi
et al., 2016). However, applying Transformers to image analysis, like glaucoma detection, is
challenging due to the complexity of self-attention between pixels. Various deep-learning
(DL) (Claro et al., 2016) and traditional machine-learning methods have been explored for
glaucoma detection. One approach utilized a deep feed-forward neural network (FNN),
achieving a notable AUC of 92.5%. Additionally, deep ensembles combining DL classifiers
with methods like random forests, gradient boosting, SVMs, and neural networks have
been used.

Recent studies have focused on developing a deep-learning system to identify
glaucomatous changes in retinal fundus images. This technological advancement has
led to the automation of glaucoma detection, eliminating the need for manual intervention
(Yalgin, Alver & Uluhatun, 2018; Jena, Mishra ¢ Mishra, 2018; Sarki et al., 2020; Nazir et
al.,, 2021).

The scientists trained a deep-learning system to recognize glaucomatous changes in
retinal fundus pictures, fully automating glaucoma detection. Learning features from CNN
models with linear and nonlinear activation functions were used. To train the CNN model,
they employed patterns characteristic of both glaucoma and normal vision. AUC values of
0.838 and 0.898 were reported based on their studies on the ORIGA and SCES datasets.
Image processing techniques were used to automatically diagnose glaucoma in the eyes
using an ensemble of machine learning classifiers, as described by the authors in (Salam et
al., 2016; Chen et al., 2015). The study described a method for extracting texture features
from various color models and classifying them using a multilayer perceptron (MLP) model
for optic disc segmentation. A novel image processing approach for diabetic retinopathy
identification from retinal fundus images is reviewed in this research (Al-hazaimeh et al.,
2022). This method seeks excellent sensitivity, specificity, and accuracy. The authors suggest
an effective diabetic retinopathy detection method. The technique improves retinal fundus
disease detection with advanced image processing. According to the article, proper diabetic
retinopathy diagnosis and prompt treatment need high-performance metrics. Following
significant investigation, an automated diabetic retinopathy screening approach was
established. This system included numerous stages with various purposes. Preprocessing
enhanced retinal images.
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Table 1 The key findings and criticisms from the literature survey.

Reference

Approach/Methodology

Key Findings

Criticisms

Ozdek et al. (2000)

Chan et al. (2002)

Goldbaum et al. (2002)

Bizios et al. (2010)

Barella et al. (2013)

Kumar, Chauhan ¢
Dahiya (2016) and Diaz-
Pinto et al. (2019)
Dosovitskiy et al. (2020),
Vaswani et al. (2017)
and Priyanka & Uma
Maheswari (2021)

Alghamdi et al. (2016)
and Priyanka & Uma
Maheswari (2021)

Jain et al. (2018)

Visual field analysis-based
categorization

Machine learning classi-
fiers (e.g., Gaussian mix-
ture)

Artificial Neural Net-
works (ANNs) and Sup-
port Vector Machines
(SVMs)

Machine learning classi-
fiers (MLCs) and Random
Forest (RF)

Spectral Domain OCT
and conventional auto-
mated perimetry

Black-box models (e.g.,
SVM, deep learning)

