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ABSTRACT
The article proposes an optimization algorithm using a hierarchical environment
selection strategyto solve the deficiencies of current multimodal multi-objective opti-
mization algorithms in obtaining the completeness and convergence of Pareto optimal
Sets (PSs). Firstly, the algorithm in this article is framed by a differential evolutionary
algorithm (DE) and uses a special crowding distance to design a neighborhood-based
individual variation strategy, which also ensures the diversity, and then special crowding
distance is used to help populations with non-dominated sorting. In the stage of
environmental selection, a strategy of hierarchical selection of individuals was designed,
which selects sorted non-dominant ranked individual layer by layer according to the
ratio, which allows potential individuals tobe explored. Finally, in the stage of evolution
of individuals, the convergence and diversity of populations were investigated, anddif-
ferent mutation strategies were selectedaccording to the characteristics of individuals.
DE reproduction strategies are used for iteration, preventing individuals from avoiding
premature convergence and ensuring the algorithm’s searchability. These strategies help
the algorithm to obtain more diverse and uniformly distributed PSs and Pareto Front
(PF). The algorithm of this article compares with several other excellent algorithms on
13 test problems, and the test results show that all the algorithms of this article exhibit
superior performance.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Multimodal Multi-objective, Differential Evolutionary, Multi-objective optimization,
Environment selection

INTRODUCTION
Multi-objective optimization problems (MOPs) refer to having a lot mutually exclusive
multifactor in the optimization process, and solving such problems requires discovering the
best solution, which not only needs a best solution but also needs a lot equivalent solutions,
the essence while retaining the MOPs of searching for Pareto Frontier (PF) in solving
Multimodal multi-objective optimization problems (MMOPs), researchers also need to
find the Pareto front corresponding to multiple Pareto solution sets. Such as problems with
the procurement of equipment (Zhang et al., 2019) unbalanced classification of credit card
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fraud detection problems (Han et al., 2022), problems of path planning (Yue, Qu & Liang,
2018), and problems in designing rocket engines (Kudo, Yoshikawa & Furuhashi, 2011).

The steps for solving MOPs are divided into three steps: firstly, the related optimization
problem is abstracted into a mathematical model; then, the constraints, variables, and
objective functions are determined, which are classified as linear or nonlinear, discrete
or continuous; finally, a suitable method is found to solve it. The relevant definitions of
minimization are as follows:{
minF (X)={f1(X),f2(X),...,fm(X)}

s.t .X = (x1,x2,...,xn)
(1)

In Eq. (1), F (x) is the objective function mapping the decision vector X of the
decision space to the objective space. min is the minimum values of the solution function
respectively. X = (x1,x2,...,xn) denotes the decision vector, which has n dimensions. m
denotes the dimension of the objective space.

Several concepts of MOPs are as follows (Deb, 1999):
Theorem 1: Suppose that X1 and X2 are two feasible solutions to some problem, if
∀k ∈ {1,2,...,m},fk (X1)≤ fk (X2), ∃i ∈ {1,2,...,m},fk (X1) < fk (X2), then x1 is called to
dominate x2, and vice versa for a non-dominated solution.

Theorem 2: A non-dominated solution is Pareto Solution (PS), All non-dominated
solutions together consist of the Pareto optimal Sets (PSs).

Theorem 3: The front outside formed by mapping set of PS, the surface formed is the
Pareto optimal Front (PF).

