
Integration of simulated annealing into
pigeon inspired optimizer algorithm for
feature selection in network intrusion
detection systems
Wanwei Huang1, Haobin Tian1, Sunan Wang2, Chaoqin Zhang3 and
Xiaohui Zhang4

1 College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan,
China

2 Electronic & Communication Engineering, Shenzhen Polytechnic School, Shenzhen,
Guangdong, China

3College of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou, Henan, China

4 Henan Xinda Wangyu Technology Co. Ltd, Zhengzhou, Henan, China

ABSTRACT
In the context of the 5G network, the proliferation of access devices results in
heightened network traffic and shifts in traffic patterns, and network intrusion
detection faces greater challenges. A feature selection algorithm is proposed for
network intrusion detection systems that uses an improved binary pigeon-inspired
optimizer (SABPIO) algorithm to tackle the challenges posed by the high
dimensionality and complexity of network traffic, resulting in complex models,
reduced accuracy, and longer detection times. First, the raw dataset is pre-processed
by uniquely one-hot encoded and standardized. Next, feature selection is performed
using SABPIO, which employs simulated annealing and the population decay factor
to identify the most relevant subset of features for subsequent review and evaluation.
Finally, the selected subset of features is fed into decision trees and random forest
classifiers to evaluate the effectiveness of SABPIO. The proposed algorithm has been
validated through experimentation on three publicly available datasets: UNSW-
NB15, NLS-KDD, and CIC-IDS-2017. The experimental findings demonstrate that
SABPIO identifies the most indicative subset of features through rational
computation. This method significantly abbreviates the system’s training duration,
enhances detection rates, and compared to the use of all features, minimally reduces
the training and testing times by factors of 3.2 and 0.3, respectively. Furthermore, it
enhances the F1-score of the feature subset selected by CPIO and Boost algorithms
when compared to CPIO and XGBoost, resulting in improvements ranging from
1.21% to 2.19%, and 1.79% to 4.52%.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Software Engineering
Keywords Feature selection, Intrusion detection system, Network traffic, Pigeon inspired
optimization, Population decay factor, Simulated annealing

How to cite this article Huang W, Tian H, Wang S, Zhang C, Zhang X. 2024. Integration of simulated annealing into pigeon inspired
optimizer algorithm for feature selection in network intrusion detection systems. PeerJ Comput. Sci. 10:e2176 DOI 10.7717/peerj-cs.2176

Submitted 18 April 2024
Accepted 12 June 2024
Published 16 July 2024

Corresponding author
Sunan Wang,
wangsunansps@163.com

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.2176

Copyright
2024 Huang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2176
mailto:wangsunansps@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2176
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
As 5G networks continue to advance and the number of access devices increases, network
traffic has also increased significantly. With higher bandwidth, lower latency, and greater
connection density, 5G networks are more vulnerable to insidious and efficient network
attacks. To address network security concerns, it is recommended to implement a network
intrusion detection system (NIDS) (Tsai & Lin, 2010) on computer systems to scan for any
signs of unauthorized intrusion. The connection of a large number of devices to the 5G
network requires NIDS to be capable of handling such a large-scale operation.
Nevertheless, network data is characterized not only by its substantial volume but also by
its high dimensional nature (Ganapathy et al., 2013), resulting in prolonged model training
times and diminished predictive performance (Hastie et al., 2009). Hence, the significance
of feature selection algorithms in NIDS is self-evident (Alazab et al., 2012). Feature
selection offers a means of identifying significant features and eliminating extraneous ones
from a dataset. The objective is to choose the most indicative subset of features from the
initial dataset, thereby reducing model complexity and enhancing predictive performance.
Feature selection reduces model complexity, improves predictive performance, and
enhances the accuracy and reliability of intrusion detection by minimizing false alarms and
preventing missed alarms (Thakkar & Lohiya, 2022). NIDS that uses feature selection
algorithms have been extensively researched and implemented. They are a critical
technical tool for ensuring network security.

The aim of feature selection is to identify a subset of features that closely approximates
the optimal feature subset within a reasonable timeframe. The inclusion of feature
selection has greatly improved the effectiveness of NIDS, aiming to identify a more suitable
solution rather than an optimal one. At present, bio-inspired algorithms utilizing feature
selection techniques exhibit superior performance when compared to other methods.
Bionic algorithms draw inspiration from the collective behaviors of various animals (such
as fireflies, wolves, fish, and birds), and researchers have introduced diverse computational
approaches to emulate these species’ behaviors for problem optimization, known as
foraging. These approaches include the Chaotic Firefly Algorithm, Grey Wolf
Optimization, Artificial Fish Swarm Algorithm, and the Bird Swarm Algorithm, among
others (Shoghian & Kouzehgar, 2012). Each member within a swarm intelligence algorithm
embodies a potential solution, generating fresh individuals through continuous mutation
and crossover. The Pigeon-Inspired Optimizer (PIO) algorithm is an emerging swarm
intelligence algorithm, which has obvious advantages in global search ability, convergence
speed and robustness compared with other swarm intelligence algorithms.

Effective feature selection algorithms can enhance the detection capabilities and
efficiency of NIDS. Scientific and efficient decision-making in feature selection has
emerged as a critical method to guarantee the operational security of networks. However,
feature selection algorithms currently face several issues, including excessive feature
pruning (Zhou et al., 2020), disregard for inter-feature correlations (Li et al., 2020),
susceptibility to anomalous traffic, and difficulty in handling large datasets (Jaw & Wang,
2021). These challenges can lead to a decline in the model’s generalization ability, increased

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 2/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

complexity, and reduced stability, ultimately impacting the model’s detection performance
and efficiency (Rashid et al., 2022). To tackle the aforementioned issues, this article
presents a feature selection algorithm for NIDS based on an improved binary pigeon-
inspired optimization algorithm, aiming to enhance the accuracy and efficiency of feature
selection in the context of network intrusion detection. The goal is to reduce false positive
rate and false negative rate in NIDS. This approach utilizes mutation and simulated
annealing mechanisms during the map and compass operator phases to expand the search
scope and prevent the feature subset from being stuck in local optima. Furthermore, it
introduces a population decay factor in the landmark operator phase to control rapid
population decline and regulate the algorithm’s convergence rate. The article presents a
method that selects the most representative feature subset through reasonable
computation. This leads to a significant reduction in model training and testing times,
while enhancing the model’s detection rate and accuracy. The key contributions of this
study include:

(1) We conduct an investigation and analysis of existing NIDS feature selection
algorithms, leading to the proposal of an improved NIDS feature selection algorithm based
on enhancements to the binary PIO algorithm;

(2) during the map and compass operator phase, a mutation mechanism is introduced
to increase the diversity of the population, thereby expanding the search space of the
algorithm. Additionally, a simulated annealing approach is incorporated to accept new
solutions that are worse than the current solution with a certain probability, facilitating
escape from local optima;

(3) during the landmark operator phase, a population decay factor is proposed to
dynamically adjust the population size for each iteration based on the fitness distribution
of the population. The objective of this adjustment is to regulate the convergence speed of
the algorithm;

(4) the improved PIO algorithm was combined with a classifier and applied to NIDS.
The algorithm was evaluated against state-of-the-art feature selection algorithms using
datasets such as UNSW-NB15, NSL-KDD, and CIC-IDS-2017.