State-of-the-art CNNs
with convolutional layers

Transformers with self-
attention mechanism

Deep feed-forward neu-
ral network (FNN), RF,
Gradient Boosting, SVM,
NNs

Effective glaucoma detec-
tion using visual field data

Gaussian mixture classi-
fier shows high effective-
ness

Evaluation using RNFL
thickness characteristics

RF achieves an AUC of
0.877

RF achieves an aROC of
0.946

Accurate predictions but
lack of interpretability

Effective feature charac-
terization and glaucoma
classification

Effective in NLP tasks,
struggle with image data

Deep ensemble glaucoma
detection with an AUC of
92.5

Lack of explanation for the
choice of visual field data

Limited discussion on clas-
sifier selection rationale

Incomplete exploration of
alternative model architec-
tures

Limited discussion on RF’s
limitations

Lack of insights into the
reasons behind RF’s success

The limited explanation for
predictions

Vulnerability to image sim-
ilarity issues

Difficulty in handling
image data due to self-
attention limitations

Limited discussion on the
choice of ensemble models

The method focused on optic disc identification and removal since they can hide diabetic
retinopathy symptoms. Blood vessels may conceal features. Thus, they were segmented
and removed. Jain et al. (2018) presents a novel methodology for the detection of diabetes
retinopathy in Fundus images, which combines image processing techniques with artificial
intelligence. The objective of this research is to address the performance criteria required
for the accurate identification of disease-causing retinopathy in individuals with diabetes.
By integrating these two domains, the proposed approach aims to enhance the accuracy
and efficiency of disease detection. The results of this study contribute to the existing
body of knowledge in the field of medical imaging and provide a potential solution for
improving the diagnosis of diabetes retinopathy. The detection of diabetic retinopathy
through automated methods has been a subject of research and has been approached
through various stages. Table 1 shows the key findings and criticisms from the literature
survey.
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MATERIALS & METHODS

Developers turn to the Keras package and its data generator function to supplement existing
data. Transfer learning is used after the input image has been pre-processed to extract the
picture feature. The parts are extracted using an encoder and a decoder, working in parallel.
Both the encoder and the decoder are based on the VNet framework. The transfer learning
model is the starting point since it is computationally efficient and produces good results.
Classification and visualization outcomes are obtained when the administered feature
passes through a global average pooling, dropout, and dense layer.

Multitask deep learning

Multi-task learning (MTL) improves model efficiency and generalizability by combining
data from multiple tasks into one dataset, leveraging shared feature representations even
from small datasets. MTL reduces overfitting risks and typically uses shared hidden layers
for all tasks while maintaining task-specific output layers. Hard and soft parameter sharing
are common approaches, with soft sharing regulating differences between separate models
for each task. In contrast, single-task learning models are built and trained independently
for each task, failing to capitalize on their interdependencies. MTL effectively utilizes data
across related tasks for better predictions. We chose VNet for its proficiency in 3D medical
image segmentation to base our multi-task learning network. VNet consists of an encoding
path for feature extraction, a decoding path for target segmentation, and skip connections
enhancing segmentation accuracy. It employs four down sampling steps in the encoding
process and four up sampling operations in the decoding path to match the original input
size, while 3x3x3 convolution kernels are used in each layer. After each convolution
process, batch normalization (BN) and a rectified linear unit (ReLU) are achieved. We
employ convolution operations with a 2x2x2 kernel size and a 222 stride to avoid losing
positional details while down-sampling feature maps. CNN models like VGG and ResNet
provide high-level feature maps that many traditional image classification networks use.
Motivated by this realization, the recommended multi-task learning network uses VNet’s
shared high-level feature maps to extract general characteristics for categorization and
division. The classification network is first given feature maps from Stages 4, 5, and 6.
Next, we combine these standard feature maps in preparation for categorization. At last,
we utilize the predicted input volume and fused features to train a classification tree with
two fully connected (FC) layers and one softmax layer.

Glaucoma classification

In our glaucoma detection study, we assessed various pre-trained CNNs like AlexNet,
VGGNet, Xception, and Inception-ResNet, applying transfer learning and hyperparameter
optimization. Switching to the ADAM optimizer improved VGGNet and ResNet
performance. Our analysis covered architectures from the basic AlexNet to the complex
Inception-ResNet-V2, identifying effective methods for diabetic eye disease detection,
ultimately enhancing patient care.
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o AlexNet

In our study, the pretrained AlexNet CNN excelled in detecting glaucoma and diabetic
retinopathy, outperforming other models. Its structure includes five convolutional layers,
three fully connected layers, and ReLU activation, with softmax for classification. Employing
transfer learning with a subset of images, we improved AlexNet’s efficiency and accessibility
for broader use.

e Inception-ResNet-v2

Deep neural networks (DNNs), particularly a hybrid of Inception and ResNet, have
advanced image identification significantly. The Inception-ResNet-v2 network, comprising
164 layers and blending inception modules with reduction blocks, surpasses traditional
Inception models. This hybrid network includes a stem node, inception nodes, and
reduction nodes, with performance depending largely on hyperparameters. To maintain
dimension consistency, reduction outputs are adjusted using a 1X1 convolution. In our
study, we utilized the Inception-ResNet-v2 model, setting inputs for regular and glaucoma
classes and achieving an impressive 100% accuracy and 99% AUC.

