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ABSTRACT
This work presents the application of an Encoder-Decoder convolutional neural
network (ED-CNN) model to automatically segment COVID-19 computerised
tomography (CT) data. By doing so we are producing an alternative model to current
literature, which is easy to follow and reproduce, making it more accessible for real-
world applications as little training would be required to use this. Our simple
approach achieves results comparable to those of previously published studies, which
use more complex deep-learning networks. We demonstrate a high-quality
automated segmentation prediction of thoracic CT scans that correctly delineates the
infected regions of the lungs. This segmentation automation can be used as a tool to
speed up the contouring process, either to check manual contouring in place of a peer
checking, when not possible or to give a rapid indication of infection to be referred
for further treatment, thus saving time and resources. In contrast, manual contouring
is a time-consuming process in which a professional would contour each patient one
by one to be later checked by another professional. The proposed model uses
approximately 49 k parameters while others average over 1,000 times more
parameters. As our approach relies on a very compact model, shorter training times
are observed, which make it possible to easily retrain the model using other data and
potentially afford “personalised medicine” workflows. The model achieves similarity
scores of Specificity (Sp) = 0.996 ± 0.001, Accuracy (Acc) = 0.994 ± 0.002 and Mean
absolute error (MAE) = 0.0075 ± 0.0005.

Subjects Computational Biology, Artificial Intelligence, Computer Vision, Neural Networks
Keywords Encoder-decoder, Machine learning, Automated segmentation, CNN, COVID-19, Lung
CT, Simple segmentation, Lung segmentation, Autoencoder

INTRODUCTION
The severe acute respiratory syndrome 2 (SARS-CoV-2) virus causing the disease COVID-
19 (Ciotti et al., 2020), was first reported in January 2020 in the UK (Flynn et al., 2020).
This disease was spread via “person-to-person transmission” (Flynn et al., 2020) and soon
declared a pandemic by the World Health Organisation (WHO) on 11th March 2020
(Ahishali et al., 2021). Since no effective vaccines were available early in the pandemic and
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without an actual cure for COVID-19, it quickly became vital to diagnose cases to try and
stop the spread of the disease. One way to do this was to detect early signs of infection and
isolate that individual from the rest of the population (Ai et al., 2020).

While current diagnosis methods of COVID-19 rely on reverse transcription-PCR
(RT-PCR), a chest computerised tomography (CT) scan was used early in the pandemic to
diagnose infection prior to a positive RT-PCR test (Adil et al., 2021). Indeed, Ai et al.
(2020) states that chest CTs may be used as a primary tool for COVID-19 detection.
However, COVID-19 infections can appear similar to other viral pneumonia on chest CTs
(Ai et al., 2020), thus leading to false positives using this method. In the present work (see
Methods) we assume that all detected infections in both training and testing datasets are
confirmed cases of COVID-19.

We show typical examples of infection areas on lung CT in the Materials subsection in
the Methods section. Note that specialist knowledge is required to generate the initial
contours that delimit the affected areas, a process that can be time-consuming and requires
extensive high-level training. When looking at similar scenarios where contours are
required, such as diagnosing or treating those with lung cancer, it is common practice,
following the guidelines given by The Royal College of Radiologists (2022), to have these
contours peer-reviewed by professionals. This can add significant delays to the process.
Nonetheless Vaz et al. (2022) explains how the additional peer review is important, as it is
one of the main uncertainties when treatment planning patients with lung cancer. Given
the large number of patient admissions in times of pandemic, an automated method to
identify infected areas would help free up time for healthcare specialists. Note that we are
not advocating the replacement of experts but instead a faster workflow where the systems
contours to be reviewed. This would allow more patients to be examined/diagnosed and
ultimately improve treatment outcomes/survival rates overall for affected patients. The
method introduced in this article can easily be adapted to other lesions/pathologies
detected using CT imaging (e.g., pneumonia, cancer, emphysema, embolisms) which could
be used as a tool in the future to second check contours, especially in situations where a
peer is not readily available to check the contours, again speeding up the process. This
would be particularly valuable in underfunded hospitals with limited time and equipment
to give patients the best chance of survival with a faster diagnosis or treatment plan.

