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ABSTRACT
Transforming optical facial images into sketches while preserving realism and facial
features poses a significant challenge. The current methods that rely on paired training
data are costly and resource-intensive. Furthermore, they often fail to capture the
intricate features of faces, resulting in substandard sketch generation. To address
these challenges, we propose the novel hierarchical contrast generative adversarial
network (HCGAN). Firstly, HCGAN consists of a global sketch synthesis module that
generates sketches with well-defined global features and a local sketch refinement
module that enhances the ability to extract features in critical areas. Secondly, we
introduce local refinement loss based on the local sketch refinement module, refining
sketches at a granular level. Finally, we propose an association strategy called ‘‘warmup-
epoch’’ and local consistency loss between the two modules to ensure HCGAN is
effectively optimized. Evaluations of the CUFS and SKSF-A datasets demonstrate that
our method produces high-quality sketches and outperforms existing state-of-the-art
methods in terms of fidelity and realism. Compared to the current state-of-the-art
methods, HCGAN reduces FID by 12.6941, 4.9124, and 9.0316 on three datasets of
CUFS, respectively, and by 7.4679 on the SKSF-A dataset. Additionally, it obtained
optimal scores for content fidelity (CF), global effects (GE), and local patterns (LP). The
proposed HCGAN model provides a promising solution for realistic sketch synthesis
under unpaired data training.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Face sketch synthesis, Generative adversarial network, Hierarchical contrast network,
Unpaired learning

INTRODUCTION
Unpaired sketch face synthesis transforms optical face images into sketches without paired
training data. This technique shares similarities with image style transfer (Lin, Pang &
Xia, 2020; Zhu et al., 2017; Park et al., 2020) and has implications in entertainment and
criminal investigations. Generating paired high-quality images for sketch face synthesis is
often time-consuming and expensive, requiring skilled artists to create them by hand using
traditional methods. Therefore, unpaired sketch face synthesis presents a more practical
solution when acquiring paired data is prohibitively time-consuming and expensive.
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Nevertheless, sketch face synthesis from unpaired data is a more intricate task compared
to using paired data (Yi et al., 2020a). The imperfect pixel correlation between unpaired
sketches and optical images poses challenges in capturing local details and may lead to
feature displacement and shadowing issues. Existing methods often struggle to address
shadow artifacts at local edges, significantly impacting the realism and accuracy of facial
details.

In the past decade, various methods have been explored for sketch face synthesis,
including traditional Bayesian inference (Chen et al., 2001; Nefian & Hayes, 1999; Wang et
al., 2013; Peng et al., 2015), representation learning (Tang & Wang, 2002; Liu et al., 2005),
and subspace learning (Huang & Wang, 2013; Ji et al., 2011; Wang et al., 2012; Gao et
al., 2012; Zhang et al., 2011). However, these methods require extensive computational
resources and training data, hindering real-time performance and limit practicality in
real-life applications.

Recently, end-to-end generative adversarial networks (GANs) have gained traction
in sketch face synthesis. For example, Yi et al. (2019) and Yi et al. (2020b) proposed
APDrawing and APDrawing++, which divided images into sections, transformed each into
a partial sketch, and then fused these sketches to generate a comprehensive pseudo-sketch.
However, these methods neglected the relevant parameters of each individual section
during global network training. Moreover, they required paired training data, which is
not only expensive but also difficult to procure, thereby restricting their ability to adapt to
various lighting conditions in unconstrained or natural environments. Within the realm of
unpaired image style transfer, Zhu et al. (2017) proposed Cycle-GAN which introduces a
cycle consistency loss that employs two generators to process the two inputs and reconstruct
images. Other methods (Lin, Pang & Xia, 2020; Taigman, Polyak & Wolf, 2017; Bousmalis
et al., 2017) adopt a similar two-way and double-branch structure. However, thesemethods
often indiscriminately embed invisible reconstruction information across the entire sketch,
consequently reducing the quality of the generated sketch and leading to the partial
absence of crucial facial features. To address this issue, Chen et al. (2023) proposed a
semi-supervised approach with a noise-injection strategy named Semi-Cycle-GAN (SCG),
which reduces the impact of salt-and-pepper noise on the synthesized sketch. Park et al.
(2020) introduced contrastive unpaired translation (CUT), and Gou et al. (2023) proposed
multi-feature contrastive learning (MCL). However, these methods produce sketches with
local details that are not sufficiently realistic, leading to issues such as feature displacement
and shadowing.

While the aforementionedmethods tolerate certain reconstruction quality shortcomings
and meet the general appearance requirements of sketch face synthesis, they struggle to
preserve the integrity and realism of facial details. In response to this challenge, this
article presents the hierarchical contrast generative adversarial network (HCGAN), a
novel approach designed to generate high-quality facial sketches with precise local details
from unpaired input data. HCGAN is comprised of two main modules: the global sketch
synthesis module and the local sketch refinement module.We also introduce an association
strategy called ‘‘warmup-epoch’’ to optimize the synthesis process to establish the necessary
connections between the two modules.
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Specifically, HCGAN comprises two distinct stages, separated by the ‘‘warmup-epoch’’
association strategy. In the initial stage, we introduce a global sketch synthesis module and
a local sketch refinement module to produce a high-quality overall sketch and enhance the
extraction of local features. In the subsequent stage, we incorporate local consistency loss
and local refinement loss to optimize the global sketch synthesis module in collaboration
with the local sketch refinement module. This optimization process yields sketches with
superior local quality.