Loss function

The network in a deep learning model strives to lessen the anticipated loss, designed by
likening the predicted value to the ground truth using the loss function. In this work, we
propose a novel mixture loss function, a combination of focal loss (Asaoka et al., 2016)
and correntropy loss (Kumar, Chauhan ¢» Dahiya, 2016), to efficiently handle complicated
biomedical datasets with class imbalance and outliers. Binary cross entropy is used to tweak
the focal loss. Binomial cross-entropy is often defined as

—logd, a=1

L.(4—a) = —alogd— (1—a)log(l —a)= (1)

—log(1—4d), otherwise.

The ais the actual label and 4 is the predicted label value through the model. Deductively,
we define m as,

a, a=1
m= 2
1—ad, otherwise @)

Therefore, the definition of cross entropy may be recast as
L.(m) = —log(m). (3)

To decrease the importance of simple instances and shift the training’s attention to the
challenging ones, the Focal loss function modifies the cross entropy by a factor of (1 —m)?.
So, we may describe it as

Lg(m) = —(1—m)"log(m) (4)

The focusing parameter is denoted by, y. The importance of simple samples drops as
the focusing parameter rises. Focal loss also includes a weighting factor ¥ to compensate
for the inequality between classes. Therefore, we may further characterize the focused loss
by saying:

L¢(m) =—09(1—m)"log(m) (5)
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In addition, the focused loss may be expressed as when m is defined.

—9(1—a)"log(d), a=1

Li(d—a)= {_(1 —a)"log(d), otherwise ©

since it can be adjusted to the sample distances using the various M norms, correntropy
loss is advantageous for classification because it is resistant to noise and outliers. The
correntropy has the property of M2 norm for extremely little mistake. When the error
value is significant enough, the correntropy loss(CL) behaves like the M0 norm rather than
the M1 norm. The definition of correntropy is:

amszU%m—m}i/@m—mwwmmx (7)

where A, B, Kg(a—b), Jap(a,b), and are all random variables; Kg(a—b) is the kernel
function; Jap(a, b) is the joint distribution function of A and B; and is the frequency. The
loss function Ly that is caused by correntropy is described as follows:

Ler(b,b)=1—Kz(b—D) (8)

Here, the Gaussian kernel is used to determine the correlation. It can be rewritten as

Ler(b.b) =1 Gy (b—b) (9)
b—b)’
LCL(B, b):exp (—( IBZ ) ) (10)

Here, we propose a mixed loss function, FC-loss, defined as the product of focal loss
and CL-loss.

Lr(b,b), O<t<m

Ler(bb), 0<t<M (11)

Lecr(b,b) = {
where t is the current time and 7 is a fixed minimum requirement. After n epochs of training
with focal loss, we switch to CL-loss to finish off. The total number of epochs is denoted
here by M. The CL-loss has numerous benefits, such as improved generalization and noise
resilience. This is why we pretrain the model with focus loss across several iterations. To
compensate for the class-weighting disparity, the focus loss has been implemented.
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Algorithm 1. The Algorithms for Glaucoma detection using the proposed model

Input:
Training and Testing Dataset D;, Learning rate o<, Epochs M, Batch size B
Output:
Classification Glaucoma, Normal
1. Preprocess the images
2. Divide the dataset into training, validation, and testing sets
3. Initialize the VNet model to extract the feature
4. for each epoch 1 to M
a. Concatenate the features from VNet and the transfer learning model

b. Pre-trained layers’ weights frozen before further training of the new fully
connected layer

c. Fine tune the model

d. Train the model on the training with optimizer SGD/Adam and a suitable
loss function FCL

Lr(b,b), O<t<m

Lrau(b,0) = {LCL(B,b), 0O<t<M

6. Evaluate the trained model on the validation set to tune any hyperparameters
7. Evaluate the model on the testing set to report the final recital of the model.