The remaining sections of this article are organized as follows. “Related Work” provides
an overview of previous related work conducted by other researchers. In “Continuous
Pigeon Inspired Optimizer”, we present the architecture and formulation description of
the continuous PIO algorithm. “Proposed Improvement of PIO” describes the model of
the proposed feature selection algorithm and provides detailed information on the
updating steps. In “Experiments and Results”, we conduct simulation experiments and
evaluate the performance of our approach. Finally, in “Conclusion”, we conclude and
discuss future research directions.

RELATED WORK
The classification performance of network intrusion detection system models is
significantly constrained by the high dimensionality and sheer volume of network traffic
data. In light of the increasing volume of data, researchers have investigated sample
selection methods to enhance the efficiency of the training model process. Feature

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 3/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

selection algorithms have been developed to tackle challenges associated with high data
dimensionality, as well as the presence of irrelevant and redundant features (Alazab et al.,
2012) in datasets. Feature selection is crucial for enhancing model performance by
eliminating irrelevant and redundant information from the dataset. By selecting only the
most significant features for model training, it helps prevent overfitting and reduces feature
dimensionality, thereby improving the efficiency of model training and prediction
processes.

Traditional feature selection algorithms can be categorized into three types: filtered,
wrapper, and embedded methods (Di Mauro et al., 2021). Filtered feature selection
operates independently of the classifier, while wrapper methods involve evaluating the
classifier during feature selection. Embedded methods integrate feature selection directly
into the training process of the classifier. Each type has distinct benefits and is appropriate
for different situations depending on the specific needs of the task. Filtered algorithms are
computationally efficient but do not guarantee optimal feature selection. Embedded
algorithms perform feature selection during intrusion model training and are
computationally expensive for large datasets. Conversely, wrapper algorithms exhibit
higher accuracy than the previous two algorithms but are sensitive to the quality of the
training data. Achieving high accuracy is crucial for NIDS, and training time for offline
data is not a significant concern. Therefore, this article uses the wrapper algorithm as the
preferred method for feature selection, as it has been shown to provide the best results.

Table 1 provides a summary of the performance of different feature selection methods
on different datasets, categorizing them into filtering methods, embedding methods, and
wrapping methods. It includes details such as the number of features selected, the detection
rate, and the false alarm rate for each method on each dataset. This table serves as a
comprehensive overview of how these methods perform in the context of feature selection
for intrusion detection.

Filtered feature selection method
Filtered feature selection algorithms do not use explicit criteria to determine the size of the
subset. Instead, they rank features based on various evaluation metrics and select the top N
features with the highest scores. This selection process is based on the intrinsic
characteristics of the dataset and does not consider feedback from classification results for
the features already selected. By focusing on feature ranking and selection independently of
the classification model, filtered feature selection algorithms aim to identify the most
relevant features for the given dataset without being influenced by the performance of a
specific classifier. Amiri et al. (2011) introduced a mutual information-based feature
selection (MIFS) technique for NIDS. However, the accuracy of mutual information
estimation may be compromised in scenarios with limited data, resulting in the
identification of suboptimal sets of features. Ambusaidi et al. (2016) proposed a mutual
information-based method to select optimal feature subset for classification from linear
and nonlinear correlated data. The ARM feature selection model proposed byMoustafa &
Slay (2017) focuses on enhancing detection performance by filtering out irrelevant features,
retaining only significant ones, and leveraging association rule mining to identify feature

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 4/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

combinations with strong correlations. The comprehensive results show that ARM
effectively minimizes false alarms and significantly reduces processing time while
maintaining accuracy. Stiawan et al. (2020) conducted experiments using the mutual
information selection technique with a NIDS on 20% of the streams from the CIC-IDS-
2017 dataset. By reducing the number of features selected, the accuracy decreased, but the
execution time also decreased significantly.

Embedded feature selection method
Embedded feature selection algorithms are integrated with the machine learning model
training process in a seamless manner. This approach offers the advantage of performing
feature selection and model training simultaneously, resulting in optimized performance
in both aspects. Embedded feature selection algorithms view the feature selection process
as an integral part of model training. Feature weights are assigned concurrently with model
training, all within a unified framework. Yulianto, Sukarno & Suwastika (2019) sought to
enhance machine learning-based NIDS by incorporating principal component analysis
and ensemble feature selection techniques for feature selection. Due to AdaBoost’s high

Table 1 Summary of related works.

Method Dataset Num of
selection/
total

Detection
rate

False
alarm
rate

Weaknesses

Filter
method

MIFS NSLKDD 20/41 0.934 – Redundancy between features not considered

IG NSLKDD 8/41 0.886 0.117 The accuracy of mutual information is strongly influenced by
the quality of the data

ARM NSLKDD 11/41 0.997 0.003 Overexploitation of high detection rate and neglecting the
impact of false alarm rate on NIDS

Embedded
method

PCA+EFC CICIDS2017 – 0.957 – Highly influenced by noise data

RFA ISCX2012 – 0.896 0.026 Redundancy in the selected subset of features

XGBoost UNSWNB15 19/43 0.908 – Due to the randomness of XGBoost, the calculation results of
feature importance will fluctuate to a certain extent

Wrapper
method

PSO NSLKDD 37/41 0.637 0.03 Only combining PSO, GA and ACO does not make any
improvementUNSWNB15 19/43 0.863 0.037

WOA CICIDS2017 – 0.959 – Combine genetic operators to improve the search space,
sacrificing the convergence speed

SPIO NSLKDD 18/41 0.817 0.064 No improvements to the PIO algorithm itself

UNSWNB15 14/43 0.897 0.052

CPIO NSLKDD 5/41 0.866 0.088 Only change the position mapping method of SPIO

UNSWNB15 5/43 0.894 0.034

CCIHBO NSLKDD – 0.971 – Introducing levy flight and LE-HBO, the algorithm complexity
is too highWUSTLIIOT – 0.976 –

OWSA NSLKDD – 0.9938 – Selecting parameters individually for each dataset increases the
complexity of the modelCICIDS2017 – 0.97 –

DBDE-QDA NSLKDD – 0.854 0.150 Excessive pursuit of reducing NIDS classification calculation
time leads to a decrease in detection rateUNSWNB15 – 0.768 0.057

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 5/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

sensitivity to abnormal data, combining PCA and EFS methods failed to achieve significant
accuracy levels. Hamed, Dara & Kremer (2018) introduced a feature selection method to
improve NIDS using recursive feature addition (RFA) and bipartite graph techniques.
However, RFA neglects the redundancy and correlation between features, resulting in
redundancy in the selected subset of features. Kasongo & Sun (2020) proposed integrating
XGBoost into NIDS for feature selection and analyzed its effectiveness on the UNSW-
NB15 dataset. According to XGBoost’s feature importance ranking, 19 out of 43 features
were identified as crucial. Using XGBoost’s feature selection method in binary
classification improved accuracy by 1.9%.