Our main contributions can be summarized as follows:

• Novel HCGAN approach: We present a novel HCGAN for unpaired face-to-sketch
transformation that overcomes the limitations of existing approaches relying on paired
data. It features a global sketch synthesis module for macroscopic-level sketch generation
and a local sketch refinement module for extracting local features.

• Local refinement loss: To enhance the control of the global sketch synthesis module
over the details of the synthesized sketch at local-level, we propose the local refinement
loss based on the local sketch refinement module. It act on the global sketch synthesis
module to enhance the realism of synthesized sketch details, ensuring the synthesized
sketch exhibits more accurate local feature expression.

• Effective association strategy: To ensure efficient optimization and the production
of high-quality sketches, we propose an effective association strategy between the
global sketch synthesis module and the local sketch refinement module called the
’’warmup-epoch’’. Simultaneously, we employ the local consistency loss to establish a
close relationship and optimize between the two modules.

• Experimental results on the CUFS and SKSF-A datasets demonstrate the superiority
of HCGAN in synthesizing highly realistic sketches with intricate local details,
outperforming existing methods when using unpaired inputs.

RELATED WORKS
Sketch face synthesis is a challenging task that differs from image style transfer due to the
sensitivity of sketches to misplaced or missing lines. Traditional methods heavily rely on
the quality of the training dataset and often prove ineffective for practical applications.
In contrast, deep learning-based methods can balance the influence of individual data in
the training dataset, yet they frequently yield results with reduced clarity and absent facial
features. While GANs have shown promise in addressing local deformation problems,
their performance in training with unpaired data remains unsatisfactory. As a result, there
is an urgent need for a novel approach capable of synthesizing high-quality sketches with
detailed local features from unpaired inputs.

Traditional methods
Traditional sketch synthesis approaches aim to learn the mapping relationship between
images and sketches. This method mainly includes Bayesian inference, representation
learning, and subspace learning models.
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Bayesian inference models update the sketch localization based on a probabilistic model
using real data. For example, Chen et al. (2001) proposed an instance-based sketch face
synthesis system that utilizes a nonparametric sampling algorithm to learn sketching style
details. Nefian & Hayes (1999) used an embedded Hidden Markov model to capture the
nonlinear relationship between picture and sketch pairs. Wang et al. (2013) introduced
a transduction learning method for synthetic sketching, employing a dynamic process
to minimize the loss of a given test sample. Furthermore, Peng et al. (2015) devised a
superpixel approach based on Markov models to enhance flexibility without dividing
photos into regular rectangular blocks. However, these traditional methods often produce
suboptimal results, partly because they rely on manually crafted features and do not always
capture the complexity of the mapping relationship.

Subspace learning models aim to transform high-dimensional spatial features into
low-dimensional ones. Tang & Wang (2002) proposed a series of example-based methods
based on linear feature transformation techniques. However, these methods rely on global
linear systems and fail to capture the complex relationship between photo and sketch pairs
fully. To address this issue, Liu et al. (2005) used the local linear embedding (LLE) method,
which ensures locally geometrically similar stream shapes for photo and sketch patches in
two distinct image spaces. Nevertheless, this method separates pseudo-sketch generation
and representation learning into two distinct processes, resulting in suboptimal outcomes.

Huang & Wang (2013) introduced a joint learning framework encompassing domain-
specific dictionary learning and subspace learning. The representation learning model
primarily relies on sparse coding with dictionary learning. Ji et al. (2011) highlighted
the limitations of capturing personalized features through a synthetic process. Wang
et al. (2012) proposed a semi-coupled dictionary learning method, employing a
linear transformation to bridge the gap between two different domain-specific
representations. Gao et al. (2012), building on a two-step algorithm. Zhang et al. (2011),
presented a selection scheme for generating initial pseudo-images and introduced sparse
representation-based enhancement (SRE) for sketch synthesis.

However, these methods involve extensive calculations, resulting in poor real-time
performance and limited practicality. Moreover, they rely on large-scale training data,
making achieving satisfactory results with limited training data challenging.

Deep learning-based methods
Deep learning-based methods have become increasingly popular for sketch synthesis due
to their ability to train on datasets and generate high-quality results. Among these methods,
generative adversarial networks (GANs) are widely used.

Zhang et al. (2015) introduced the first deep photo-sketch synthesis model using a
fully convolutional neural network (FCNN), but struggled to preserve certain details.
To mitigate this issue, Zhang et al. (2018a) proposed PGAN, which uses a specific
parametric Sigmoid activation function to reduce the impact of photo prior and lighting
variations. Similarly, Wang & Sindagi (2018) introduced a synthesis method called
PS2MAN, which employs two U-Net architectures within a multiple adversarial network
to generate high-quality images at varying resolutions. To address blurring and distortion,

Du et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2184 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2184


Zhang et al. (2018b) proposed a multi-domain adversarial learning (MDAL) approach to
sketch face synthesis. Liang et al. (2023) proposed Parallel Multistage GANs for Face Image
Translation (PMSGAN), achieving synthesis from coarse to fine.

More and more methods are introduced of identity-aware models (Fang et al., 2020;
Lin et al., 2020), incorporating novel perceptual losses to train image generation models
with facial recognition as the ultimate goal. Other notable methods include Yu et al.
(2020), who introduced a synthesis-assisted generative adversarial network utilizing facial
synthesis information, and Duan et al. (2020), who implemented a multiscale self-attentive
residual learning framework for face photo-sketch conversion. Another notable approach
(Goodfellow et al., 2020) does not require any source domain images for training and
utilizes deep features extracted from CNNs and manual features.