Many different variants of multi-objective optimization algorithms are proposed to
solve the MMOPs, from the initial pair of algorithms with non-dominated sorting genetic
algorithms and decomposition-based multi-objective evolution, based on which many
variants of multi-objective evolutionary algorithms are also proposed, but these variants
are still ineffective. An optimization algorithm was proposed to solve MMOPs (Deb &
Tiwari, 2005). Liang, Yue & Qu (2016) analyzed the challenges faced such problems and
proposed a niche algorithm with decision space to solve these problems. Yue, Qu & Liang
(2018) proposed an improved algorithm based on particle swarm that uses a ring topology
and special congestion distances, results of the experiment illustrate the article finds more
Pareto solutions and makes the Pareto solutions uniformly distributed. Liu, Yen & Gong
(2018) designed a two-archiving. The two-archiving coevolution strategy improves the
diversity, and the methods can get more Pareto solutions. Tanabe & Ishibuchi (2020)
proposed an idea for solving MMOPs, which improves this algorithm’s performance
by assigning each child to a different sub-problem in each iteration to handle multiple
equivalent solutions and comparing them with neighboring children. Qu et al. (2020)
proposed an algorithm based on particle swarm, which uses a self-organization strategy to
decompose the populations and optimize them separately, combined with a parallel search
strategy to lift the diversity. Liu et al. (2020) proposed the convergence penalty density
strategy, which first evaluates the degree of local convergence for PSs and then combines
the dominance relationship between the Euclidean distance to get a new distance, and
finally uses this distance to estimate the density value as a selection criterion. Javadi, Zille
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&Mostaghim (2019) analyzed that some algorithms are a drawback in solving MMOPs
in response to some algorithms that are closely based on the objective function values as
a selection criterion in the environment selection, so a new congestion distance operator
and neighborhood variation operator are designed to solve MMOPs. Fan & Yan (2021)
proposed a partitioned strategy, and have broken the decision space down into several
parts; this method ensures the diversity, and eventually diminishes the difficulty in the
search. Li et al. (2019) designed a reinforcement learning DE algorithm, which leads the
population evolution and then find multiple solutions with fitness ranking. Liang et al.
(2018) used a self-organization mechanism to find the population distribution structure
and establish a neighborhood search while using a special non-dominated ranking
method. Yue et al. (2021) proposed an improved evolutionary optimization algorithm
with crowding distance, the algorithm first calculates the degree of crowding between
two spatial individuals and takes the individual with a higher degree of crowding as the
current offspring. Although the algorithm improves the variety of solutions to some extent,
the algorithm still has an incomplete set of Pareto solutions. Li et al. (2022) proposed
an algorithm with hierarchical rank to maintain the diversity of populations. Liang et al.
(2022a) and Liang et al. (2022b) proposed an exceptional environment selection method
to solve MMOPs. Yan et al. (2022) proposed a DE algorithm with metrics and Pareto
hierarchy. Qu et al. (2022) proposed a method, which makes enhancement of the search
capability of the algorithm using a network technique to split the decision space into a
lot grids. Although the algorithm enhances the diversity to some extent, the algorithm
still needs an incomplete set of PSs. Liang et al. (2023) proposed a neighborhood search
strategy with a data interpolation technique, and the algorithm can help the population
evolve better and enhance its search capability. Liang et al. (2022a) and Liang et al. (2022b)
proposed a particular environmental selection strategy to enhance population diversity.
This algorithm obtains feasible solutions and retains more well-distributed PSs. Li et al.
(2022) proposes a hierarchical ranking scheme and a method for assessing the quality
of local convergence to preserve the diversity better. Ji, Wu & Yang (2024) proposes a
population conservation algorithm to identify different PSs in known areas while explore
new areas using DE. Sun, Chang & Zheng (2021) proposed a evolutionary algorithm using a
ring topology structure that can adapt to changes. Zhang et al. (2021) proposed a two-stage
dual small-habitat evolutionary strategy. Solutions to the MMOPs are broken down into
two parts, which use the small-habitat strategy in the decision space firstly. Secondly, the
author uses the small-habitat strategy in two spaces.

Solving MMOPs requires finding Pareto fronts with approximation and diversity, and
finding a sufficient number of equivalent solutions. The algorithms mentioned above
improve the performance of the algorithms in the decision space by designing a series
of search strategies to find multiple PSs and increase the diversity of PSs, thus obtaining
more complete and evenly distributed PSs and PF. However, these algorithms are still
flawed in their ability to search for PSs, and their searches yield insufficiently diverse and
poorly distributed PSs, while the algorithms described above are not fully consider the
performance of the algorithms in the objective space, such insufficient and insufficiently
capable algorithms for searching PSs together lead to insufficient diversity and poor
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distribution of PSs and PF. In this article, a multi-objective optimization algorithm
(MMODE_ES) is proposed to address these problems.

In this article, firstly, the mutation phase and environment selection phase of the
differential evolutionary algorithm is improved, the base vector is selected by combining
special crowding distances of individuals, and the mutation strategy is designed to improve
the solution performance of the algorithm; secondly, the hierarchical environment selection
scheme is designed to retain the potential individuals and improve the exploration capability
of DE; finally, the diversity and convergence of individuals in the process of evolution are
investigated, and the diversity and convergence of individuals in the process of evolution
is further of improving the convergence and diversity of PSs and PF. In the end, the
experiments show that the strategy of MMODE_ES works.

The next relevant work is described as follows: the relevant definitions in the MMOPs
and the methodologies used for the difficulties are present in ‘‘Related Work’’. ‘‘Methods’’
provides a detailed introduction to the proposed method. The ‘‘Experiment’’ discusses
the experimental methodology, compares the algorithms, and analysis in the results.
‘‘Conclusion’’ provides a summary.

RELATED WORK
This section first gives an introduction to MMOPs, then describes the evaluation metrics
for algorithms that address MMOPs, and finally describes the algorithmic framework and
related techniques used in this article to address MMOPs

Definitions for MMOPs
MMOPs are ubiquitous in real life, and these types of problems are also a special type of
MOPs. When defining MMOPs, the following situations must occur:

1. Firstly, there are some global PSs;
2. secondly, scenario is that there is at least one local PS in the decision space.
However, the connection between these PSs and the objective values in the objective

space is not a one-to-one mapping, but rather multiple PSs corresponding to a single
objective value. Compared with general MOPs, algorithms need to spend more resources
and time searching for more different optimal equivalent solutions when solving MMOPs.