Wrapper feature selection method
Wrapper feature selection algorithm approaches feature selection as a search problem,
following a two-step process of identifying the most suitable feature set and assessing these
chosen features. This cycle continues iteratively until specific termination criteria are
satisfied. Tama, Comuzzi & Rhee (2019) introduced an enhanced NIDS that incorporates a
hybrid feature selection approach. The approach including the Ant Colony Algorithm,
particle swarm optimization, and the Genetic Algorithm to reduce feature size.
Additionally, they proposed a two-stage classifier with Rotating Forest and Bagging
methods. The model achieved an accuracy of 85.8% for the NSL-KDD dataset and 91.27%
for the UNSW-NB15 dataset. Vijayanand & Devaraj (2020) proposed an enhanced
methods that combines the Whale Optimization Algorithm (WOA) with genetic
algorithm operators to prevent the convergence to local optimal solutions. By broadening
the search space of the WOA, the approach aims to improve intrusion detection by
extracting valuable features from network data. Alazzam, Sharieh & Sabri (2020) proposed
two improved PIO algorithms, SPIO and CPIO. They conducted comparative
experimental assessments to measure accuracy and false alarm rates, aiming to increase
iteration speed without compromising precision. However, they did not make any
improvements to the fundamental swarm intelligence algorithm, which limited the
exploration of feature subsets. This constraint arises from the flock’s inclination towards a
greedy flight strategy that prioritizes superior positions exclusively. Ye et al. (2023)
proposed an enhanced Collaborative Evolutionary HBO (CCIHBO) algorithm, which
refines the conventional HBO method by incorporating Levy flight and Elite Opposition
Learning strategy (LE-HBO). This augmentation aims to enhance the algorithm’s efficacy
in optimising solutions, resulting in a notable enhancement of nearly 15% in performance
on extensive intrusion detection datasets like NSL-KDD, WUSTL-IIOT, and HAId.
Aldabash & Akay (2024) proposed the Optimal Whale Sine Algorithm (OWSA) for
selecting relevant features, leveraging the Sine Cosine Algorithm (SCA) optimization
process. They further proposed the fusion of SCA with the Whale Optimization Algorithm
(WOA) to address their respective limitations through hybridization. The experimental
findings indicate that when combined with the Artificial Neural Network Weighted
Random Forest (AWRF), the OWSA achieved an accuracy of 99.92% on the NSL-KDD
dataset and 98% on the CICIDS2017 dataset. Zorarpaci (2024) presented a rapid wrapper
feature selection technique, termed DBDE-QDA, which integrates two-class binary

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 6/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

differential evolution (DBDE) and quadratic discriminant analysis (QDA) to accelerate the
process of wrapper feature selection. This approach aims to swiftly identify the optimal
prediction features with minimal dimensions, thereby reducing the computational time
needed. The experimental results demonstrate that DBDE-QDA offers decreased
computational costs and effectively shortens the classification algorithm’s computational
time for network intrusion detection systems (NIDS). However, it may lead to a slight
reduction in the detection rate for certain intrusion detection dataset.

In conclusion, while existing feature selection algorithms have partially addressed the
challenges of intrusion detection systems (IDS) in 5G network environments, they still
suffer from issues such as excessive feature selection, disregard for feature correlations,
sensitivity to abnormal traffic, and difficulty in processing large-scale data. These
challenges can reduce the model’s generalisation ability, increase complexity, and decrease
stability, thereby affecting detection performance and efficiency. To address these
challenges, this article proposes a feature selection method based on an improved binary
pigeon swarm optimization algorithm. In comparison to existing methods, the proposed
approach incorporates mutation and simulated annealing mechanisms in the map and
compass operator stages. These modifications are designed to enhance population
diversity, expand the search space, and facilitate the acceptance of new solutions that are
worse than the current solution with a certain probability, thereby facilitating escape from
local optima. Furthermore, the proposed algorithm incorporates a population attenuation
factor in the landmark operator stage. This factor dynamically adjusts the population size
of each iteration based on the fitness distribution of the population, thus controlling the
algorithm’s convergence speed. The objective is to achieve improvements in key
performance indicators such as detection rate, false alarm rate, and processing time.

CONTINUOUS PIGEON INSPIRED OPTIMIZER
In 2014, Duan & Qiao (2014) researched pigeon behavior. They found that pigeons use
geomagnetic cues and landmarks to navigate, determine direction, and find their nests.
Based on these findings, the PIO algorithm was developed to imitate pigeons’ migration
behaviors and help find optimal solutions through communication and cooperation. The
algorithm includes the map and compass operator phase and the landmark operator phase.

Map and compass operator phase
The map and compass operator phase emulates how the sun and geomagnetic forces
influence pigeon navigation. Pigeons assess the sun’s position and geomagnetic cues to
make real-time adjustments to their flight direction and strategize optimal routes. As
pigeons approach their destination, they rely less on solar and geomagnetic guidance.
During this phase, each pigeon is characterized by its positional and velocity data.

The PIO algorithm defines Vt
i as the velocity of the (i)-th pigeon in the (t)-th iteration,

and Pt
i as its position. In each iteration, every pigeon adjusts its position Pt

i and velocity Vt
i

according to Eqs. (1) and (2) (Duan & Qiao, 2014):

Vt
i ¼ Vt�1

i e�Rt þ rand ðPglobal � Pt�1
i Þ (1)

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 7/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Pt
i ¼ Pt�1

i þ Vt�1
i (2)

In Eq. (1), R represents the map and compass operator, t denotes the current number of
iterations and the random function rand 2 ½0; 1�, Pglobal stands for the globally optimal
position obtained by comparing the positions of all pigeons in (t � 1)-th iteration.

Landmark operator phase
The landmark operator mimics how navigational landmarks affect pigeons. Pigeons have
the ability to rapidly store details about surrounding landmarks during navigation. As they
approach the target location, pigeons rely on nearby landmarks to construct a mental map
and fine-tune their position and speed in response to these landmarks until they reach the
intended destination. If a pigeon is unfamiliar with the local landmark, it will adjust its
flight based on the flight patterns of nearby pigeons that are familiar with the landmark.
During the iterative process of the landmark operator phase, pigeons are eliminated based
on their fitness disparity, removing the less adapted half of the pigeons. The central
position of the remaining, more adept pigeons is then computed as the reference direction
within the population. The position of the pigeon is updated at this phase based on Eqs.
(3)–(5) (Duan & Qiao, 2014).

Pt�1
center ¼

PNumt�1
pigeon

i¼1
Pt�1
i � Fitness ðPt�1

i Þ

Numt�1
pigeon �

PNumt�1
pigeon

i¼1
Fitness ðPt�1

i Þ
(3)

The iteration of the center position of the pigeon group can be denoted by Eq. (3), where

Numt
pigeon denotes the quantity of pigeon groups in the (t)-th iteration, t signifies the

present iteration number, and the fitness function Fitness adopts distinct valuation
methods for various issues. In instances where the aim is to minimize a problem, involving
the reciprocal, Pt�1

center represents the position of the pigeon center (desired destination) in
the (t � 1)-th iteration.