Moreover, researchers increasingly emphasize the importance of preserving the content
features of the input optical image while modifying stylistic features in sketch-based face
synthesis. Seo, Ashtari & Noh (2023) introduced a style encoder based on Cycle-GAN
to refine the network’s control over styles. Cui et al. (2021) proposed the Self-Supervised
Semantic Network (SSNet), incorporating both style and semantic feature encoding.Gao et
al. (2021) introduced CHAN, reinforcing the network’s perceptual capabilities for features
such as textures. Li et al. (2022) introduced color refinement loss and texture loss, further
augmenting the network’s control over content features. Kong et al. (2023) proposed an
Asymmetric Double-Stream Generative Adversarial Network (ADS-GAN), incorporating
edge regularization constraints. Yun et al. (2024) proposed a novel sketch face synthesis
method called StyleSketch, based on prior knowledge. It utilizes pre-trained StyleGAN to
extract rich semantic deep features, achieving satisfactory results.

It is worth mentioning that diffusion (Sohl-Dickstein et al., 2015), a newer and better
general style transfer model, is currently available. Diffusion models is to find a noise
map and a conditioning vector corresponding to a generated image. It is a potential way
to improve the quality of example-guided artistic image generation. Dhariwal & Nichol
(2021) invert the deterministic DDIM (Song, Meng & Ermon, 2020) sampling process in
closed form to obtain a latent noise map that will produce a given real image. Ramesh et
al. (2022) develop a text-conditional image generator based on the diffusion models and
the inverted CLIP. The above methods are difficult to generate new instances of a given
example while maintaining fidelity. Zhang et al. (2023) propose an inversion-based style
transfer method (InST), which can efficiently and accurately learn the key information
of an image, thus capturing and transferring the artistic style of a painting. However, the
above diffusion-based methods cannot convert optical images into sketch images when the
training set size is small. The reason is that when the training data is small, it is difficult
for them to correct inappropriate weights in the pre-training weights, making it difficult
to ensure that the style features of the optical image are completely removed, resulting in
the failure of the sketch face synthesis task.

Detailed sketches can only be drawn manually by painters, resulting in sketched face
datasets that are often small in size. When training data is small, GAN-based methods
are often the most effective. In addition, compared with the Diffusion-based method, the
GAN-based method has the advantages of small parameter size and fast optimization.
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Figure 1 Framework of hierarchical contrast generative adversarial network (HCGAN). It comprises a
global sketch synthesis module and a local sketch refinement module. The former generates a sketch, while
the latter optimizes the local refinement loss to optimize the global generator further. To establish an ef-
fective association optimization between the two modules, the HCGAN implements the local consistency
loss and adopts the ‘‘warmup-epoch’’ strategy to adjust each loss coefficient during training.

Full-size DOI: 10.7717/peerjcs.2184/fig-1

However, although the above GAN-based methods have synthesized high-quality sketches,
local details are still unsatisfactory, and the dependence on paired training data limits the
broadening of application scenarios of most methods.

PROPOSED METHOD
Overview
Our article introduces a two-module generative adversarial network framework, as depicted
in Fig. 1, incorporating novel loss functions for training a network F(·) to produce high-
quality sketches from input images. The framework comprises a global sketch synthesis
module and a local sketch refinement module, each equipped with dedicated generators,
discriminators, and block feature extractors.

The global module generates overall sketches, while the local module focuses on
extracting accurate local features. However, solely relying on adversarial loss neglects
image details, which becomes evident in unpaired training data scenarios, resulting in
pseudo-sketch faces with insufficient local details. To address this limitation, we propose
multi-layer block contrast loss, local consistency loss, and local refinement loss to generate
refined local details in the sketch. This enhancement leads to pseudo-sketches with more
precise details. Moreover, the framework can be trained end-to-end without requiring
post-processing.

In our article, we refer to the four local generators, discriminators, and block feature
extractors as Gi, Di, and Hi, respectively.
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Global sketch synthesis module
The global sketch synthesis modulemainly consists global generatorG, global discriminator
D, and global block feature extractor H . The block feature extractor H and the encoding
part E of the global generator G form the global multi-layer block comparison module.
The global sketch synthesis module takes the unpaired image pair

{
Pi,Sj

}
as input. The

optical face image Pi is passed through the global generator G to obtain pseudo-sketch
S′i=G(Pi). Meanwhile the true sketch Sj and the pseudo sketch S′i are input to the global
discriminator D to assess the authenticity of the pseudo sketch S′i.

The generator G used in this article is based on the generator in Johnson, Alahi
& Fei-Fei (2016) and includes residual blocks in its middle layer. This mitigates the
problem of network degradation that occurs when increasing the number of network
layers. Incorporating residual blocks reduces the loss of crucial features and improves
the effectiveness of network training, resulting in the generation of more realistic and
high-quality sketches.

The discriminator D used in this article is based on the discriminator in Isola et al.
(2017). This discriminator focuses solely on the local structure of the image, allowing it
to effectively learn the high-frequency information and detailed features of the image.
This approach reduces the parameters required during training and improves training
efficiency.

The block feature extractor H in HCGAN is based on the architecture of the block
feature extractor used in SimCLR (Chen et al., 2020), which includes two fully connected
layers. After the encoder extracts features from the optical or sketch image, the block feature
extractor H stacks these features in blocks, creating conditions for subsequent multi-layer
block contrast loss.

The global sketch synthesis module utilizes global adversarial loss and global multi-layer
block contrast loss for optimization. Additionally, in the latter stage of training, it introduces
local refinement loss (as mentioned in ‘Local refinement loss’) to enhance the optimization
process further.