Several studies have explored the use of machine learning (in particular deep learning)
to what is technically a segmentation problem in the medical field. Many of these used
adaptations of the U-Net structure by Ronneberger, Fischer & Brox (2015), which links in
with the chosen architecture for this work (see Methods). One of these studies which used
a U-Net model is that of Raj et al. (2021), their study showed that the standard method
used for automatic detection on CT scans has issues with high variations in intensities and
indistinct edges near the infected regions. Moreover, they also discussed the influence of
noise on actual detection, likely originating from the data acquisition process. Raj et al.
(2021) proposed a new COVID-19 pulmonary infection segmentation depth network
which they referred to as attention-gate dense network improved dilation convolutional
U-Net (ADID U-Net). Their results show that their model can accurately segment
COVID-19-infected areas in lung CTs with a performance of over 80% for their chosen
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metrics (accuracy measure, specificity measure, and dice coefficient, see evaluation metrics
subsection for details. Similarly, Elharrouss, Subramanian & Al-Maadeed (2021) show
successful segmentation of COVID-19 in CT scans using their two-stage model of an
encoder-decoder along with the added step of pre-processing to extract structure and
texture of the images. The pre-processed images are then used as the inputs of the encoder-
decoder which is based on the SegNet model (Elharrouss, Subramanian & Al-Maadeed,
2021).

More studies follow the basic structure of the U-Net model with adaptations to segment
other medical images such as with breast ultrasound (BUS) images, which are the images
produced when screening patients for breast cancer. Zhuang et al. (2019) proposed a
Residual-Dilated-Attention-Gate-U-Net (RDAU-NET) model to segment tumours in
(BUS) images. Although this is based on the U-Net model, it replaces plain neural units
with residual units which allows for enhanced edge information which is an issue for many
medical images, especially ultrasound images. Others who look at models specifically for
segmentation of BUS images include the use of RDA-UNET-WGAN with the use of
Wasserstein generative adversarial networks (WGANs) (Negi et al., 2020). This approach
used generative adversarial networks (GANs) made up of two networks, a generator and a
discriminator network. Their RDA-UNET model is used as the segmentation model
(generator) and a fully connected convolutional neural network (CNN) is used as the
discriminator to estimate the authenticity of the sample given which is what gave them the
(RDA-UNET-WGAN model). Another U-Net based model is that of Zhang et al. (2023)
which used a network made of two branches to segment BUS images. This comprises a
classification branch and a segmentation branch. Both of which share the encoder layer
and segmentation part of their network is based on the typical U-Net structure. Others,
such as Fan et al. (2020), have used an Inf-Net approach to segment COVID-19 lung
infections which consists of “three reverse attention modules connected to paralleled
partial decoder (PPD)”.

In the present study, we investigate the hypothesis that a simpler deep-learning model
can provide a suitable alternative to U-Nets which are a common framework for
segmentation models. We suggest the usage of a convolutional encoder-decoder network
which is structurally similar to an auto-encoder. The model’s objective is to analyse unseen
chest CT scans and produce a contour that delineates areas of COVID-19 infection within
the lung. The training of our model requires a supervised scheme, contrary to the usual
unsupervised auto-encoder neural network (AE-NN) training protocols since we are
effectively transforming the initial CT scan into a segmentation mask. We then use the
same metrics as the literature mentioned earlier to evaluate our model’s performance. By
doing so we are producing an alternative model to current literature which is easy to follow
and reproduce making it more accessible for real-world applications as little training
would be required to use this. Along with the model being accessible for others to train on
their data, it is also a much simpler model with fewer parameters and has a relatively short
training time (see Methods section). Should someone wish to train this model on their
data, similar optimisation methods would be necessary to make it the best fit for a different
dataset. Details of our approach are described in the Methods section, along with the
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details of the dataset used. We present the results of our approach in the Results section
before evaluating its performance in the Discussion section.