Evaluation indexes for MMOPs
The traditional evaluation index of the MOPs only focuses on the performance of the
population; the evaluation index of multimodal multi-objective optimization (MMO)
optimization also needs to focus on its decision space. Common metrics for MMO
algorithms are Pareto solutions proximity (PSP) (Liang et al., 2018), Hypervolume (HV )
(Zitzler & Thiele, 1999), and Inverted Generational Distance (IGDX) (Zhou, Zhang & Jin,
2009), IGDX index can measure the performance of the PS; the PSP index can reflect both
the convergence and diversity of the solution set obtained by the algorithm and can also
measure the coverage of the PS on the real PS, PSP is more comprehensive and reasonable
evaluation. The convergence and diversity of HV and PF are directly proportional. In the
experimental stage, this article uses the PSP and HV metrics to evaluate the effectiveness
of MMO algorithm, the equations for HV and PSP are as follows:
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PSP =
CR

IGDX
(2)

IGDX
(
PS,PS∗

)
=

∑
a∈PSd(a,PS

∗)
|PS|

(3)

HV (PS,P)= volume
⋃
x∈PF

v(x,P) (4)

In the above equation, CR is the coverage rate of the PSs, where P is the reference
point, which represents the hyperbolic volume surrounded by the solutions and the
reference point. The PSP measures the diversity and convergence and the larger PSP, the
more equivalent solutions the algorithm obtains. The effect shown by the algorithm is
proportional to the HV.

Differential evolution
Differential evolution algorithm (DE) is an efficient and straightforward evolution
algorithm proposed (Das & Suganthan, 2011; Qin, Huang & Suganthan, 2009). Among
many heuristic algorithms, the advantages of DE are more obvious. Firstly, compared to
others, DE has a shorter running time; secondly, the algorithm framework of DE is simpler,
the algorithm process is easy to understand, and researchers can quickly and deeply
understand it; finally, DE converges faster compared to other evolutionary algorithms.
Therefore, DE is more effective in many standard test functions and real-world problems.
The process is consistent with many similar algorithms, and DE has four processes:
firstly, randomly generating a population; using mutation equations to induce population
variation; crossing populations and selecting suitable individuals; finally, environmental
selection is the process of selecting outstanding individuals to form offspring populations.

Specialized crowding distances
Crowding distances (CD) is to measure the degree of crowding of individuals in a
population, for calculating the crowding distances of individuals, and the algorithms
use crowding distance metrics to enhance the population’s diversity (Ghorbanpour, Jin &
Han, 2022). In MMOPs, the algorithm uses special crowding distances (SCD) to measure
the degree of crowding of population individuals (Yue et al., 2021). The non-dominated
sorting method using special crowding distances can improve the performance and
efficiency of MO algorithms. The MMODE_ES uses the special crowding distance in the
non-dominated sorting of individuals to solve the problem of selecting individuals from a
dense set of solutions.

METHODS
In this section, MMODE_ES details and processes are described.
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Differential variation strategies
Many different differentialmutation strategies are designed according to other optimization
problems give the searchability of the DE a boost. In this article, the algorithm adopts the
differential variation strategies of DE/best/2 and DE/rand/2 to iterate.

To improve the searchability of the differential evolution algorithm, many different
differential mutation strategies are designed according to other optimization problems,
and the common ones are DE/rand/1, DE/best/1, DE/best/2, and DE/rand/2. In this article,
the algorithm adopts the differential variation strategies of DE/best/2 and DE/rand/2 to
iterate. The equation for DE/best/2 strategy is as follows:

Vi=Xbset +F ·
[(
Xr1−Xr2

)
+
(
Xr3−Xr4

)]
(5)

In this equation, Xbest is the optimal individual in the current population, Xr1, X r2, X r3

and Xr4 are random individual in the population.
The equation for DE/rand/2 strategy is as follows:

Vi=Xr1+F ·
[(
Xr2−Xr3

)
+
(
Xr4−Xr5

)]
(6)

In this equation, Xr1, X r2, X r3, X r4, and X r5 are random individuals.
The DE/rand/2 strategy enhances the diversity of the population because it randomly

selects individuals for evolution so that the algorithm can explore more extensively in the
search space. DE/best/2 focuses more on global search because it uses the best-performing
individuals as a reference, which drives the algorithm to search for more promising regions,
which facilitates the improvement of the convergence of the population.