Global adversarial loss LGAN aims to synthesize sketches with the sketch style under
unpaired input. It establishes a ‘‘gaming’’ optimization process between the global generator
G and the global discriminator D, enabling the global generator G to fully learn the input
sketch style and enhance the composite image’s quality. The equation of LGAN is as follows.

LGAN (G,D,P,S)= EPi∼P log (1−D(G(Pi)))+ESj∼S logD
(
Sj
)

(1)

Global multi-layer block contrast loss LMBCG is inspired by the literature Park et al.
(2020) to maximize the mutual information between the output sketch and the input
image. It could be helpful to improve the composite image’s quality. This loss is similar to
the local multi-layer block contrast loss LMBCL in Eq. (6) and multi-layer refinement loss
LMBCP in Eq. (11). They are all based on multi-layer block contrast loss.

The loss of multi-layer block comparison is presented in Fig. 2, which corresponds
to both the global and the local multi-layer block comparisons as shown in Fig. 1. We
obtain an image block (or a query block) from the encoding feature of each layer of the
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Figure 2 Multi-layer block contrast loss in LMBCG . Similarly, both LMBCL and LMBCP work similarly.
Full-size DOI: 10.7717/peerjcs.2184/fig-2

pseudo-sketch. From the input optical image, we select an image block (or a positive class
block) with the same position as the coding feature of each layer. The rest of the image
blocks, which have different positions from the coding features of each layer, are considered
negative class blocks. The query block is expected to have a strong association with the
positive class block and a minor association with the negative ones. To construct N+1
classification, we crop N negative class blocks at different positions of the input optical
image paired with a positive class block. We employ the Cross-Entropy loss to maximize
the association between the query block and the positive class block. The loss is formulated
as follows.

l
(
v,v+,v−

)
=−log

[
exp
(
v •v+/τ

)
exp(v •v+/τ)+

∑N
n=1exp(v •v−/τ)

]
(2)

where, v denotes the query block, v+ denotes the positive class block, v− denotes the
negative class block, and τ denotes the scaling factor mentioned in Park et al. (2020).
Specifically, we set τ to 0.07 in the experiments conducted in this article.

The global multi-layer block contrast module provides the global multi-layer block
contrast loss. To compute this loss, we feed the input optical image Pi and the output
pseudo-sketch image S′i into the encoder E . We then use the output of the middle layer
of the encoder as the input to the block feature extractor H . The block feature extractor
H chunks the input, creating a classification problem for each layer, and calculates the
Cross-Entropy loss to obtain the global multi-layer block contrast loss, denoted by LMBCG.

LMBCG(G,H ,P)= EPi∼P
M∑

m=1

N+1∑
n=1

l
(
x̂nm,x

n
m,x

N−
m
)

(3)
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where,

x̂nm=
{
H
(
Em
(
S′i
))}

n={H (Em(G(Pi)))}n (4)

where, Em
(
S′i
)
represents the output of m-th layer of the pseudo-sketch obtained via the

encoder E . Similarly, x̂nm denotes the n-th block, which is obtained by chunking Em
(
S′i
)

using the block feature extractor H . On the other hand, xnm= {H (Em(Pi))}n implies that
the m-th layer output of the input optical image is passed through the encoder E , and
then chunked via the block feature extractor H to yield the positive class block (with
sequence number n). xN−m = {H (Em(Pi))}!n denotes the blocks obtained after dividing
the output of the m-th layer of encoder E of the input optical image via the block feature
extraction networkH . These blocks exclude the positive class blocks (negative class blocks),
as identified by the symbol ‘‘!’’ in ‘‘!n’’. The symbol ‘‘!n’’ indicates the negation of ‘‘n’’, i.e.,
all blocks except the one with the sequence number n. The Cross-Entropy loss operation
described in Eq. (2) is represented by l .

Local sketch refinement module
The local sketch refinement module comprises four generators Gi, four discriminators Di,
and four local block feature extractors Hi. It takes in four local regions extracted from the
optical image Pi, the sketch image Sj , and the pseudo-sketch S′i. The main objective of this
module is to provide adversarial refinement loss LGANP , multi-layer refinement loss LMBCP ,
and local consistency loss L1. These three losses help the global generator G produce more
locally refined pseudo-sketches S′i.

The local multi-layer block comparison module uses the encoding part Ei of the local
generator Gi as its encoder. To obtain more targeted features for different facial parts, we
trained four local generators, denoted by Gi. Specifically, each local generator Gi accepts
one of four parts of the optical image Pi: left eye Piel , right eye Pier , nose Pin, and mouth
Pim. It then generates the respective local pseudo-sketches S′iel , S

′

ier , S
′

in and S′im for each
region.

To improve the performance of the local multi-layer block comparison module and the
local discriminator, we optimize them using two loss functions: the local adversarial loss
and the local multi-layer block contrast loss. These loss functions aim to generate more
precise and visually appealing local pseudo-sketches with the local generatorGi. Conversely,
the role of the local discriminator Di is to differentiate between real and generated local
sketches. By optimizing these components, we aim to enhance the module’s ability to
extract local features.

Local adversarial loss LGANL is based on adversarial loss. We utilize a competitive
optimization approach between the local generator and local discriminator using local
adversarial loss to enhance the local feature encoding of the encoding part of the local
generator. This method helps us to obtain optimized local generator encoding parts and
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local discriminators, which are essential for the local refinement loss.