METHODS
Materials
We use Python (v3.7.15) and Keras (v2.9.0) to implement our model and use publicly
available COVID-19 infection data1 (data from Jun et al., 2020). This dataset, collected in
April 2020, consists of 20 labelled full chest CT scans of COVID-19-infected lungs and
their corresponding segmentation masks. These are labelled by two radiologists and
verified by an experienced radiologist (Jun et al., 2020).

The white regions in Figs. 1B and 1D are the contours/masks drawn by healthcare
specialists to indicate the areas affected by COVID-19. The corresponding original CT
scan slices are shown on the left (Figs. 1A and 1C).

Model
Our model is based on a convolutional neural network (CNN), a specialist type of neural
network designed to process 2D image data. In this type of network, the CNN layers
effectively convert the image into feature activation maps using tuneable filters
(convolutional kernels) and thus can identify specific spatial patterns within a given image.
The overall structure of our model is shown diagrammatically in Fig. 2. Its main
architecture follows the shape of an auto-encoder (AE), which was chosen due to its
similarities to the already successful U-Net structures. Both types of models have encoder
and decoder sections, but the U-Net has additional connections between the two sections
(Karimov et al., 2019). We suggest here that auto-encoders are theoretically able to carry
out similar tasks to the U-Nets but provide a simpler and faster route to solutions without
the complexity of a U-Net model.

Auto-encoders have seen a rise in popularity and have been prevalent in recent
literature; such as those reported by Shvetsova et al. (2021) to detect abnormal sections of
imaging in chest x-ray images, Gong et al. (2019) to carry out anomaly detection, Abraham
& Nair (2018), who used stacked sparse auto-encoders (SSAE) to classify prostate cancer
into grade groups from MRI images and the work by Qadri et al. (2023) who also used
SSAEs for automated vertebrae segmentation. Throughout the literature mentioned, each
study uses a model based on an auto-encoder which prompted us to then develop a model
which comprised a CNN with an encoder-decoder architecture to follow that of an auto-
encoder.

The following explanations of the model and process to train the model, along with data
augmentation are depicted in the flowchart in Fig. 3. This figure gives an outline of the
whole process from reading the data to producing the prediction contour and will be
referenced throughout the next section.

Following a supervised training protocol, the recorded lung CT scan is encoded through
three padded convolutional layers into a compressed (latent) representation of the original
CT image. We train the model to reconstruct not the original image, as would normally be
the case for a standard AE-NN, but instead, the COVID-19-infected contour region using

1 COVID-19 infected lung CT’s andMasks
are available at https://doi.org/10.5281/
zenodo.3757476 which is accessed via
https://www.medseg.ai/covid-19
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its decoder section. The resulting image is a contoured version of the input CT that
highlights infection areas.

The encoding section of our model (left of Fig. 2) and the “Encoder” section of Fig. 3,
consists of three padded convolutional layers all with a ReLU activation function and 3� 3
filters (padding = ‘same’). The image size remains constant throughout the model (here
128� 128 pixels) but the depth (number of filters) is halved as we progress through the
encoder (from 64 to 32 then 16). The shape shown in Fig. 2 was investigated by looking at
the loss curve for a range of filter sizes. Figure S1 in the supplementary information shows
the result of testing different shapes of ð128� 64� 16Þ, ð128� 32� 16Þ and finally
ð64� 32� 16Þ. We chose the ð64� 32� 16Þ filter version because the loss curve gives us
minimal over-fitting compared to the other filter size combination.

The convolutional layers are then followed by a ð2� 2Þ max-pooling layer that
effectively constitutes our compressed, latent, representation which can be seen between
the encoder and decoder in Fig. 3 and at the centre of the diagram in Fig. 2. This max-
pooling layer aims to extract the largest value for each ð2� 2Þ section of the feature maps
and reduce the size of the input picture. Our latent ð64� 64� 16Þ representation is then
up-sampled through 3 ReLU-activated de-convolutional layers in reverse order
ð16� 32� 64Þ to reconstruct the COVID-19-infected contour region which can be seen

Figure 1 Visual example of data used. (A and C) Slices of a CT chest scan showing the cross-section of
a lung infected with COVID-19; the grey areas showing where the infection is present. (B and D) The
corresponding contours/masks, respectively, which are the segmented infected regions highlighting
areas of the lung that are visibly infected. These masks are the “ground truth” (GT) used for training
models and comparing predictions to. CT images/contours used within figure by Jun et al. (2020).