Numt
pigeon ¼

sort ðNumt�1
pigeonÞ

2
(4)

Among them, the sorting function sort represents sorting the pigeon group according to
adaptability. The iterative decay of the population can be described by Eq. (4).

Pt
i ¼ Pt�1

i þ rand ðPt�1
center � Pt�1

i Þ (5)

Equation (5) describes how the remaining flock adjusts its position relative to the center
position of the flock by incorporating the random function rand 2 ½0; 1�.

The PIO algorithm is logically coherent, easy to understand, robust, and has significant
research implications. The PIO algorithm has been shown to be effective in addressing
various challenges, including the unmanned aerial vehicle path planning dilemma

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 8/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

(Yuan & Duan, 2024), the security concerns associated with medical image encryption
(Geetha et al., 2022), and the optimization of large-scale hydroelectric short-term
generation (Tian et al., 2020). While the PIO algorithm exhibits superior performance
compared to other population intelligence algorithms, it still suffers from drawbacks such
as rapid convergence and a tendency to explore. To address the issue of rapid iteration and
susceptibility to local optima in the PIO algorithm, this study introduces mutation and
simulated annealing techniques to broaden the search scope. Additionally, a population
decay factor is suggested to regulate the algorithm’s convergence rate, thereby enhancing
its overall performance, diminishing feature selection data dimensionality, and boosting
the efficiency of intrusion detection.

PROPOSED IMPROVEMENT OF PIO
This article proposes a method to integrate the Simulated Annealing into the Binary PIO
(SABPIO) algorithm for feature selection in NIDS. The approach incorporates simulated
annealing and mutation into the conventional PIO algorithm, expanding the search scope
and mitigating the risk of local optima. Additionally, a population decay factor is
introduced to regulate the algorithm’s convergence speed. The proposed SABPIO feature
selection algorithm is shown in Fig. 1.

The proposed method generates the initial positions of the pigeons by utilizing
randomly chosen features from the dataset, establishing the initial population. Decision
tree (DT) and Random Forest (RF) classifiers are used to determine the search subject,
which is the position of the pigeon closest to the target. These classifiers evaluate the fitness
of each pigeon position within the population, and the positions of the remaining pigeons

Figure 1 Proposed SABPIO method. Full-size DOI: 10.7717/peerj-cs.2176/fig-1

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 9/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-1
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

are adjusted based on the optimal solution. Following this, the pigeon swarm undergoes
probabilistic positional adjustments utilizing simulated annealing. This mechanism aids in
steering clear of local optimal solutions and enhances solution diversity within the search
process. Finally, the population attenuation factor is used to decrease the pigeon
population, which improves the exploration of solutions within the search space. The
output of each iteration serves as the input for the following iterations until the optimal
feature subset is identified.

Pigeon encoding
The pigeon position symbolizes the potential selection for features, with a single pigeon
representing a particular feature subset. As shown in Fig. 2, the upper vector in the
encoding denotes the feature’s order number (dimension), while the lower vector indicates
the pigeon’s binary position within each dimension. The spatial dimension denoted by d
explored by the pigeon corresponds to the quantity of network features. In the binary
vector Pi ¼ ðpi1; pi2; …; pidÞ, when pij ¼ 1, it signifies that feature j within the feature
subset represented by pigeon i is chosen. Conversely, when pij ¼ 0, it indicates that feature
j in the feature subset represented by pigeon i is not selected, meaning it is excluded from
the optimal feature subset.

Fitness function
The Fitness Function evaluates the fitness of every individual. It is formulated considering
the individual’s traits and the specifications of the given problem, converting the individual
into a numerical value that reflects their suitability for problem-solving. Given that the two
metrics of true positive rate (TPR) and false negative rate (FPR) serve as effective gauges
for assessing the model’s efficacy in identifying attacks and managing false positives in
routine activities, a majority of researchers opt to employ TPR and FPR (Thakkar &
Lohiya, 2023) as the fitness criteria (Louk & Tama, 2023) in their calculations.

TPR ¼ TP
TP þ FN

(6)

FPR ¼ FP
TN þ FP

(7)

Equations (6) and (7) provide the calculation formulas for TPR and FPR. In the feature
selection problem of a NIDS, TP refers to the system identifying abnormal traffic as attack
events, and TN refers to the system identifying normal traffic as non-attack events. FP
refers to the system identifying correct traffic as an attack event, and FN refers to the
system identifying abnormal traffic as a non-attack event. The SABPIO algorithm
incorporates the ratio of selected features into the fitness function to account for their
potential impact on intrusion detection time. This adjustment aims to eliminate features

Figure 2 Location encoding for pigeon. Full-size DOI: 10.7717/peerj-cs.2176/fig-2

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 10/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-2
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

within the subset that do not significantly contribute to detection accuracy. The present
study also introduces a fitness function formula, shown in Eq. (8), which reframes the
optimization of feature selection as a minimization task.

Fitness ¼ 1þ k � NumSF

TPRþ 1� FPR
(8)

where NumSF denotes the number of selected features, k is the weighting factor and
k 2 ð0; 1Þ. In Eq. (8), the numerator considers the impact of the selected feature quantity
on adaptability, while the denominator accounts for the NIDS performance’s influence on
adaptability. Through the Fitness Function, the SABPIO algorithm strikes a balance
between feature quantity and classification performance, effectively enhancing
classification efficiency while ensuring the accuracy of NIDS detection.

Binary mapping strategy
The continuous pigeon-inspired optimizer (CPIO) algorithm involves a process of
continual spatial repositioning for the pigeon, enabling it to traverse any point within
space. However, in certain discrete scenarios such as feature selection, the pigeon’s
position, representing a solution matrix, consists of binary values of 0 and 1. Therefore,
updating continuous values requires the application of appropriate position adjustment
techniques in addition to discretization operations.

In the context of feature selection, the pigeon’s position within each dimension of the
search space is constrained to 0 or 1. However, the velocity associated with each dimension
is not subject to such limitations. Therefore, the integration of a conversion function
becomes essential to effectively map the position variables onto binary values. After
conducting experimental analysis, we selected the Tanh function to map pigeon velocities
into the binary space. The Tanh function formula (Sood et al., 2023) is shown in Eq. (9),
and the positions of the individual pigeon flocks are updated using a uniform random
number r 2 ð0; 1Þ, with the Tanh value through Eq. (10) in this article.

TanhðxÞ ¼ 2
1� e�2x

� 1 (9)

Pt
i ½ j� ¼

Pt�1
i ½ j� Tanh ðVt

i ½ j�Þ > r
�Pt�1

i ½ j� Tanh ðVt
i ½ j�Þ <� r

Pt�1
global½ j� otherwise

8><
>: (10)

The individual pigeon’s position is updated according to Eq. (10). In this process, for
each dimension of the position, the velocity is evaluated against a randomly generated
number r and the current dimension’s pigeon velocity. In instances where the mapping
value Tanh ðVt

i ½ j�Þ > r in the ongoing velocity iteration, there is a strong positive
correlation between velocity and position, the position from the previous iteration in the
current dimension is preserved. If Tanh ðVt

i ½ j�Þ <� r, there is a strong negative correlation
between velocity and position, a reverse operation is applied to the position from the prior
iteration in the current dimension. In all other scenarios where there is a weak correlation

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 11/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

between velocity and position, the optimal position value from the previous iteration is
directly utilized.