LGANL(Gi,Di,P,S)= EPiel∼P log (1−Diel (G(Piel)))+ESjel∼S logDiel
(
Sjel
)

+EPier∼P log (1−Dier (G(Pier)))+ESjer∼S logDier
(
Sjer
)

+EPin∼P log (1−Din(G(Pin)))+ESjn∼S logDin
(
Sjn
)

+EPim∼P log (1−Dim(G(Pim)))+ESjm∼S logDim
(
Sjm
) (5)

Local multi-layer block contrast loss LMBCL is similar to LMBCG in Eq. (3). It is
particularly useful for improving the performance of the local generator by enhancing
the correlation between the input optical local feature and the output sketch local feature.
This improvement enables a better encoding part for the local generator, facilitating
enhanced capture and encoding of local features.

LMBCL(Gi,Hi,P)= EPin∼P
M∑

m=1

N+1∑
n=1

l
(
ŷnmin,y

n
min,y

N−
min
)
+EPim∼P

M∑
m=1

N+1∑
n=1

l
(
ŷnmim,y

n
mim,y

N−
mim
)

+EPier∼P
M∑

m=1

N+1∑
n=1

l
(
ŷnmier ,y

n
mier ,y

N−
mier

)
+EPiel∼P

M∑
m=1

N+1∑
n=1

l
(
ŷnmiel,y

n
mie,y

N−
mie
)
.

(6)

As with the global multi-layer block contrast loss LMBCG, we obtain ynmin for the nose
part Pin by consecutively feeding the input through the local generator Gin and the nose
local block feature extractor Hin. The equation is as follows.

ŷnmin=
{
Hin

(
Einm

(
S′in
))}

n={Hin(Einm(Gin(Pin)))}n (7)

Moreover:

ynmin={Hin(Einm(Pin))}n
yN−min ={Hin(Einm(Pin))}!n

(8)

Similarly, the respective characters in multi-layer refinement loss LMBCP in Eq. (11) can be
obtained.

ẑnmin=
{
Hin

(
Einm

(
S′iin
))}

n

znmin={Hin(Einm(Pin))}n
zN−min ={Hin(Einm(Pin))}!n

(9)

Local refinement loss operates on the global sketch synthesis module and is constrained
by both multi-layer features and realism, ensuring the synthesized sketch exhibits more
accurate local feature expression. It includes multi-layer refinement loss LMBCP and
adversarial refinement loss LGANP as follows.

Adversarial refinement loss LGANP is optimized between the global generator and the
local discriminators. We optimize the details of sketches generated by the global generator
using the global sketch synthesis module.

LGANP (Gi,Di,P,S)= EPiel∼P log
(
1−Diel

(
S′iiel

))
+ESiel∼S logDiel

(
Sjel
)

+EPier∼P log
(
1−Dier

(
S′iier

))
+ESier∼S logDier

(
Sjer
)

+EPin∼P log
(
1−Din

(
S′iin
))
+ESin∼S logDin

(
Sjn
)

+EPim∼P log
(
1−Dim

(
S′iim

))
+ESim∼S logDim

(
Sjm
) (10)
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Multi-layer refinement loss LMBCP is introduced to constrain the association between
the parts of the generated sketches and the corresponding input. This loss is necessary to
prevent the loss of crucial local information in the generated sketches.

LMBCP (Gi,Hi,P)= EPin∼P,S′iin∼S′i

M∑
m=1

N+1∑
n=1

l
(
ẑnmin,z

n
min,z

N−
min
)

+EPim∼P,S′iim∼S′i

M∑
m=1

N+1∑
n=1

l
(
ẑnmim,z

n
mim,z

N−
mim
)

+EPier∼P,S′iier∼S′i

M∑
m=1

N+1∑
n=1

l
(
ẑnmier ,z

n
mier ,z

N−
mier

)
+EPiel∼P,S′iiel∼S′i

M∑
m=1

N+1∑
n=1

l
(
ẑnmiel,z

n
miel,z

N−
mierl

)
(11)

Association strategy
Optimization balancing is a recurring challenge in multi-module networks, including
HCGAN, which consists of a global sketch synthesis module and a local sketch refinement
module. Additionally, HCGAN involves local refinement loss between two modules, which
poses a challenge for optimization balancing. To deal with this challenge, this article
proposes two methods: local consistency loss and ‘‘warmup-epoch’’ strategy.

Local consistency loss L1 ensures that the correlation between the two modules is
optimized and addresses the issue of significant differences between the locally generated
sketches by the global generator G and the local generator module Gi. This discrepancy
reduces the effectiveness of LMBCP and LGANP in optimizing the global generator G.

L1=
∥∥S′iel−S′iiel∥∥+∥∥S′ier−S′iier∥∥+∥∥S′in−S′iin∥∥+∥∥S′im−S′iim∥∥ (12)

The ‘‘warmup-epoch’’ strategy optimizes the relation between local feature extraction
and global optimization and is inspired by an approach described in the literature (Wu et
al., 2020; Lyu, Rosin & Lai, 2023). The proposed model utilizes a global sketch synthesis
module to generate pseudo-sketches. Additionally, the local sketch refinement module
provides local refinement loss to enhance local details. By implementing the ‘‘warmup-
epoch’’ strategy, the local sketch refinement and global sketch synthesis modules are
initially optimized separately. This allows the global sketch synthesis module to generate
higher-quality global sketches, enabling the local sketch refinement module to distill local
features better. When an improved global sketch is generated, the multi-layer refinement
loss and adversarial refinement loss provided by the local sketch refinement component
are employed to optimize the global generator G for local detailing.