Full-size DOI: 10.7717/peerj-cs.2178/fig-1
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on the right side of Fig. 2 and in the “Decoder” section of Fig. 3. These de-convolutional
layers are also padded (padding = ‘same’) with a stride set to two for the first layer, to
recover the original size of the image. The final decoded layer uses a sigmoid activation
function to generate the predicted contour region.

We optimise the binary cross-entropy loss function of the model using the Adam
optimiser. In this case, the binary cross-entropy is particularly well suited as the ground
truth (GT) contours are given as black and white (0/1) pixels. Effectively, this translates to
a pixel-by-pixel truth table that indicates COVID-19 infection or lack of it throughout the
image. Other loss functions, such as mean squared error (MSE) for example, do not
provide easily optimisable landscapes as most of the image is black with small white
regions.

The dataset used originally held 3,520 images (each slice from the full CT creates one
“image”) of both the CT and corresponding mask. All the blank masks were then removed
so the model was purely trained on images with COVID-19 present which can be seen in
the “Data Pre-processing” section of Fig. 3. After the blank masks and corresponding CTs
were removed, we were left with 1,844 images that could then be randomly split into test
and training sets. We chose to split this into 20% (369 images) as test data, which was set
aside for later evaluation of the model. It is crucial to split the data before any
augmentation or manipulation to make sure it is a true test of the model and ensure the
model has not seen another version of the image in the training process. The remaining
80% of the data (1,475 images) was used for training. First, we wanted to increase the
training dataset to match more closely to the larger amounts of data that others have used
such as Raj et al. (2021), who used a data size of 9,226 images and (Elharrouss,
Subramanian & Al-Maadeed, 2021) who used a data size >2,000 images. Our training data
was therefore augmented by performing mirror operations (left/right and up/down),

Figure 2 Diagram of our ED-CNN- The recorded lung CT scan (left) is progressively encoded as it passes through the encoder. The compressed
representation is then decoded into an output contour of the COVID-19 infected region(s) (right) of the input CT. CT images/contours used within
figure by Jun et al. (2020). Full-size DOI: 10.7717/peerj-cs.2178/fig-2
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Figure 3 Pipeline flow chart of the entire system.Diagram includes the data augmentation process and
the steps throughout the model. Full-size DOI: 10.7717/peerj-cs.2178/fig-3
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following Gandhi (2021). The process is depicted in Fig. 3 which shows the stages used to
achieve the larger training dataset of 5,900 images. A visual representation of how the data
was augmented can be seen in Fig. S2 in the supplementary information. Note that this is
still a small dataset compared to some other training dataset sizes used in other published
studies mentioned previously.

The new Augmented dataset of 5,900 images is then used to train the model which runs
through the steps in the “Encoder-Decoder CNN” section of Fig. 3. To train our ED-CNN
model, we use an input CT and an output of infected contours/segmentations of the
corresponding CTs. This training had a batch size of two and trained for 60 epochs. A
hyperparameter we investigated was the optimal number of epochs for our model, much
like choosing the best filter previously when looking at the overall shape of the model. The
model was trained using different numbers of epochs; 40, 50, 60, 120 and 240 epochs,
Fig. S3 in the supplementary information shows this process and its results. We
found 60 to be the best number of epochs before over-fitting starts to occur,
preventing the model from learning unwanted noise (Das & Das, 2023). After the
ED-CNN is trained, the prediction is run along with a visual representation of the CT and
corresponding predicted contours for the “Testing Dataset” in Fig. 3, which was kept
separate during the training process. This then gave us the output of a predicted contour to
compare to the GT contours created by the healthcare professional to determine how good
the prediction was.