The algorithm uses the DE/rand/2 strategy at the beginning of the evolution to ensure
the diversity of the population obtaining more evenly distributed PSs. In the subsequent
iterations, after the population is non-dominated sorted, the variety and convergence of
the population need to be investigated at this time; if the current non-dominated rank is
only 1 level, and the algorithm tends to converge at this time, it is necessary to improve
the diversity of the population. In the next generation, the DE/rand/2 strategy can help
population to evolve. Suppose there are multiple levels of population non-dominance
rank. In that case, it is necessary to explore PSs closer to the actual PSs to improve the
algorithm’s convergence, and DE/best/2 strategy can help the population’s evolution.

Neighborhood variation strategy
The primary process of the DE is the differential strategy; the algorithm selects appropriate
individuals for mutation, which can ensure the population’s diversity and distribution
and improve the algorithm’s searchability. The traditional differential mutation strategy
randomly selects five individuals in the current population for cross-mutation, and the
random selection of individuals cannot guarantee the population’s diversity and the
algorithm’s convergence. To ensure the diversity and the variety, this article proposes a
neighborhood variation strategy.

Neighborhood variation strategy adopts the idea of small populations. Select the
congestion distance that is large in the first 20 individuals to form a small population
according to the crowding distance of the current individual, and in the small population
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to choose the most considerable congestion distance of an individual as the base vector,
and then finally randomly select individuals, and ultimately enter the mutation stage,
which can improve the diversity. Based on the crowding distance for objective space in the
current individual, form these population of the top 20 individuals with larger crowded
distances. Using the individual with the largest crowding distance in these population as
the basis vector, and then randomly selected individuals are used, and ultimately enter the
mutation stage, which can improve the diversity in the objective space.

CD is calculated by weighted Euclidean average distance to individuals in the
neighborhood in decision space. The equation for its calculation:

CDi,x =

k1∑
j=1

(
k1− j+1

)
di,j (7)

di,j indicated the Euclidean distance, which is the distance between ith and j th. The special
congestion distance (SCD) equation is as follows:

SCD=

max
(
CDi,x ,

CDi,F

Rank

)
,CDi,x >CDagv,x or CDi,f >CDagv,f

min
(
CDi,x ,CDi,f

)
,otherwise

(8)

In Eq. (8), CDavg ,x denotes the average crowding distance, CDi,f denotes the crowding
distance of an individual,CDavg ,f denotes the average crowding distance, and Rank denotes
the current individual’s nondominant rank.

First of all, when the population starts to evolve, the mutation strategy randomly
selected one individual as the base vector, and randomly select the individual with a
higher probability in the whole population to improve the exploration ability and prevent
premature algorithm stagnation. To improve search efficiency, researchers not only
need to get the uniformly distributed Pareto solution set but also need to get the uniformly
distributed Pareto frontier surface; themutation strategy needs to consider the distributivity
of the population in both spaces at the same time, simultaneously, the population should
be two mutation strategies guiding the evolution.

The reason for adopting the above strategy is the adaptive balance of exploration
and exploitation capacity, where both decision-making and objective spatial diversity are
improved. In the later stages of evolution,MMODE_ES will select the neighbors to improve
search capabilities. Selecting adjacent individuals for evolution in two different spaces can
enhance diversity in various spaces. MMODE_ES framework is as follows:

Layered environment selection strategy
To further improve performance on the objective space so that MMODE_ES obtains a
more uniformly distributed PSs, the article proposes a hierarchical environment selection
strategy, which selects the nondominated solutions of each layer in different proportions
in different evolutionary stages. In the pre-evolutionary step, the algorithm selects suitable
individuals for the next phase of evolution in a certain proportion of the population
after non-dominated sorting with the special crowding distance, and individuals with high
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Algorithm 1: Mutation Strategies
Input: population size N, initialization
population P, Neighborhood size k
Output: population POP
Evaluate P
Calculation of individual CD
for i=1: N
Select k individuals neighboring i
Mpopulation = k individuals in decision space
Npopulation = k individuals in objective space
Select individuals randomly fromM and N
i1 byM, i2 by N, and i3 by P according to Eqs. (5) and (6)
POP =POP ∪i1 ∪i 2 ∪i3
end if

non-dominated rank and large special crowding distances have a higher probability of being
selected. In the early stage of individual evolution, selecting individuals proportionally,
instead of selecting all individuals with high dominance rank, can prevent the algorithm
from converging prematurely and give the individuals with lower non-dominance rank in
the early stage a chance to explore to obtainmore Pareto solution sets, and at the same time,
let the algorithm no longer spend more time on inefficient searching for the individuals
with lower non-dominance rank, and in the early phase, the selection of vast majority of
individuals are those in the first three nondominant ranks. The individuals in the first rank
are greater than the number of individuals in the second rank and more significant than
those in the third rank. In the late phase, the algorithm gradually converges, and the Pareto
solution set and Pareto frontier surface progressively perfect. At this time, the algorithm
enters the second search stage, where the environment selects only the individuals with
higher non-dominated ranks.