8. Analyze the confusion matrix

Dataset

The ACRIMA dataset, created by the Spanish Ministry of Economy and Competitiveness,
focuses on glaucoma image categorization using Topcon TRC retinal camera images.
These high-quality images, classified by specialists, form the basis for distinguishing
between normal and glaucomatous samples. Similarly, the ORIGA dataset (Orlando et
al., 20205 Lin et al., 2020), part of the SIMES project, features 650 manually segmented
images from a study of 3,280 Malay individuals, annotated with CDR and glaucoma/health
labels (Diaz-Pinto et al., 2019; Zhang et al., 2010). Additionally, our study analyzed the
REFUGE challenge, involving 1,200 images, to concentrate on glaucoma classification and
optic disc/cup segmentation. we resorted to the same pre-processing and data augmentation
methods we employed before. In summary, a semantic segmentation network was used to
first extract an area positioned on the optic nerve head from each raw fundus picture. After
the optic nerve head was removed, each picture was automatically cropped to a square
224 %224 pixels in size to be used as input in the DL model. Data augmentation procedures
were used to improve the quantity and kind of variance in the training set before the DL
model was trained.

RESULTS

To assess our model, we established a robust experimental setup, utilizing an Intel E5-2620
CPU for its multiple cores and threads, essential for efficient data preprocessing and
model training. Our experiments were further accelerated by an NVIDIA Tesla M2090
GPU, chosen for its parallel processing capabilities that are ideal for deep learning tasks.
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Figure 1 Prediction accuracy of the training process for our multi-task method. (A) The accuracy of
REFUGE,; (B) the accuracy of the ACRIMA dataset; (C) the accuracy of the ORIGA dataset.
Full-size Gal DOI: 10.7717/peerjcs.2186/fig-1

Python 3, known for its extensive machine learning libraries and user-friendliness, was
our programming language of choice. We employed TensorFlow for its flexibility and
efficiency in neural network training, coupled with the Keras library as a high-level API
on TensorFlow, simplifying neural network construction and training. This setup enabled
focused efforts on model architecture and hyper parameter optimization. Our technique’s
effectiveness was evaluated using metrics like accuracy, sensitivity, specificity, precision,
Fl-score, and area under the curve (AUC) on retinal images. Sensitivity and specificity
measure the correct identification of glaucomatous and normal images, respectively.
Accuracy reflects the overall correct identification rate, while the F1-score balances precision
and recall. The ROC curve, depicted by the true positive and true negative rates, helps
visualize performance, with the AUC indicating the model’s predictive capacity.

The Fp; and Fy; both represent the normal picture that was misidentified as a
glaucomatous one, and the glaucomatous image that was misidentified as a normal
one. Figure 1 displays the dataset accuracy of the suggested model.

RESULT AND DISCUSSION

Figure 1 displays the dataset accuracy of the suggested model.
The detailed loss of our proposed models on the dataset are shown Fig. 2. Our suggested
deep learning architecture makes advantage of dropout in the two fully-connected layers.
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Figure 2 Prediction loss of the training process for our multi-task method. (A) The loss of REFUGE;
(B) the loss of the ACRIMA dataset; (C) the loss of the ORIGA dataset.
Full-size Gl DOI: 10.7717/peerjcs.2186/fig-2

Every hidden neuron has a 50% chance of having its output reduced to zero. If neurons
are removed, they cannot take part in the forward pass and will have no effect on the back
propagation. We employ all the neurons and scale their outputs by a factor of 0.5 during
testing.

In addition, a reliable glaucoma detection and classification framework will be able to
distinguish between glaucomatous and healthy pictures. As a result, the true positive rate
(TPR) is plotted in the confusion matrix to better illustrate the classification results. The
acquired findings are displayed in Fig. 3, where it can be seen that the suggested technique
displays a TPR of 0.99 for glaucoma-affected photos, demonstrating the efficacy of our
approach. On top of that, our method achieves a mean glaucoma classification accuracy
of 99.8%, 99.6% and 100% on the REFUGE, ACRIMA and ORIGA dataset. Because
the ResNet V2 as the base network can compute a more accurate collection of image
characteristics that better aid in identifying the unhealthy picture regions, our technique
has a high degree of classification accuracy.

Taking into account all probable abnormalities in both the front and back parts of
the eye, the suggested system sought to collect organized diagnostic information for
forecasting of eye illnesses. Four deep learning algorithms’ output is displayed in Fig. 3.
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Figure 3 Confusion matrix of the training process for our multi-task method. (A) The classification of
REFUGE; (B) the classification of the ACRIMA dataset; (C) the classification of the ORIGA dataset.