Evaluation metrics
We first use three popular metrics to compare our predicted segmentation to the ground
truth. These metrics are described below and are also used in other studies such as
Elharrouss, Subramanian & Al-Maadeed, 2021, Fan et al. (2020) and Raj et al. (2021).
These were run using the MATLAB code from Raj et al. (2021) which is publicly available
and linked in their “data availability” section. Symbols used throughout are summarised in
Table A1.

Structural similarity measure (structure-measure)
Fan et al. (2017) put forward a new metric for evaluation which combines
object-aware and region-aware measurements to form one measurement. As stated by the
name, this measures the structural similarities between a ground truth mask and its
prediction mask/segmentation and gives a result closer to how human vision works
(Fan et al., 2020).

Sm ¼ Sa ¼ ð1� aÞ � SoðSp;GÞ þ a � SrðSp;GÞ (1)

Here, a is a constant set to 0.5, So represents the target perception similarity, Sp the final
prediction result, G is the ground truth mask and Sr the regional perceptual similarity (see
also Fan et al. (2017), Cheng & Fan (2021), Raj et al. (2021)). As this measure is widely used
by those mentioned along with Fan et al. (2020) it allows for a fair comparison to other
studies.
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Enhanced—alignment measure (E-measure)
The enhanced alignment measure, also proposed by Fan et al. (2018), combines the local
pixel values with image-level mean values in one term This is given by Eq. (2) below:

Ea ¼ QFM ¼ 1
w � h

Xw

x¼1

Xh

y¼1

fðSpðx; yÞ;Gðx; yÞÞ (2)

where w and h denote the width and height of G, ðx; yÞ are the coordinates of each pixel in
G and f is the enhanced alignment matrix (see also Fan et al. (2018) and Raj et al. (2021)).
The measure evaluates both local and global similarities when considering two binary
maps (Raj et al., 2021).

Mean absolute error (MAE)
This is a popular measure which evaluates pixel-wise error between Sp and G (Fan et al.,
2020), given by Eq. (3).

MAE ¼ 1
w � h

Xw

x

Xh

y

jSpðx; yÞ � Gðx; yÞj (3)

The following metrics were also used, based on confusion matrices, when comparing the
ground truth image and our prediction image. The following metrics make use of the four
outputs of the confusion matrix: true negative (TN), true positive (TP), false negative (FN),
and false positive (FP), each of which is explained below.

Confusion matrix components
The four components that make up the outputs of the confusion matrix required for the
further metrics used are explained by the following:

TP = Predict infected region and it is True (correct)
TN = Predict no infection region and it is True (correct)
FP = Predict infected region and it is False (incorrect)
FN = Predict no infection region and it is False (incorrect).

Accuracy (Acc)
This is the ratio of correctly predicted pixels to the total number of pixels present given by
Eq. (4).

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

(4)

Precision (Pc)
This considers only the infected region pixels (the white areas) and gives us the ratio of
correctly predicted infected pixels to the total number of predicted infected pixels. This is
given by Eq. (5).

Pc ¼ TP
TP þ FP

(5)
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Sensitivity (Sen)
This gives us the ratio of correctly predicted infected pixels to the total number of actually
infected pixels (the ground truth of infected pixels), given by Eq. (6).

Sen ¼ TP
TP þ FN

(6)

F1 score (F1)
This combines both the Precision and Sensitivity in Eqs. (5) and (6) to give accuracy. This
is given by Eq. (7).

F1 ¼ 2
Pc � Sen
Pcþ Sen

(7)

Specificity (Sp)
This gives us the ratio of correctly predicted non-infected region pixels (black areas) to the
total number of actual non-infected pixel regions, given by Eq. (8).

Sp ¼ TN
TN þ FP

(8)

A mixture of these metrics was commonly used amongst the literature mentioned
previously such as Elharrouss, Subramanian & Al-Maadeed, 2021, Fan et al. (2020), Raj
et al. (2021), Zhuang et al. (2019) and Negi et al. (2020) which will be used to compare to
our model in the results section.