The proportion Ra, Rb, Rc of hierarchical selection is calculated as follows:

Ra=

{
0.6+0.8 ·

(
gc−1

)
,1< gc <G

1,G< gc <Maxgen
(9)

Rb= 0.8 ·Ra,Ra< 1 (10)

Rc = 0.6 ·Ra,Ra< 1 (11)

In the evolution of the population, the top non-dominated ranked individuals are not
necessarily optimal, and the proportional selection of the top-ranked individuals is to
remove the pre-evolutionary high non-dominated ranked but undesirable solutions and to
give the low non-dominated ranked but potential individuals a chance to be explored. From
Eqs. (9) to (11), we can see that Ra > Rb > Rc, so the hierarchical selection of individuals
is mainly selected from the first three levels of individuals; the selection of individuals with
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a high non-dominated rank tends to allow the algorithm to search toward the potential
region, but only selecting the first level of individuals as a child will make the algorithm fall
into the local optimum prematurely. The selection of individuals at each level will allow
the algorithm to search too much for the individuals who do not have the potential. The
algorithm will require more work to converge. Therefore, the algorithm mainly selects the
top three individuals in the non-dominated rank and selects the low-rank individuals with
small probability, which can help the algorithm to search towards the potential area and
also give the lower level of individuals a chance to be searched, which not only improves
the diversity of the population but also improves the closeness of the population to the
actual population. The framework of the algorithm is as follows:

Algorithm 2: Herarchical Environmental Selection Strategy

Input: population size N, population POP,
Non-dominated hierarchical layers, frontmax
Output: population POP1

Calculate special crowding distance
Non-dominated sorting for POP
for 1: frontmax
Select the individuals according to Eqs. (9) to (11)
PO= Combination individuals
POPN = selected N from the PO
end for

Framework of MMODE_ES
The algorithm in this article is called MMODE_ES, it has the following steps:

Algorithm 3: MMODE_ES
Input: Population size, Max generations, Max evaluations
Output: Population P
Initialization of population P
Evaluate P
Calculate population P crowding
while satisfaction of termination conditions do
Select differential variants
Cross-variation according to Eqs. (5) and (6)
Population O by combining
Evaluate O
Calculate population O crowding
Combining O and P for non-dominated sorting
Environmental selection according to Eqs. (9) to (11)
end while

EXPERIMENT
This section provides experimental validation of the proposed algorithm. It describes the
relevant parameter settings and the test set used for the experiment and finally analyzes
and summarizes on the experimental results.
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Table 1 The parameter setting in experiments.

Parameter Value

Maximum fitness 10,000
Maximum number of generations 50
F 0.5
CR 0.5
Population size 100*Nvar

Experimental settings
All algorithm parameters are set according to the original author’s suggestions, so that
the algorithm can be proved to be efficient, which can allow individual algorithms to be
compared at one level. The algorithm stops running when the fitness reaches its maximum,
the setting of the relevant parameters is related to dimensions of the decision vector (Nvar)
in test problems, the maximum fitness is set to 10000 and the population size to 100*Nvar.
The maximum number of generations is set to 50. The CR is 0.5 and the F is 0.5. The
relevant settings are described in Table 1. The running environment of this experiment is
Windows 11 operating system, AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz and
16.0 GB memory. The software uses Matlab2021.

Comparison of algorithms
To illustrate MMODE_ES’s effectiveness in this article, five excellent MMO algorithms are
selected for comparison test, which are MO_Ring_PSO_SCD ((Yue, Qu & Liang, 2018),
DN-NSGAII (Liang, Yue & Qu, 2016), Omni-optimizer (Deb & Tiwari, 2005), TriMOEA-
TA&R (Liu, Yen & Gong, 2018), MMODE_ICD (Yue et al., 2021) these algorithms.
MO_Ring_PSO_SCD and TriMOEA-TA&R are often MMO algorithms that are compared
and used as improvements by many researchers. Omni-optimizer and DN-NSGAII are
classical MMO algorithms. The MO_Ring_PSO_SCD algorithm is the best algorithm in
the CEC2019 multimodal optimization problem competition. MMODE_ES in this article
is compared with these MMO algorithms.

Test functions
This article uses 13 test functions on the CEC2019 test problems were selected to test the
search ability of the proposed method for demonstrating whether the MMODE_ES in this
article is feasible, including functions: MMF1 to MMF10 (Yue et al., 2019); SYM-PART
simple and SYM-PART simple rotated (Rudolph, Naujoks & Preuss, 2007); omni-test (Deb
& Tiwari, 2008). These benchmark test problems contain Pareto fronts of different shapes
and Pareto solution sets. Some of the real PSs and PF in these testing questions have
complex situations, with overlapping, numerous, multi-dimensional, and complex shapes
that pose great challenges to MMODE_ES.