The total loss function of the network is:

Ltotal = a×LGANL+b×LMBCL+ c×LGANP+d×LMBCP+e×LGAN + f ×LMBCG+L1. (13)

According to the ‘‘warmup-epoch’’, we divide the training process into two stages. In
the first stage of this experiment, c = d = 0,a= b= 0.25,e = f = 1. In the second stage
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of the training, a= b= c = d = 0.25, e = f = 1. It is worth mentioning that, given that
sketches, as facial images, require particular attention to the coordination among different
components at the global-level, a higher weight is allocated to the loss associated with
global sketching in the overall loss function. In comparison, a lower weight is assigned to
the loss linked to local refinement to avoid excessive local refinement leading to overall
imbalance.

EXPERIMENT
Due to the high cost of acquiring high-quality sketch images, which can only be achieved
through manual drawing, datasets are generally small. To simulate realistic scenarios
with insufficient high-quality data and fully reflect the robustness of HCGAN, ablation
experiments, and comparison experiments are carried out on the CUFS dataset (Wang &
Tang, 2008) and the SKSF-A dataset (Yun et al., 2024) in this section.

Evaluation metrics
Currently, many metrics are used for image quality assessment. To better simulate human
visual perception, we choose to use Fréchet Inception Distance (FID) (Heusel et al., 2017)
along with Content Fidelity (CF), Global Effects (GE), and Local Patterns (LP) (Wang et
al., 2021) to evaluate the test results.

FID is a metric to assess the quality of images generated by generative models. It is
calculated by comparing the feature distributions of generated images with those of real
images. Specifically, FID utilizes a deep neural network (typically a pre-trained Inception
network) to extract features from images and then computes the Fréchet distance between
the feature distributions of generated and real images. This distance measures the similarity
between the two feature distributions.

The combination of CF, GE, and LP can effectively and comprehensively evaluate
the quality of style transfer generated images. Leveraging feature extraction networks,
they simulate human perception of images by focusing on content, global, and local
aspects, respectively. GE emphasizes global aspects such as global colors(GC) and holistic
textures(HT). Similarly, LP consists of two parts: one is to assess the similarity of local
pattern counterparts directly, and the other is to compare the diversity of retrieved pattern
categories.

Overall, by combining the evaluation metrics of FID, CF, GE and LP. We can better
simulate human visual perception and comprehensively evaluate the quality of generated
images, thus providing important guidance and reference for improving image generation
technology.

Dataset and setting
Since high-quality sketches can only be produced by hand, obtaining them is expensive and
time-consuming. Therefore, current high-quality sketch datasets tend to be smaller in size.
In order to fully demonstrate the effectiveness and robustness of HCGAN, the experiment
section employs the CUFS and SKSF-A datasets.

The CUFS datasets comprise the CUHK, AR, and XM2VTS datasets. CUHK and AR
datasets have fewer accessories, and both of them are frontal photos. There are many
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Table 1 Training and testing set division for datasets.

Dataset Train Test

CUHK 88 100
AR 80 43
XM2VTS 100 195
SKSF-A 88 46

accessories, such as glasses and earrings, in the XM2VTS dataset. Each dataset contains
a varying number of image-sketch pairs, with 188, 123, and 295 pairs, respectively.
Image-sketch pairs consist of an optical photograph paired with a corresponding sketch
hand-drawn by painters. The SKSF-A dataset provides 134 optical images along with
corresponding sketches in seven different styles. And there is a large difference in angle.
However, most of these styles are simple sketches or initial drafts, which are not suitable
for training a fine-sketch synthesis model. Therefore, we only selected the style with the
highest sketch quality for our experiments. The training and test sets include different
numbers of optical image-sketch pairs for each dataset. The division of training and testing
sets for each dataset is shown in Table 1.

Before the experiment, it is necessary to process the data. The face images and
corresponding sketches from the CUFS dataset were aligned by the Multi-task Cascaded
Convolutional Neural Networks (MTCNN). Furthermore, the optical images in the
SKSF-A dataset featured diverse backgrounds, which could negatively impact the synthesis
outcomes. Thus, we employed masks provided by the SKSF-A dataset to crop the images,
replacing the backgrounds with white.

We conducted training and testing on a server equipped with an Intel(R) Xeon(R) CPU
E5-2640 v4 and an NVIDIA GeForce RTX 4090. During training, a minimum of 6GB of
GPU memory was required. The network is trained with a batch size of 1. The training
optimizer is the Adam optimizer, and the momentum parameters β1 and β2 are set to
0.9 and 0.999, respectively. The training period consists of 800 epochs, with the learning
rate set to 0.0002 for the first 400 epochs and gradually decaying from 0.0002 to 0 for
the following 400 epochs. In order to avoid the slow model training caused by too many
operations, only the outputs of 0, 4, 8, 12 and 16 layers of the encoder are used in the
calculation of LMBCG,LMBCL, and LMBCP , and the number of blocks in each layer is 64.

Ablation experiments
To verify the effectiveness of the network proposed in this article, this section removes
different components from HCGAN, including the local sketch refinement module, the
local consistency loss L1, adversarial refinement loss LGANP , multi-layer refinement loss
LMBCP and ‘‘warmup-epoch’’ to examine their impact on the final synthesis results. Figure 3
illustrates the experimental results of method validity for different datasets, while Tables 2
and 3 compares the quantitative validity indices across different datasets.

The results are presented in Table 2 indicates that the complete model outperforms
individual ablation experiments. Specifically, after adding the local sketch refinement
module, the FID metric is reduced by about 26 under the CUHK dataset, 24 under the
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Figure 3 Comparison of synthetic effects of ablation experiments. (A) Optical Image, (B) real sketch,
(C) W/O LSRM, (D) W/O L1, (E) W/O LGANP , (F) W/O LMBCP , (G) W/O ‘‘warmup-epoch’’, (H) HCGAN.