Improved map and compass operator phase
(1) Simulated annealing

To tackle the issue of rapid convergence observed in conventional PIO algorithms, the
proposed approach introduces a simulated annealing mechanism during this phase to
prevent premature trapping in local optimal solutions. In the map and compass operator
phase, each iteration of the pigeon undergoes adjustments to both velocity and position.
The influence of the map and compass operators R on the population decreases as the
algorithm approaches later stages of iteration. At this point, the algorithm relies mainly on
the current globally optimal position Pglobal.

This approach integrates simulated annealing to enhance the inner loop with each
iteration. During the loop, a random pigeon undergoes perturbation, resulting in the
modification of one value in the vector, such as changing a 1-value to a 0-value. Then, the
fitness is recalculated, and a new feature subset is accepted based on the probability
determined by the Metropolis criterion (Hao et al., 2023). The purpose of this criterion is
to determine whether to accept a new state based on the change in energy value before and
after the state modification. The study employs the Metropolis criterion outlined in Eq.
(11):

pðPglobal) Pi
0Þ ¼

1DE < 0

e�
DE
T otherwise

(
(11)

where pðPglobal) Pi0Þ represents the probability of accepting the new solution Pi0, while
DE represents the energy difference, denoted as Fitness ðP0

iÞ � Fitness ðPglobalÞ in this

context. In this article, the fitness is transformed into a minimization problem. If the fitness
of the new solution Pi0 is lower than the fitness of the globally optimal solution Pglobal,
implies that the feature subset represented by the new solution Pi0 is superior to the
globally optimal solution Pglobal, Pi0 is accepted as the current globally optimal solution
with a probability of 1. Conversely, the probability p ðPglobal) Pi0Þ is used to determine
whether the new solution should be accepted.

(2) Multi-dimensional similarity strategy
During the map and compass operator phase, the white pigeon adjusts its flight position

by tracking the position of the best pigeon (blue pigeon), as shown in Fig. 3.
Instead, the pigeon computes its velocity by subtracting its own position vector from the

global optimal vector. In a discrete problem, it is not feasible to directly subtract the
pigeon’s position vector as done in the continuous problem due to the nature of discrete
variables. This article introduces a multi-dimensional similarity strategy for computing
pigeon velocities. The strategy includes metrics such as Pearson correlation coefficient
(Saviour & Samiappan, 2023), cosine similarity (Alazzam, Sharieh & Sabri, 2020), and
Jaccard similarity coefficient (Yin et al., 2023), as shown in Eqs. (12)–(14). All three
similarity indicators have limitations. To balance these limitations, this article employs

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 12/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

weighted calculations to avoid relying on a single indicator. In this phase, each pigeon
updates its velocity and position for this iteration based on Eqs. (15) and (10).

Pearson ðPi;PglobalÞ ¼
cov ðPi; PglobalÞffi

var ðPiÞ � var ðPglobalÞ
p (12)

Consine ðPi;PglobalÞ ¼ Pi � Pglobal
jjPijj � jjPglobaljj (13)

Jaccard ðPi;PglobalÞ ¼ jPi \ Pglobalj
jPi [Pglobalj (14)

Vi ¼ CompositeSim ðPi;PglobalÞ
¼ x1 Pearson ðPi; PglobalÞ þ x2 Consine ðPi;PglobalÞ þ x3 ½2 Jaccard ðPi; PglobalÞ � 1�

(15)

Equation (15) requires normalizing Jaccard’s correlation coefficient to the range of [−1,
1], given that Pearson’s correlation coefficient and Cosine similarity have a value range of
[−1, 1], and Jaccard’s similarity coefficient ranges from [0, 1]. In this, x1, x2 and x3

represent the weighting coefficients of Pearson’s correlation coefficient, cosine similarity,
and Jaccard’s similarity coefficient, respectively, with x1 þ x2 þ x3 ¼ 1.

(3) Mechanism of mutation
When the initial number of pigeon flocks is high, there is a greater chance that two

pigeons will represent the same solution, which will reduce the search ability of the
algorithm. Therefore, this approach includes a mutation mechanism in the flock’s position
updates. It checks for the existence of a solution with a similar position before adding the
updated pigeon to the flock. If such a solution is found, all dimensions of the current

Figure 3 White pigeons adjusts its flight position according to the map and the compass operator.
The silhouette of the flying pigeon in the image is sourced from (freeimages.com) (https://www.
freeimages.com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq).

Full-size DOI: 10.7717/peerj-cs.2176/fig-3

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 13/32

https://freeimages.com
https://www.freeimages.com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq
https://www.freeimages.com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq
http://dx.doi.org/10.7717/peerj-cs.2176/fig-3
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

pigeon undergo mutation based on the probability derived from a uniformly distributed
random number r 2 ½0; 1�, which expands the search space.

Improved landmark operator phase
During each iteration of the landmark operator phase, the pigeons are sorted based on
their fitness values. Then, half of the pigeons with lower fitness values are eliminated. The
current center position of the remaining dominant breeder flock is considered the desired
destination of the flock. The remaining flock adjusts its flight position towards the position
of the desired destination, also known as the Blue Pigeon, as shown in Fig. 4.

The population decay factor a was proposed to regulate the decay rate of the population,
as the traditional pigeonholing algorithm tends to converge too quickly and fall into local
optimal solutions during the landmark operator phase.

a ¼ b � e�
t

log2 Numpigeon (16)

Numt
pigeon ¼ a � sort ðNumt�1

pigeonÞ (17)

Equation (16) defines b as a constant between (0, 1), and t as the number of iterations of
the landmark operator. The SABPIO algorithm improves the traditional pigeon colony
algorithm by halving it with the number of iterations and updating the population size
according to Eq. (17), thus prevent rapid population decay in the early stage. During the
map and compass operator phase, all pigeons calculate their speed and position using Eqs.
(15) and (10).

Algorithm 1 outlines the procedure for the feature selection algorithm SABPIO, which
is based on an improved binary PIO framework. The upgraded algorithm introduces a
simulated annealing loop within the initial phase of the main iteration loop to extend the

Figure 4 Elimination of red pigeon by adaptation calculation, green pigeon flying towards desired
destination (blue pigeon). Silhouette of flying pigeon from (freeimages.com) (https://www.freeimages.
com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq).

Full-size DOI: 10.7717/peerj-cs.2176/fig-4

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 14/32

https://freeimages.com
https://www.freeimages.com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq
https://www.freeimages.com/cn/vector/flying-dove-clip-art-4757856?ref=vectorhq
http://dx.doi.org/10.7717/peerj-cs.2176/fig-4
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

exploration of the global search space. Additionally, the secondary while loop uses a
population decay factor to regulate the pace of population reduction and mitigate
premature convergence of the algorithm.