Experimental results and analysis
The PSP metric can evaluate search ability, in other words, it can measure the degree of
closeness between the obtained PSs and the actual PSs. HV can measure the convergence
and diversity in the objective space. The article uses rPSP and rHV to facilitate the analysis.
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rPSP is the inverse of PSP, and rHV is the inverse of HV. Therefore, the smaller these
two metrics are, the better the performance. MMODE_ES and several other comparative
algorithms were tested 30 times on 13 test functions. This article summarizes the results
of 30 tests and calculates the mean and standard deviation. In the experiment, the Wilson
test was used to detect whether there was a significant difference in the results. The
symbol ‘‘+’’ in the table indicates that MMODE-ES performs better than the comparison
algorithm. Conversely, the symbol ‘‘-’’ indicates that MMODE_ES performs worse than
the comparison algorithm, while the symbol ‘‘ =’’ indicates that there is no difference in
performance between MMOD_ES and the comparison algorithm. Meanwhile, the Mean
in the table represents the average of 30 results, which can indirectly reflect the overall
level of each algorithm, while Std represents the standard deviation of these 30 results,
which indirectly represents the stability of the algorithm. Therefore, the smaller the Mean
and Std of the algorithm’s results, the better the algorithm. Therefore, to demonstrate the
excellence of MMODE_ES, some data has been marked in bold, indicating that the results
of MMODE_ES are better.

As the results in Tables 2 and 3 show that the algorithm MMODE_ES in this article
performs well on most of the test functions. By comparing the rPSP and rHV metrics in the
table, the algorithm in this article, and comparing it with many excellent algorithms, the
operation of the algorithm in this article is effective. In the rPSP index: except for the DN-
NSGAII algorithm in the SYM-PART simple function, MMODE_ES is at a disadvantage
in the rest of the test function obtained better results, which shows that MMODE_ES
searched for the PSs has a better distribution in the MMOPs is more competitive. For the
rHV : MMODE_ES gives excellent results on 13 test problems, and experiments show that
this article’s algorithm also obtains solutions with better convergence and distribution.
Combining the results in Tables 2 and 3, MMODE_ES shows overwhelmingly satisfactory
results than a lot comparative MMO algorithms, so MMODE_ES’s operation in this article
is effective.

The optimization results of this method are compared with several comparative
algorithms on the MMF3 to show the effectiveness of this algorithm more intuitively,
and the results are shown in the form of scatter plots to show the results. In MMF3, the
distribution of the decision space solutions of MMODE_ES is good, with very few missing
solution sets. In contrast, several other algorithms have significantly more missing solution
sets than the present algorithm. The evolved distribution of the solution sets is, to a great
extent, able to reach the overlap with the real solution set. In the final Pareto front, the
Pareto front obtained in this article is complete and close to the real show to a large extent.
The Pareto front obtained by other algorithms can also be close to the real front to a large
extent. Therefore, MMODE_ES has the best performance.

The PSs for all algorithms on the MMF3 in the decision function are as Fig. 1, Fig. 1
shows the real PSs of this test problem. The results of all algorithms on the objective space
over the MMF3 function are as Fig. 2, Fig. 2 shows the real results of this test problem.
From the results shown on the listed test problems, MMODE_ES has better results. In
this article, MMODE-ES searched for more and distributed PSs, which approaches the
actual situation; the distribution of the PSs is uniform, and missing PSs are less. In the
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Table 2 Comparison results with other excellent algorithms on rPSP index. PSP is the inverse of PSP. Therefore, the smaller metric is the bet-
ter the performance. The algorithm runs on 13 test functions and independently runs 30 times, which gets the average and standard deviation. The
data in the table are the average of the 30 times. The experiment tested the data obtained by all algorithms for significant differences using the Wil-
son test. The ‘‘+’’ and ‘‘-’’ in the table indicate statistically superior or inferior to the comparison algorithm, respectively, while ‘‘=’’ indicates statisti-
cally similar results. In Table 1, Mean represents the average of 30 results. Std represents the standard deviation on the test problem.

MO_Ring _PSO_SCD DN-NSGAII Omni-optimizer TriMOEA-TA&R MMODE_ICD MMODE_ES

Mean 0.0488+ 0.0969+ 0.0975+ 0.0735+ 0.0493+ 0.0417
MMF1

± Std 0.0019 0.0145 0.013 0.0108 0.0030 0.0013
Mean 0.0465+ 0.1742+ 0.1643+ 0.0931+ 0.0247+ 0.0075

MMF2
± Std 0.0147 0.1368 0.1305 0.0574 0.0054 0.0010
Mean 0.0335+ 0.1172+ 0.1351+ 0.0871+ 0.0209+ 0.0068

MMF3
± Std 0.0099 0.0759 0.0994 0.0275 0.0037 0.0007
Mean 0.0273+ 0.0771+ 0.0840+ 0.1537+ 0.0257+ 0.0217