Full-size &l DOI: 10.7717/peerjcs.2186/fig-3

Accuracy between 98.64% and 100% was attained when combining MTL with ALexNet,
VGGNet, Xception, and InceptionResNetv2 models, with an average processing time of
3.7 s per picture. The MTL+InceptionResNetv2 combo model has the highest performance
and accuracy. Consequently, we use the most effective pair as our glaucoma categorization
criteria. Table 2 illustrates the performance evaluation of multiple deep learning models,
including ALexNet, VGGNet, Xception, and InceptionResNetv2, on three distinct datasets:
REFUGE, ACRIMA, and ORIGA. The evaluation metrics include accuracy, recall, area
under the ROC curve (AUC), and F1-score, which collectively offer a comprehensive view
of each model’s diagnostic capabilities.

For the REFUGE dataset, ALexNet demonstrates strong performance with an accuracy of
98.9%;, high recall of 0.99, impressive AUC of 0.98, and a robust F1-score of 0.98. Similarly,
VGGNet achieves remarkable results with an accuracy of 99.0%, a recall of 0.98, a high
AUC 0f 0.99, and a competitive F1-score of 0.98. Xception, while slightly lower in accuracy
at 97.5%, maintains a recall of 0.97, an AUC of 0.97, and a commendable F1-score of
0.98. Notably, InceptionResNetv2 achieves flawless performance on the REFUGE dataset,
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Table 2 Analyzing the efficiency of multiple learning methods.

Model/ REFUGE ACRIMA ORIGA

Dataset Accuracy  Recall AUC F1-score Accuracy  Recall AUC F1-score Accuracy  Recall AUC F1-score
ALexNet 98.9% 0.99 0.98 0.98 99.5% 0.99 0.99 0.99 99.2% 0.99 0.99 0.99
VGGNet 99.0% 0.98 0.99 0.98 99.2% 0.99 0.99 0.98 99.1% 0.98 0.98 0.99
Xception 97.5% 0.97 0.97 0.98 97.2% 0.97 0.97 0.98 98.0% 0.97 0.98 0.97
InceptionResNetv2  100% 1.00 1.00 1.00 100% 0.99 0.99 0.99 100% 0.99 0.99 1.00
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securing a perfect accuracy of 100%, a recall of 1.00, an AUC of 1.00, and an exceptional
F1-score of 1.00. These results showcase the potential of deep learning models in accurately
diagnosing glaucoma in the context of the REFUGE dataset.

Moving on to the ACRIMA dataset, ALexNet continues to excel with an accuracy of
99.5%, a recall of 0.99, a high AUC of 0.99, and an outstanding F1-score of 0.99. VGGNet
also maintains strong performance with an accuracy of 99.2%, a recall of 0.99, an AUC
of 0.99, and an impressive F1-score of 0.99. Xception achieves an accuracy of 97.2%, a
recall of 0.97, an AUC of 0.97, and a competitive F1-score of 0.98. InceptionResNetv2
demonstrates exceptional performance with a perfect accuracy of 100%, a recall of 0.99, an
AUC 0f 0.99, and a commendable F1-score of 0.99. These results underline the robustness
of deep learning models in effectively diagnosing glaucoma within the ACRIMA dataset.

Finally, in the case of the ORIGA dataset, ALexNet maintains its strong performance,
achieving an accuracy of 99.2%, a recall of 0.99, a high AUC of 0.99, and an impressive
Fl-score of 0.99. VGGNet also exhibits remarkable results with an accuracy of 99.1%, a
recall of 0.98, an AUC of 0.98, and an outstanding F1-score of 0.99. Xception attains an
accuracy of 98.0%, a recall of 0.97, a competitive AUC of 0.98, and a commendable F1-
score of 0.97. InceptionResNetv2 delivers exemplary performance with a perfect accuracy
of 100%, a recall of 1.00, an AUC of 0.99, and a remarkable F1-score of 1.00. These findings
underscore the robustness of deep learning models in accurately diagnosing glaucoma
across various datasets.