EXPERIMENTS AND RESULTS
Experimental dataset
(1) UNSW-NB15 dataset

The UNSW-NB15 dataset represents network traffic data collected by a cybersecurity
research laboratory in Australia utilizing the IXIA Perfect Storm tool. It comprises four
CSV files encompassing 254,047 data entries, featuring nine attack classifications, 43
descriptive attributes, and two classification labels for each entry. The detailed feature
attributes of this dataset are outlined in Table 2.

(2) NSL-KDD dataset
The NSL-KDD dataset serves as an updated iteration of the renowned KDD99 dataset,

comprising 148,517 entries. Each entry is composed of 41 descriptive attributes and one
class label, encompassing a total of 39 attack classifications. Within the training set, there

Algorithm 1 Simulated Annealing Binary Pigeon Inspired Optimizer (SABPIO).

Input: Number of pigeons Numpigeon, Number of iterations Numt , Fitness function Fitness, Number of
annealing iterations Numat

Output: Global optimal solution Pglobal

01: Randomly initialize velocity Vi and position Pi of all pigeons

02: for t = 1 to Numt do // Map and compass operator phase

03: Update velocity Vt
i and position Pt

i for each pigeon by Eqs. (15) and (10)

04: Check for duplicate items at each pigeon’s position ½P1; P2……::; PNumpigeon
�

05: Calculate fitness Fitness Pið Þ of each pigeon’s position ½P1; P2……::;PNumpigeon
�

06: Find global optimal solution Pglobal ¼ minfFitnessðPiÞ j i 2 ½0; Numpigeon�g
07: Update global optimal solution Pglobal

08: for t = 1 to Numt do

09: Randomly perturbed individuals P0
i and calculate fitness FitnessðP0

iÞ
10: Accept the new global optimal solution by Eq. (11)

11: end for

12: end for

13: while (Numpigeon � 1) // Landmark operator phase

14: Update center position of all pigeons Pcenter by Eq. (3)

15: Update number of pigeons Numpigeon by Eq. (17)

16: Update velocity Vt
i and position Pt

i for each pigeon by Eqs. (15) and (10)

17: Update global optimal solution Pglobal

18: end while

19: return Pglobal

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 15/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

are 125,973 data points encompassing 22 distinct attack types, while the test set consists of
22,544 entries featuring a further 17 attack categories. The defining attributes within this
dataset are detailed in Table 3.

(3) CIC-IDS-2017 dataset
The CIC-IDS-2017 dataset encompasses network traffic data gathered by the Canadian

Institute of Cybersecurity (CIC) from authentic network scenarios. This dataset is
constructed using actual network traffic captures, encompassing a broad spectrum of
network intrusions and regular activities. It comprises real network traffic observed across
various laboratory network environments designed to replicate the network traits found in
commercial and industrial entities. The CIC-IDS-2017 dataset encompasses a diverse array
of network intrusion behaviors and standard network operations. It aligns with the traits of
contemporary networks and stands as one of the presently recommended datasets.
Featuring 2,830,743 records, each entry comprises 78 defining attributes and one class
label, covering a total of eight attack classifications. The detailed characteristics of the
dataset are presented in Table 4.

Table 2 UNSW-NB15 dataset features and types.

No Feature Type No Feature Type

1 id Integer 24 dwin Integer

2 dur Float 25 tcprtt Float

3 proto Nominal 26 synack Float

4 service Nominal 27 ackdat Float

5 state Nominal 28 smean Integer

6 spkts Integer 29 dmean Integer

7 dpkts Integer 30 trans_depth Integer

8 sbytes Integer 31 response_body_len Integer

9 dbytes Integer 32 ct_srv_src Integer

10 rate Float 33 ct_state_ttl Integer

11 sttl Integer 34 ct_dst_ltm Integer

12 dttl Integer 35 ct_src_dport_ltm Integer

13 sload Float 36 ct_dst_sport_ltm Integer

14 dload Float 37 ct_dst_src_ltm Integer

15 sloss Integer 38 is_ftp_login Binary

16 dloss Integer 39 ct_ftp_cmd Integer

17 sinpkt Float 40 ct_flw_http_mthd Integer

18 dinpkt Float 41 ct_src_ltm Integer

19 sjit Float 42 ct_srv_dst Integer

20 djit Float 43 is_sm_ips_ports Binary

21 swin Integer 44 attack_cat Nominal

22 stcpb Integer 45 label Binary

23 dtcpb Integer

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 16/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Table 3 NSL-KDD dataset features and types.

No Feature Type No Feature Type

1 duration Float 22 is_guest_login Integer

2 protocol_type Integer 23 count Float

3 service Integer 24 srv_count Float

4 flag Integer 25 serror_rate Float

5 src_bytes Float 26 srv_serror_rate Float

6 dst_bytes Float 27 rerror_rate Float

7 land Integer 28 srv_rerror_rate Float

8 wrong_fragment Float 29 same_srv_rate Float

9 urgent Float 30 diff_srv_rate Float

10 hot Float 31 srv_diff_host_rate Float

11 num_failed_logins Float 32 dst_host_count Float

12 logged_in Float 33 dst_host_srv_count Float

13 num_compromised float 34 dst_host_same_srv_rate Float

14 root_shell Float 35 dst_host_diff_srv_rate Float

15 su_attempted Float 36 dst_host_same_src_port_rate Float

16 num_root Float 37 dst_host_srv_diff_host_rate Float

17 num_file_creations Float 38 dst_host_serror_rate Float

18 num_shells Float 39 dst_host_srv_serror_rate Float

19 num_access_files Float 40 dst_host_rerror_rate Float

20 num_outbound_cmds Float 41 dst_host_srv_rerror_rate Float

21 is_host_login Integer 42 Class Integer

Table 4 CIC-IDS-2017 dataset features and types.

No Feature Type No Feature Type No Feature Type

1 Destination port Integer 28 Bwd IAT std Float 55 Avg bwd segment size Float

2 Flow duration Integer 29 Bwd IAT max Integer 56 Fwd header length Integer

3 Total fwd packets Integer 30 Bwd IAT min Integer 57 Fwd avg bytes/bulk Float

4 Total backward packets Integer 31 Fwd PSH flags Integer 58 Fwd avg packets/bulk Float

5 Total length of fwd packets Integer 32 Bwd PSH flags Integer 59 Fwd avg bulk rate Float

6 Total length of bwd packets Integer 33 Fwd URG flags Integer 60 Bwd avg bytes/bulk Float

7 Fwd packet length max Integer 34 Bwd URG flags Integer 61 Bwd avg packets/bulk Float

8 Fwd packet length min Integer 35 Fwd header length Integer 62 Bwd avg bulk rate Float

9 Fwd packet length mean Float 36 Bwd header length Integer 63 Subflow fwd packets Integer

10 Fwd packet length std Float 37 Fwd packets/s Float 64 Subflow fwd bytes Integer

11 Bwd packet length max Integer 38 Bwd packets/s Float 65 Subflow bwd packets Integer

12 Bwd packet length min Integer 39 Min packet length Integer 66 Subflow bwd bytes Integer

13 Bwd packet length mean Float 40 Max packet length Integer 67 Init_Win_bytes_forward Integer

14 Bwd packet length std Float 41 Packet length mean Float 68 Init_Win_bytes_backward Integer

15 Flow bytes/s Float 42 Packet length Std Float 69 Act_data_pkt_fwd Integer

16 Flow packets/s Float 43 Packet length variance Float 70 Min_seg_size_forward Integer

(Continued)