RESULTS
Qualitative results
To test the performance of our ED-CNN, we used a randomly selected subset of our
dataset (20%) prior to augmentation, which was kept aside as the testing dataset. The
testing dataset consists of 369 images of both lung CT scans and corresponding infected
masks/contours, all of which are unseen by the model. If the performance of the model is
good, it will produce predicted images of the masks close to the corresponding GT images
of the infected masks/contours of the CT scans, thus successfully indicating the areas of
infection. Typical-generated contours, along with the original CT scans and the
corresponding ground truths are shown in Fig. 4. Visually, we can see that our model can
successfully predict the contours of the infected regions of the lungs with good accuracy as
can be seen by comparing the “Pred” row, to the “GT” row in Fig. 4.

Quantitative results
Whilst looking at the images in Fig. 4, it may be difficult to see the differences that occur
between the predictions of our model and the GT images (second and third row
respectively). To show more concretely that these images are similar, we rely on similarity
scores and evaluation techniques that compare the similarities between the two images.
The predicted images created are evaluated by testing with our 369 image testing dataset,
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against the corresponding GT images using the metrics described in the Methods section.
For the structural similarity metric Eq. (1), a score close to 1 indicates a better likeness to
the ground truth, with 1 being an exact match. Similarly with the metric, Ea represented in
the Eq. (2), the closer this result is to the value 1, the closer both images are said to be in
similarity. The measurement for MAE given in Eq. (3) differs in that the value for the
images to be close in similarity the score would tend closer to 0. The remaining metrics of
Sen, Sp, Pc, F1, and Acc are all ratios, so that values closer to 1 indicate a higher similarity
between the prediction and ground truth images.

The numerical results from our chosen metrics are given in Table 1 and we also
summarise the type of model each of the comparative literature uses in the method
column.

We compare our scores against six published models: (Elharrouss, Subramanian & Al-
Maadeed, 2021; Fan et al., 2020; Raj et al., 2021; Zhuang et al., 2019; Negi et al., 2020).
Table 1 shows that our ED-CNN score for Sm, is 0.82� 0.01. This is higher than the results
in Fan et al. (2020), but slightly lower than the two models from Raj et al. (2021) score. This
highlights that our model produces predictions that compare well with more elaborate
models such as the ADID-U-Net by Raj et al. (2021), for example. When looking at the Ea
scores, our models score is 0.86� 0.01, which does fall below the other models but not by a
large amount. For MAE our model achieved 0.0075 � 0.0005, better than all the
comparable literature (Elharrouss, Subramanian & Al-Maadeed, 2021; Fan et al., 2020; Raj
et al., 2021; Zhuang et al., 2019; Negi et al., 2020), as it is closer to 0 compared to their
scores. Our ED-CNN also scored best for Sp and Acc when compared to the others in
Table 1. For Sen our ED-CNN scored 0.82 � 0.05 which is close to the highest score of
0.8837 by Negi et al. (2020) and higher than Elharrouss, Subramanian & Al-Maadeed,
2021, Fan et al. (2020). Our Sen value is between both (Raj et al., 2021) and (Zhuang et al.,
2019), within error bars. It is worth noting that our model achieves these scores with a low
number of parameters (49 K for our ED-CNN), compared to the others ranging from
28,817 K (Negi et al., 2020) to 56,223 K (Raj et al., 2021).

Figure 4 Visual comparison of results- The first row shows the slices from a CT scan of the lungs that
are infected with COVID-19, the second row shows the predicted infected regions made by our ED-CNN,
the white highlighting the areas of infection from the original CT, and the final row shows the ground
truth of the infected areas for comparison which also highlights infected areas in white-these are con-
toured by a radiologist. For rows one and three, CT images/contours used within the figure by Jun et al.
(2020). Full-size DOI: 10.7717/peerj-cs.2178/fig-4
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Robustness of the prediction and training times
We investigated how reproducible the scores obtained for our model are, this is
not often reported in the literature. To do so, the model was re-trained 10 separate times
with a newly made training dataset. To achieve this, we take the original data and
re-randomise the 80/20 split for the test and training data before training, as
previously explained and shown in 3. The re-randomisation meant that the
composition of each testing and training set was different. The new 80% data sample is
then augmented to make the 5,900 images in the training dataset as shown in Figs. 3 and
S2. Each time the model is run, its memory is cleared to ensure it does not retain
information from the previous run, ensuring that the test set is never seen before being
tested. Metric scores are computed (see evaluation metrics section) for each run and
derive an average metric value with its corresponding error (All computed values are
shown in Table S1).