The VNet model’s initial benefit over earlier segmentation methods is that it makes use
of information about both global location and context simultaneously. There are several
more benefits to using the VNet method. When compared to alternative methods for
segmentation problems, the VNet model stands out for a number of reasons. Additionally,
it enhances performance on tasks linked to segmentation using a minimal amount of
training data. Possessing this is advantageous. To enhance representation learning in
subsequent convolutions, in order to improve the system’s accuracy, we up-sample its
features and fuse them with more detailed feature maps generated by an encoder system.

Our study’s promising results highlight the need to address key challenges for broader
applicability. One major limitation is dataset variability, including differences in ethnicity
representation, data collection methods, labeling standards, and image quality. The models,
trained on specific datasets, showed varied effectiveness across different datasets, as retinal
appearance can differ by ethnicity. Additionally, our datasets only included high-quality
images, unlike real-world scenarios where low-quality and artifact-laden images are
common. Therefore, creating a comprehensive screening dataset encompassing diverse
ethnicities, genders, image qualities, and comorbidities is crucial for enhancing the model’s
practical effectiveness.

In our study, the AlexNet model demonstrated inference times for a single image
ranging from a few milliseconds to about 20 ms, while VGGNet required 20 to 50 ms.
The inference time for a single image using the Inception model ranged from 30 to
100 ms, and the ResNetv2 model took about 40 to 120 ms. Our deep learning-based
strategy significantly improves the accuracy and reliability of glaucoma detection, with
InceptionResNetv2 showing high performance metrics across multiple datasets. This
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Figure 4 Performance of various multi task learning algorithms.
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automation in diagnosis, eliminating manual feature engineering, enhances efficiency and
aids healthcare professionals in timely and accurate glaucoma identification.

Challenges and limitation

Our research into diabetic eye disease detection using deep learning faced several complex
challenges. Data preprocessing was intricate, especially with retinal image datasets,
necessitating data augmentation, image normalization, and handling of imperfect data.
Hyperparameter optimization also proved difficult, with choices in learning rates, batch
sizes, and optimizers impacting model performance, requiring extensive experimentation
for fine-tuning. The high computational demands of using advanced architectures like
VGGNet and InceptionResNetv2 posed resource challenges, emphasizing the need for
efficient GPU memory management and hardware utilization as in Fig. 4. Additionally,
the risk of overfitting necessitated strategies like dropout and regularization to ensure
our models’ robustness in real-world applications. In our medical application study,
interpretability was crucial. We tackled the challenge of creating transparent, interpretable
model outputs to clarify decision-making processes, essential for clinical trust and
adoption. Developing visualization and explanation methods was key to this transparency.
Transitioning from development to real-world deployment also presented challenges,
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including managing model size, ensuring real-time inference, and integrating with
healthcare systems.

Our system, while impactful in diabetic eye disease detection, has limitations.
Performance is tied to training data availability and diversity, highlighting the need for more
extensive and varied datasets. Achieving fully interpretable outputs for informed clinical
decisions remains challenging, requiring further research into advanced interpretability
techniques. Additionally, system accessibility is limited by specific hardware requirements
and substantial computational resources. Future work should explore model compression
and optimization for wider accessibility. Finally, to ensure robustness and reliability, testing
on diverse patient populations is necessary. Addressing these aspects is crucial for advancing
the system’s effectiveness, interpretability, and generalizability in clinical practice.

CONCLUSIONS

The proposed study presents an advanced deep learning (DL) framework for multitask
learning in glaucoma detection. This framework effectively discerns key features for accurate
glaucoma diagnosis, demonstrating deep learning’s prowess in analyzing retinal fundus
images. A novel optic nerve head feature and a mixed loss function address class imbalance
and outliers in complex datasets. The InceptionResNetv2 model shows exceptional accuracy
(100%) on REFUGE, ACRIMA, and ORIGA datasets. Other architectures like AlexNet,
VGGNet, and Xception also perform well, with high accuracy rates. Future research should
focus on model generalization across diverse data and populations, enhancing resilience
and accuracy through advanced image processing techniques. Investigating advanced
data augmentation and transfer learning methods can overcome data size and diversity
constraints. Improving interpretability of Al diagnostics is crucial for healthcare adoption.
Additionally, exploring edge computing and optimization for real-world deployment is
essential for broader accessibility and efficient operation in clinical settings.
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