MMF4
± Std 0.0020 0.0137 0.0238 0.2262 0.0031 0.0010
Mean 0.0869+ 0.1773+ 0.1789+ 0.1132+ 0.0853+ 0.0711

MMF5
± Std 0.0060 0.0217 0.0245 0.0126 0.0039 0.0035
Mean 0.0733+ 0.1427+ 0.1523+ 0.0958+ 0.0713+ 0.0637

MMF6
± Std 0.0043 0.0150 0.0185 0.0123 0.0043 0.0004
Mean 0.0267+ 0.0553+ 0.0511+ 0.0672+ 0.0263+ 0.0206

MMF7
± Std 0.0015 0.0151 0.0127 0.0520 0.0046 0.0023
Mean 0.0678+ 0.2799+ 0.3149+ 0.3974+ 0.1303+ 0.0504

MMF8
± Std 0.0042 0.0911 0.1326 0.1572 0.0352 0.0048
Mean 0.0082+ 0.0219+ 0.0316+ 0.0031- 0.0047- 0.0061

MMF9
± Std 0.0008 0.0078 0.0269 0.0001 0.0003 0.0004
Mean 0.1708- 1.3420+ 3.1260+ 0.2014= 0.2011= 0.2035

MMF10
± Std 0.0231 2.3280 3.3420 0.0001 0.0010 0.0024
Mean 0.1776+ 5.4511+ 6.4608+ 0.0210- 0.0427- 0.0441SYM-PART

simple ± Std 0.0226 2.576 3.0139 0.0021 0.0055 0.0042
Mean 0.2784- 4.4542+ 5.4757+ 2.0975+ 0.0892+ 0.0536SYM-PART

rotated ± Std 0.2500 1.4104 3.4185 1.4432 0.0153 0.0033
Mean 0.4279+ 1.5563+ 1.7939+ 0.7547+ 0.0512+ 0.0430

Omni-test
± Std 0.0954 0.2878 0.6207 0.2166 0.0036 0.0020

+/=/- 11/0/2 13/0/0 13/0/0 10/1/2 10/1/2

Notes.
rPSP results and rHV results obtained by these comparison algorithms are underlined and shown in bold when the rPSP results and rHV results obtained by MMODE_ES are
better than the comparison algorithms under the same test function.

objective space, PF of this algorithm near to the real front and better distributed than
the comparison algorithm. Combined with the tabular rPSP and rHV value this article’s
algorithm effectively solves MMOPs.

Overall, MMODE_ES is effective in solving MMOPs, which is attributed to the fact
that the algorithm’s performance in decision space and objective space are considered
simultaneously in the process of searching for PSs. Firstly, the designed variation strategy
endeavors to combine the study of the distributivity and diversity of PSs in the process
of evolution, which improves the performance of MMODE_ES in the decision space and
improves the diversity of PSs; secondly, the performance of the decision space is fully
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Table 3 Comparison results with other excellent algorithms on rHV index. rHV is the inverse of HV. Therefore, the smaller metric is. the bet-
ter the performance. The algorithm runs on 13 test functions and independently runs 30 times, which gets the average and standard deviation. The
data in the table are the average of the 30 times. The experiment tested the data obtained by all algorithms for significant differences using the Wil-
son test. The ‘‘+’’ and ‘‘-’’ in the table indicate statistically superior or inferior to the comparison algorithm, respectively, while ‘‘=’’ indicates statisti-
cally similar results. In Tables 1 and 2, Mean represents the average of 30 results. Std represents the standard deviation on the test problem.

MO_Ring _PSO_SCD DN-NSGAII Omni-optimizer TriMOEA-TA&R MMODE_ICD MMODE_ES

Mean 1.1484+ 1.1498+ 1.1481+ 0.4916- 1.1458- 1.1467
MMF1

± Std 0.0005 0.0017 0.0011 1..8164 0.0003 0.0004
Mean 1.1855+ 1.1947+ 1.1855+ 1.1835+ 1.1765+ 1.1481

MMF2
± Std 0.0125 0.0292 0.0405 0.0130 0.0062 0.0012
Mean 1.1740+ 1.1782+ 1.1808+ 1.1865+ 1.1672+ 1.1471

MMF3
± Std 0.0060 0.0203 0.0355 0.0146 0.0048 0.0006
Mean 1.8614+ 1.8575+ 1.8552= 0.9761- 1.8522= 1.8556

MMF4
± Std 0.0021 0.0010 0.0008 1.6436 0.0005 0.0035
Mean 1.1483+ 1.1487+ 1.1472+ 1.1502+ 1.1461+ 1.1456

MMF5
± Std 0.0004 0.0011 0.0008 0.0019 0.0003 0.0001
Mean 1.1491+ 1.1502+ 1.1473+ 1.1502+ 1.1456= 1.1458