Full-size DOI: 10.7717/peerjcs.2184/fig-3

Table 2 Fréchet inception distance of ablation experiments.

Dataset W/O LSRM W/OL1 W/OLGANP W/OLMBCP W/O ‘‘warmup-epoch’’ HCGAN

CUHK 74.7018 63.1057 72.6184 70.4261 80.2496 48.5769
AR 88.8440 62.3499 67.5015 66.3910 65.3214 62.0253
XM2VTS 96.3619 36.9687 92.8553 51.7058 36.9941 30.6324
SKSF-A 92.9306 84.3543 89.6085 79.2687 80.7965 67.7272

Notes.
The best FID are bolded.

Table 3 CF, GE, and LP of ablation experiments.

Dataset W/O LSRM W/OL1 W/OLGANP W/OLMBCP W/O ‘‘warmup-epoch’’ HCGAN

CUHK 0.7818
0.7771
0.7544

0.7548
0.7934
0.7299

0.5986
0.7573
0.6827

0.6011
0.6712
0.6812

0.6020
0.7638
0.7001

0.7675
0.8169
0.7597

AR 0.8137
0.8819
0.7085

0.8202
0.8496
0.7558

0.8278
0.8139
0.7448

0.8083
0.8705
0.7678

0.7994
0.8703
0.7587

0.8235
0.8691
0.7815

XM2VTS 0.5614
0.6396
0.6033

0.6542
0.5546
0.5634

0.6638
0.6496
0.6352

0.6388
0.6156
0.6668

0.7287
0.9510
0.7313

0.7190
0.9538
0.7457

SKSF-A 0.7099
0.9799
0.6973

0.7277
0.9446
0.7760

0.7285
0.9765
0.7409

0.7044
0.9800
0.7370

0.7034
0.9849
0.7235

0.7229
0.9783
0.7884

Notes.
The best FID are shown in bold.

AR dataset, 60 under the XM2VTS dataset, and 25 under the SKSF-A dataset. Table 3
shows that the complete model performs best in LP, while maintaining good CF and GE.
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Additionally, the synthetic image quality of each ablation experiment was lower than that
of the overall model.

Removing the local sketch refinement module (LSRM) leads to the global generator
lacking optimization constraints related to local refinement loss. Consequently, this results
in poor synthesis of local details in the pseudo-sketches, as evidenced by significantly lower
LP scores. For instance, as depicted by the images in Fig. 3C, the eyes and mouth areas
suffer from severe blurring. Additionally, the removal of L1 results in a lack of correlation
between the local and global generators, reflected by fluctuations in the CE, GE, and LP
metrics. There is a decrease in the quality of synthesized local features, as shown in the
eye portion of the image with shadows in Fig. 3D. Removing LGANP and removing LMBCP

result in insufficient local constraints on the global generator. It makes the generated
pseudo-sketches poorly represented in the eyes, mouth, and nose parts, as reflected by
significantly lower LP scores. The results of removing the ‘‘warmup-epoch’’ are shown in
the four images corresponding to Fig. 3G. The absence of the ‘‘warmup-epoch’’ leads to a
mismatch between local and global optimization, as evidenced by the inability to obtain
better global results in the early stages. For example, the testing results under the AR dataset
are severely missing at the end of the hair. Better local results could not be obtained later,
such as the testing results under the CUHK and SKSF-A datasets with more severe shadows
between the two lips. Additionally, the robustness of the network decreases, as evidenced
by significant fluctuations in the FID, CF, GE, and LP metrics after each training session.

Based on the results presented in Fig. 3, Tables 2 and 3, it is evident that each component
of the experimental design contributes to the enhanced sketch synthesis. The complete
model yields a higher-quality synthesis effect compared to each individual ablation
experiment.

Comparison experiments
To verify the effectiveness and robustness of the HCGAN, this section compares it with
existing methods, such as Cycle-GAN (Zhu et al., 2017) and pix2pix (Lin, Pang & Xia,
2020), among others. While FSGAN (Fan et al., 2022) adopts a similar global and local
approach, Cycle-GAN and DRIT++ (Lee et al., 2018) use unpaired input, whereas pix2pix
and FSGAN use paired input. Specifically, we also compare with the latest sketch face
synthesis method, StyleSketch (Yun et al., 2024). The results for each dataset are presented
in Figs. 4, 5, 6 and 7, and the quantitative metrics for each method on each dataset are
shown in Tables 4 and 5.

Figures 4, 5, 6 and 7 show the comparison of the synthesis effect of each method under
the three datasets, from left to right, for the optical image, the corresponding real sketch
image, Cycle-GAN, pix2pix, DRIT++, FSGAN, HCGAN and StyleSketch respectively. As
the figures show, Cycle-GAN relies on reconstruction to optimize the style transfer under
unpaired input and obtains better global information. However, too many unnecessary
pixel details are generated, and too much noise interferes, resulting in a less clear overall
sketch image and poor visual perception. When processing the AR dataset, the eyes were
severely deformed in the synthetic results. The pix2pix method relies on conditional GANs
for sketch synthesis, aided by L1 loss optimization. However, the synthesized sketches are
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Figure 4 Comparison of synthesis effects of different methods on the CUHK dataset.
Full-size DOI: 10.7717/peerjcs.2184/fig-4