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 17/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

(4) Data preprocessing
1) Data conversion
During the algorithm’s execution, solely numerical data is utilized for training and

testing purposes. Hence, the initial step involves transforming non-numeric data within
the dataset into numerical format. Taking the UNSW-NB15 dataset as a case in point, out
of the 45 descriptive attributes, three are non-numeric and necessitate conversion via one-
hot encoding. For instance, consider the “proto” attribute containing 133 distinct values
such as “tcp,” “udp,” and “sctp.” These values are encoded into numerical representations
ranging from 0 to 132. Subsequently, the “service” and “state” attributes undergo a similar
transformation into numerical format utilizing the aforementioned method.

2) Normalized
Normalization is a crucial data preprocessing technique that facilitates the comparison

and analysis of data by standardizing data with varying scales and distributions onto a
uniform scale (Devendiran & Turukmane, 2024). This process enhances the accuracy and
efficiency of data analysis and machine learning algorithms while mitigating biases
stemming from variations across different variables. The normalization formula, as
illustrated in Eq. (18), plays a pivotal role in this standardization process.

xnorm ¼ x � xmin

xmax � xmin
(18)

where xmax is the maximum of the eigenvalues, xmin is the minimum of the eigenvalues and
xnorm is the output value which is between [0, 1].

Evaluation indicators
Multiple metrics are available for evaluating feature selection algorithms. In this study, we
use evaluation metrics derived from the confusion matrix, including detection rate (DR),
false alarm rate (FAR), Accuracy (Acc), Precision (Pre), and F1-score (Thakkar & Lohiya,
2023), as shown in Eqs. (19)–(23). Table 5 shows the confusion matrix.

Table 4 (continued)

No Feature Type No Feature Type No Feature Type

17 Flow IAT mean Float 44 FIN flag count Integer 71 Active mean Float

18 Flow IAT std Float 45 SYN flag count Integer 72 Active std Float

19 Flow IAT max Integer 46 RST flag count Integer 73 Active max Integer

20 Flow IAT min Integer 47 PSH flag count Integer 74 Active min Integer

21 Fwd IAT total Integer 48 ACK flag count Integer 75 Idle mean Float

22 Fwd IAT mean Float 49 URG flag count Integer 76 Idle std Float

23 Fwd IAT std Float 50 CWE flag count Integer 77 Idle max Integer

24 Fwd IAT max Integer 51 ECE flag count Integer 78 Idle min Integer

25 Fwd IAT min Integer 52 Down/up ratio Integer 79 Label Binary

26 Bwd IAT total Integer 53 Average packet size Float

27 Bwd IAT mean Float 54 Avg fwd segment size Float

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 18/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

(1) Detection rate (DR)
The detection rate, also known as the true positive rate (TPR), signifies the capacity to

accurately recognize all true positive samples. It represents the proportion of positive
samples correctly identified by the model. In the realm of network intrusion detection, it
signifies the percentage of intrusion events effectively identified by the model. A
heightened detection rate implies the model’s enhanced ability to accurately identify
potential intrusions.

DR ¼ TPR ¼ TP
TP þ FN

(19)

(2) False alarm rate (FAR)
The false alarm rate, denoted as the false positive rate (FPR), represents the ratio of

negative samples that the model inaccurately identifies as positive samples. In the context
of network intrusion detection, it signifies the percentage of normal behaviors erroneously
identified as intrusions by the model. A diminished FPR indicates the model’s efficacy in
minimizing false alarms.

FAR ¼ FPR ¼ FP
FP þ TN

(20)

(3) Accuracy
Accuracy refers to the proportion of correctly predicted samples by the model, serving

as a measure of the model’s overall predictive precision.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(21)

(4) Precision
Precision is the ratio of correctly identified positive samples by the model. In the context

of network intrusion detection, it reflects the accuracy of the model in identifying all
samples flagged as intrusions. Enhanced precision indicates greater reliability of the model
in reporting alarms and a reduced occurrence of false alarms.

Precision ¼ TP
TP þ FP

(22)

Table 5 Confusion matrix.

Predicted

Positive Negative

Actual Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 19/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

(5) F1-score
F1-score is a measure that assesses the balance between precision and recall while taking

into account the model’s accuracy and comprehensiveness. It is calculated as the harmonic
average of precision and recall.

F1� Score ¼ 2 � Pre � DR
Preþ DR

¼ 2 � TP
2 � TP þ FP þ FN

(23)

Experimental results
In this study, we conducted experiments to evaluate the proposed approach utilizing
Python 3.11.2 on 64-bit Windows 11 operating system. The experiments were carried out
on Intel(R) Core (TM) i5-11400H processor with 16.00 GB of RAM. All feature selection
algorithms were assessed using the decision tree (DT) classifier and Random Forest (RF)
classifier from the scikit-learn library for evaluation purposes. Compared to alternative
base classifiers, DT and RF are less sensitive to missing values and more robust against
outliers and noise. This makes them well-suited for assessing feature selection issues.

Table 6 delineates the parameter configurations of the SABPIO algorithm. Through
rigorous experimental analysis, we found that the performance of the algorithm is optimal
when the number of individuals in the pigeon swarm is within the range of [80, 150].
Consequently, we set the number of pigeons to 128. It’s important to note that while a
larger number of pigeons allows for a broader exploration of the search space, it also
increases computational complexity. In the inner loop of the annealing iterations, only the
new solution and the current local optimal solution are compared. As such, the number of
iterations has a minimal impact on time complexity. Therefore, we set the number of
iterations in the simulated annealing inner loop to 100. In the calculation of the fitness
function, we considered the number of feature selections. If the weight factor is too large,
the pigeon swarm may overly pursue feature subsets with fewer elements rather than
optimal feature subsets. To prevent the fitness calculation from ignoring the impact of TPR
and FPR, we set the weight factor of the number of feature selections to 0.0075.