MMF6
± Std 0.0014 0.0040 0.0012 0.0034 0.0002 0.0006
Mean 1.1485+ 1.1493+ 1.1473+ 1.1905+ 1.1453- 1.1461

MMF7
± Std 0.0008 0.0014 0.0006 0.0838 0.0002 0.0005
Mean 2.4050+ 2.3819+ 2.3745= 2.3806+ 2.3764= 2.3750

MMF8
± Std 0.0159 0.0053 0.0010 0.0020 0.0038 0.0034
Mean 0.1034+ 0.1034+ 0.1033- 0.1047+ 0.1032- 0.1034

MMF9
± Std 2.6409e−05 2.7824e−05 3.1523e−05 9.7715e−05 1.4122e−05 1.6431e−05
Mean 0.0797+ 0.0817+ 0.0807+ 0.0781= 0.0784= 0.0782

MMF10
± Std 0.0005 0.0027 0.0031 0.0001 0.0023 0.0004
Mean 0.0605+ 0.0601= 0.0601= 0.0601= 0.0600- 0.0601SYM-PART

simple ± Std 5.6491e−05 1.1505e−05 6.5325e−06 1.5433e−05 6.5117e0-6 2.0249e−05
Mean 0.0606+ 0.0601+ 0.0601+ 0.0602+ 0.0601+ 0.0601SYM-PART

rotated ± Std 8.8876e−05 1.2144e−05 5.3381e−06 1.4502e−05 5.6271e−06 4.6401e−06
Mean 0.0190+ 0.0189+ 0.0188- 0.0190+ 0.0189+ 0.0189

Omni-test
± Std 1.7289e−05 4.1602e−07 4.7385e−07 1.6108e−05 2.9395e−06 1.2258e−06

+/=/- 13/0/0 12/1/0 8/3/2 9/2/2 5/4/4

Notes.
rPSP results and rHV results obtained by these comparison algorithms are underlined and shown in bold when the rPSP results and rHV results obtained by MMODE_ES are
better than the comparison algorithms under the same test function.

considered, and such consideration improves the diversity and distributivity of PF; lastly,
the hierarchical environmental selection scheme allows the excellent individuals to be
retained, and such design allows the distributivity and diversity of PSs to be enhanced.
After comparing with these excellent algorithms, it can be seen that although some of
these algorithms make efforts to search for PSs in the decision space, these search strategies
still need to be further improved; meanwhile, the traditional PS selection scheme selects
individuals with high nondominant rank, which does not retain the dominant individuals
well, and then leads to a part of PSs being excluded from the real PSs, and the final
searched PF and PSs have a missing; at the same time part of the algorithm can consider
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Figure 1 The results of the decision space for each algorithm on theMMF3 function.
Full-size DOI: 10.7717/peerjcs.2182/fig-1

the performance of the algorithm in the objective space, but the consideration is not
comprehensive enough. In contrast, MMODE_ES is an excellent algorithm for solving
MMOPs
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Figure 2 (A–G) The results of the objective space for each algorithm on theMMF3 function.
Full-size DOI: 10.7717/peerjcs.2182/fig-2

CONCLUSION
The article proposes a DE algorithm with hierarchical selection, which improve the quality
of the PSs and the PF, when solving the MMOPs. Firstly, the MMODE_ES in this article
designs two variational strategies based on special crowding distances for the degree of
crowding of populations, which takes into account the diversity of populations, in the
meantime to improve the distribution of solutions. In the stage of environment selection, a
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stratification-based selection strategy is designed; the operation enables the elite individuals
to be selected, and the algorithm can search in the direction of potential while letting the
low-ranking individuals get the likelihood to explore; environment selection improves the
diversity and convergence of the PSs and PF. Finally, an adaptive differential variation
strategy is performed for the individuals after the non-dominated ranking has been
obtained according to their convergence and diversity, which improves the convergence
of the population if its variety is good and improves its diversity if the convergence is
maintained. These strategies help the algorithm MMODE_ES to obtain more diverse
and uniformly distributed PSs and PF, which improves the convergence of MMODE_ES.
Finally,MMODE_ES is compared with several excellentMMOalgorithms on the CEC2019,
and results in the the rPSP and rHV show that MMODE_ES in this article is effective for
solving the MMOPs.

Of course, the MMODE_ES proposed still has some shortcomings. First, MMODE_ES
needs to perform three stages of evolution, thus leading to relatively high computational
complexity and longer running time. Second, the performance of MMODE_ES in the
decision space and the objective space needs to be further improved. Third, individual
diversity and convergence in the evolution process need further research.

In future work, firstly, improving the deficiencies of MMODE_ES. Then, it is vital to
improve further the diversity and convergence, and the adaptive parameter mechanism
can be considered to enhance the searchability of the algorithm. At the end, considering
applying it to more sophisticated and practical problems.
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