Figure 5 Comparison of synthesis effects of different methods on the AR dataset.
Full-size DOI: 10.7717/peerjcs.2184/fig-5

severely distorted and the results are unsatisfactory. The main reason is that optical and
real sketches are not strictly pixel-aligned, and using L1 loss leads to shifting and blurring
key details. DRIT++ is a general method for style transfer, but it suffers from the problem
of contour ghosting in composite sketches. In the XM2VTS dataset, partial distortion exists
in the synthesized sketches’ eyes despite the overall improvement in results. FSGAN splits
and migrates the local part before fusion, creating a clear local portrayal. However, when
processing XM2VTS, synthetic images have heavy shadows at the junction of local and other
parts, and the double chin details are lost. Additionally, clothing edges lack global aspects,
and the FID of synthetic sketches is poor. StyleSketch performs well on the CUHK and
SKSF-A datasets but performs poorly on the AR and XM2VTS datasets. The fundamental
reason lies in its non-end-to-end architecture, where the quality of synthesized results
relies on the effectiveness of the encoder4editing (Tov et al., 2021) in extracting latent code.
When the extracted latent code fails to capture the content of optical images effectively,
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Figure 6 Comparison of synthesis effects of different methods on the XM2TVS dataset.
Full-size DOI: 10.7717/peerjcs.2184/fig-6

Figure 7 Comparison of synthesis effects of different methods on the SKSF-A dataset.
Full-size DOI: 10.7717/peerjcs.2184/fig-7

Table 4 Fréchet inception distance of different methods.

Cycle-GAN pix2pix DRIT++ FSGAN StyleSktech HCGAN

CUHK 72.6964 110.7320 72.9310 61.2710 82.6866 48.5769
AR 70.1536 105.2783 82.5112 66.9377 105.5324 62.0253
XM2VTS 41.5939 72.4432 55.8660 39.6640 200.7224 30.6324
SKSF-A 118.3368 123.8700 117.5661 93.9339 88.1855 80.7176

Notes.
The best FID are shown in bold.

severe blurring occurs in the synthesized images. Additionally, the CUFS weights provided
by StyleSketch are ineffective in eliminating the influence of the background.

Tables 4 and 5 presents the FID, CF, GE and LPmetrics of differentmethods on different
datasets, where the best results are highlighted in bold. It can be observed that HCGAN in
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Table 5 CF, GE, and LP of different methods.

Cycle-GAN pix2pix DRIT++ FSGAN StyleSktech HCGAN

CUHK 0.6031
0.7741
0.6822

0.6034
0.8088
0.6984

0.5944
0.8039
0.6957

0.6222
0.8023
0.6735

0.6022
0.7940
0.6957

0.7675
0.8168
0.7597

AR 0.6085
0.8578
0.6650

0.5788
0.8388
0.6576

0.5923
0.7982
0.6482

0.6159
0.8071
0.6848

0.5978
0.8675
0.6236

0.8235
0.8691
0.7815

XM2VTS 0.5280
0.9061
0.6465

0.4977
0.9074
0.6369

0.5254
0.7609
0.6459

0.5173
0.8633
0.6418

0.4213
0.7038
0.5934

0.7190
0.9538
0.7457

SKSF-A 0.4577
0.9213
0.6343

0.4622
0.9602
0.6407

0.4035
0.6354
0.4012

0.4900
0.9610
0.6449

0.6851
0.9332
0.6865

0.7230
0.9783
0.7883

Notes.
The best indicators are shown in bold.

this article outperforms other comparative methods in terms of FID values across all three
datasets, achieving the best performance in terms of content, global, and local aspects.

It is worth mentioning that the ability of HCGAN to refine local details depends on the
capability of the local sketch refinement module to extract key local features. From Figs. 5
and 6, it can be observed that there is some blurriness in the mouth area of the synthesized
images by HCGAN. The most likely reason for this is the ineffective extraction of key local
features, leading to a decrease in the effectiveness of the local refinement loss. Figure 7
shows that the details in the hairline and forehead areas of the sketches synthesized by
HCGAN on the SKSF-A dataset are still lacking. This inadequacy maybe since the SKSF-A
dataset includes not only frontal faces but also profiles, which require more emphasis on
the global-level portrayal. Under similar dataset scales, maintaining the same CUHK and
other dataset settings may result in a deficiency in global-level portrayal.

Based on visual comparison and quantitative evaluation, our proposed method
outperforms many existing image-to-image translation methods that use unpaired data.
Specifically, our method generates synthesized sketches with more accurate and detailed
local features.Whether it is the CUHK and AR datasets with fewer accessories, the XM2VTS
dataset with more accessories, or the SKSF-A dataset with large angle differences, HCGAN
achieves the best synthesis results, reflecting its effectiveness and robustness.

CONCLUSION
HCGAN effectively solves the problems of relying on paired data training and local detail
distortion faced by the current field of sketch face synthesis. It consists of two modules: a
global sketch synthesis module and a local sketch refinement module. The global sketch
synthesismodule differs fromCycle-GANbecause it uses a globalmulti-layer block contrast
loss to enhance the relationship between input and output. The local sketch refinement
module with good feature extraction capabilities provides local refinement loss to optimize
the local details of the synthetic sketch. The local consistency loss and ‘‘warmup-epoch’’
strategy ensure efficient optimization of both modules. These improvements have led
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HCGAN to outperform other methods on multiple datasets significantly. However,
our method also has some limitations. For example, the effectiveness of the proposed
local refinement loss is limited by the extraction of local features. Additionally, under
small datasets and complex angles, the synthesis effectiveness at the global-level remains
inadequate. In the future, the field of sketch face synthesis should pay more attention to
depicting local details under unpaired training. In the future, a model that better guarantees
global coordination and a more flexible and effective local loss should be proposed.
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