To calculate the error with a confidence interval of 99%, we use small number statistics
from the work of Dean & Dixon (1951). First the range of each run is calculated and then
multiply this by the recommended coefficient (Table 1, column 8, n = 10 of Dean & Dixon
(1951)). This gives us the range multiplied by 0.33-thus an estimate of the variance of our
results shown in Table 1.

We ran our dataset with the ADID-UNET model of Raj et al. (2021), obtained from
their supplementary information section to estimate comparative run times. When doing
so we saw that their model took an average of 65:18 s per epoch with our dataset. Our
model achieved a training time of only 19:5 s per epoch on the same dataset. When we look
at the difference in parameters, the ADID-UNET model having 52,162 K and ours only
having 49K, it explains why our model would be three times faster on average than theirs
even when run on the same GPU and with the same dataset. This shows that our ED-CNN
is indeed faster than other methods, yet yields similar results.

Table 1 Comparison of results. The results compared to the performance of previous literature referenced in the table. We show the scores for eight
commonly used metrics; ðSmÞ Structural similarity measure, ðEaÞ Enhanced-alignment measure, ðMAEÞmean absolute error, ðSenÞ Sensitivity, ðSpÞ
Specificity, ðPcÞ Precision, ðF1Þ F1 Score and ðAccÞ Accuracy. Each study used various techniques for a segmentation task. The final column shows
the number of parameters for each model. Details of the error calculation are discussed in the text. A dash represents no available data and the best
scores are shown in bold.

Method Sm Ea MAE Sen Sp Pc F1 Acc Parameters

ED-CNN (This work) 0.82 ± 0.01 0.86 ± 0.01 0.0075 ± 0.0005 0.82 ± 0.05 0.996 ± 0.001 0.76 ± 0.04 0.77 ± 0.02 0.994 ± 0.002 49 K

Two stream input encoder-decoder
(Elharrouss, Subramanian & Al-
Maadeed, 2021))

— — 0.062 0.711 0.993 0.856 0.784 — —

Semi-inf-net (Fan et al., 2020) 0.800 0.894 0.064 0.725 0.960 — — — 33,122 K

ADID-UNET (Raj et al., 2021) 0.8509 0.9449 0.0082 0.7973 0.9966 0.8476 0.8200 0.9701 52,162 K

U-NET (Raj et al., 2021) 0.8400 0.9390 0.0088 0.8052 0.9957 0.8247 0.8154 0.9696 56,223 K

RDAU-NET (Zhuang et al., 2019) — — — 0.8319 0.9934 0.8858 0.8478 0.9791 —

RDAU-NET-WGAN (Negi et al.,
2020)

— — — 0.8837 0.9926 0.9117 0.8975 0.9808 28,817 K
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DISCUSSION
Our ED-CNN model offers a simple model which successfully predicts contours/masks
from CT scans indicating COVID-19 infection. Although our method does not always
improve on the metrics reported in the literature using other techniques, it gives similar
scores with much lower model complexity. Our model contains a total of 49,761
parameters, comparing this to other models that give similar results, and have total
parameters exceeding 56 million. This difference of several orders of magnitude in the
number of parameters between our model and leading methods, suggests a much reduced
computational training cost.

As is the case for most deep-learning approaches, using a relatively small dataset means
that the impact of low-quality images is magnified and could potentially bias some of the
training. Therefore we explored the variability of our model training and the error analysis
performed gives a more realistic picture of the capabilities of our approach.

There is success in that our model can be trained with a starting dataset as small as 1,844
images, this may be of great advantage in clinical studies where patient numbers may be
low or when there may be a lack of readily available data. Our simple model offers the
potential to be a fast and flexible tool that could be deployed efficiently in clinical settings
where computational resources may be limited. Moreover, we anticipate further extension
of our model to contouring different pathologies of the lung. For example, using CT scans
from a patient with lung cancer, provided labelled datasets by oncologists are available, we
can train to detect cancerous lesions instead of COVID-19 with simple retraining. The
benefits of this approach include automatic screening of CT images to generate routine
lesion predictions (tumour or mass). A fertile area of research and clinical development in
radiotherapy concerns the daily adaption of treatment based on verification CT image
acquired on the treatment machine, otherwise known as adaptive radiation therapy (ART),
which can make great use of deep learning models to rapidly contour patients during
treatment without them leaving the machine (Glide-Hurst et al., 2021). Our methodology
could ultimately help speed up treatment in related areas, by rapidly evaluating how much
a tumour has shrunk during treatment, or how much it has grown/spread if treatment is
not working. This allows for a faster change in treatment plan which otherwise requires a
multidisciplinary staff group to re-scan and re-contour the patient’s lungs to determine
what, if any, changes there were to their tumour. This is not commensurate with the
requirements for daily adaptation workflow. Our approach could also potentially detect
areas that may otherwise be missed when looking over the initial CT scan with this type of
early-detection measures ultimately leading to a greater chance of survival.

CONCLUSIONS
We have proposed a method for computer prediction of contours for CT scans for
COVID-19 lung data that successfully predicts/segments infected areas. In comparison to
other published techniques, our model is simpler whilst still performing on par with the
literature. Our proposed model (ED-CNN) achieves similarity measures for
Sm ¼ 0:82� 0:01, Ea ¼ 0:86� 0:01, MAE ¼ 0:0075� 0:0005, Sen ¼ 0:82� 0:05,
Sp ¼ 0:996� 0:001, Pc ¼ 0:76� 0:04, F1 ¼ 0:77� 0:02, Acc ¼ 0:994� 0:002.
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These scores show that our model is able to produce masks/contours from unseen CT
images with a high level of similarity to the ground truth contours.

Two points are worth noting: firstly, our model achieves the best overall scores for
MAE ¼ 0:0075� 0:0005, Sp ¼ 0:996� 0:001 and Acc ¼ 0:994� 0:002, suggesting that a

simpler model can outperform existing approaches for some metrics. This opens up new
avenues in exploring how computationally simple models could be a suitable alternative to
standard deep models, such as U-nets. Secondly, we observe that there is very little
variability for all metrics used. Indeed, the largest absolute variation (0.05) is observed for
Sen, which corresponds to a 6% variation, while all other metrics have lower variations.
This indicates that the model training workflow is robust and leads only to small variations
in the prediction outcome—a desirable feature for possible usage in a clinical environment.
Our results show that it is possible to achieve similar results to those of more complicated
methods with a much smaller, less complex, model if care is taken to ensure it is
appropriately trained as can be seen with our smaller number of parameters of 49,000
compared to others of 30–56 million.

Finally, our approach towards a lean yet efficient segmentation model opens the
possibility of performing re-training using moderately-powered platforms typically
available in a medical setting. We have shown that even a small dataset can lead to
segmentation results comparable to those of more elaborate models, thus potentially
allowing a more “personalised”medicine approach for various lung lesions (COVID-19 or
cancer, for example) by using data from a smaller group of patients. Future work with this
model will include looking at the robustness of the model, if it can withstand images of
lower quality, what its limitations will be. We also plan to investigate how well the ED-
CNN performs when applying it to patients with lung cancer once re-trained on a new
dataset with a different lung lesion to what was used in this work.

APPENDIX
The abbreviations used in this article are detailed in Table A1.

Table A1 Key of symbols used.

Symbol Definition

a A constant set to 0.5

So The target perception similarity

Sp The final prediction result

G The ground truth mask

Sr The regional perceptual similarity

w Width of G

h Height of G

ðx; yÞ The coordinates of each pixel in G

f The enhanced alignment matrix
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