The conducted experiments were based on preprocessed datasets comprising UNSW-
NB15 (Moustafa & Slay, 2015), NSL-KDD (Tavallaee et al., 2009) and CIC-IDS-2017
(Sharafaldin, Lashkari & Ghorbani, 2018). The datasets were partitioned into training and
testing sets using the train_test_split function from the scikit-learn library, with the stratify
parameter ensuring stratified sampling based on the labels. The ratio of the training set to
the testing set was 0.8 and 0.2, respectively. These experiments underwent 100 iterations
employing the recommended feature selection methodology to pinpoint a compact feature
set, with subsequent averaging of outcomes. The effectiveness of the suggested feature
selection approach was appraised through juxtaposition with recognized feature selection
techniques like CPIO (Alazzam, Sharieh & Sabri, 2020), SPIO (Alazzam, Sharieh & Sabri,
2020), XGBoost (Kasongo & Sun, 2020), PSO (Tama, Comuzzi & Rhee, 2019), ARM
(Moustafa & Slay, 2017), IG (Aljawarneh, Aldwairi & Yassein, 2018), WOA (Vijayanand
& Devaraj, 2020), and AdaBoost+EFS (Yulianto, Sukarno & Suwastika, 2019).

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 20/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

(1) Results of UNSW-NB15
The performance, convergence, and efficiency of SABPIO were compared to those of

CPIO, SPIO, XGBoost, PSO, and ARM algorithms using the UNSW-NB15 dataset.
Figure 5 shows the convergence curves of SABPIO, CPIO, SPIO, and PSO during the
feature selection process under the random forest classifier. In “Proposed Improvement of
PIO” of the article, fitness is defined as a minimization problem. The data suggests that
SABPIO converges faster than SPIO and PSO algorithms and achieves better fitness values
with each iteration compared to CPIO, SPIO, and PSO algorithms.

In Fig. 5, it is evident that the SABPIO algorithm exhibits the swiftest rate of adaptation
decay within the initial 30 iterations. Conversely, the SPIO algorithm showcases a rapid
decay rate within the first 10 iterations; however, subsequent iterations reveal that the
SPIO algorithm becomes ensnared in a locally optimal solution, impeding the exploration
for a superior solution. By the 50th iteration, the SABPIO algorithm embraces a
suboptimal solution based on the Metropolis criterion probability, resulting in a slight
fitness increase. By the time all algorithms reach convergence at 100 iterations, it is
apparent that the solution derived by SABPIO demonstrates reduced adaptation. The

Table 6 Detailed parameters of SABPIO.

Parameters Value

Number of pigeons Numpigeon 128

Number of iterations Numt 100

Number of annealing iterations Numat 100

Weighting factor of Pearson x1 0.4

Weighting factor of Cosine x2 0.4

Weighting factor of Jaccard x3 0.2

Weighting factor of number of selections k 0.0075

Weighting factor of attenuation factor b 0.8

Figure 5 Convergence curve on the UNSW-NB15 dataset by RF.
Full-size DOI: 10.7717/peerj-cs.2176/fig-5

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 21/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-5
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

experimental findings affirm that SABPIO boasts enhanced convergence efficiency
compared to SPIO and PSO, along with greater efficacy in the selected feature subset than
CPIO, SPIO, and PSO.

In Fig. 6, the detection rate (DR) and false alarm rate (FAR) of the SABPIO algorithm,
assessed on DT and RF classifiers with a subset of features selected by other algorithms, are
presented. Each bar in the figure represents the results and standard deviation obtained
from 100 repeated runs of the feature subset selected by the algorithm in the DT and RF
classifiers. In Fig. 6A, it is observed that SPIO achieves the highest DR among the DT
classifiers, slightly surpassing the performance of the SABPIO algorithm. However, it is
crucial to acknowledge that DR is not the sole metric utilized in this study for evaluating
the feature subset in network intrusion detection. Moving on to Fig. 6B, SABPIO exhibits a
2% lower FAR compared to SPIO, while only experiencing a marginal 0.2% reduction in
DR. In comparison to CPIO, XGBoost, PSO, and ARM algorithms, the proposed SABPIO
algorithm demonstrates advantages in both DR and FAR. Notably, the ARM algorithm
prioritizes a high detection rate as the optimization objective, neglecting the impact of the
false alarm rate on NIDS, thereby resulting in an elevated false alarm rate within this
dataset. Within the RF classifiers, SABPIO showcases more significant improvements than
other algorithms. The mean performance of the proposed algorithm across 100 repeated
experiments surpasses that of other algorithms, with the standard deviation consistently
maintained at a low level.

Figure 7 displays the accuracy and precision test results for the six algorithms on
UNSW-NB15. Each bar represents the result and standard deviation obtained from 100
repeated runs of the feature subset selected by the algorithm using the DT and RF
classifiers. The experimental results show that the SABPIO algorithm improves the
accuracy rate by 0.12% to 4.89% and the precision rate by 0.19% to 5.98% compared to

Figure 6 (A and B) DR and FAR on the UNSW-NB15 dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-6

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 22/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-6
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

other algorithms, for an equivalent number of iterations. It is important to consider both
accuracy and precision rates, as well as other relevant indicators. The PSO and ARM
algorithms are highly accurate but have low precision, indicating a higher likelihood of
false predictions in samples identified as cyber-attacks. This tendency often leads to higher
misclassification rates within the models, resulting in more instances of misclassifying
normal traffic as attacks.

Figure 8 shows the mean and standard deviation of the F1-Score from 100 repeated
experimental tests for the feature subsets selected by the SABPIO algorithm and other
algorithms using the DT and RF classifiers. The results indicate that the F1-score achieved
by SABPIO is 0.920 in the DT classifier and 0.927 in the RF classifier, demonstrating
superior performance compared to the other five algorithms. Furthermore, the lower

Figure 7 (A and B) Accuracy and precision on the UNSW-NB15 dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-7

Figure 8 F1-score on UNSW-NB15 dataset by DT and RF.
Full-size DOI: 10.7717/peerj-cs.2176/fig-8

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 23/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-7
http://dx.doi.org/10.7717/peerj-cs.2176/fig-8
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

standard deviation highlights the improved performance of the SABPIO algorithm,
indicating better consistency and stability. The selected feature subset demonstrates
superior feature representation capabilities and heightened performance stability.

Figure 9 shows a comparison of training and testing times before and after feature
selection for different feature subsets selected by various feature selection algorithms on
UNSWNB15. The results demonstrate that the number and quality of features have a
significant impact on the model’s training and testing time. The SABPIO feature selection
algorithm can significantly reduce model training time and improve efficiency without
compromising detection results. The experiment evaluated the training time using the RF
classifier. The training time of the RF classifier before feature selection was 1.21 s. After
SABPIO feature selection, the training time reduced to 0.29 s, which is about 3.2 times
faster than using all the features. Additionally, the testing time decreased from 0.096 to
0.068 s.

(2) Results of NSL-KDD
The NSL-KDD dataset was utilized to evaluate the detection performance of various

algorithms including SABPIO, CPIO, SPIO, IG, PSO, and ARM. Figure 10 illustrates the
DR and FAR of 100 repeated tests on DT and RF classifiers using the SABPIO algorithm
and the feature subset selected by the recent feature algorithm. As shown in Fig. 10A,
SABPIO outperforms the other DT classifiers with a DR of 90.2% (±1.3%), which is an
improvement of approximately 3.6% compared to the next best CPIO. In Fig. 10B, the
SABPIO algorithm prioritizes the balance of DR and FAR. Although the FAR is slightly
higher compared to other algorithms such as SPIO, IG, PSO, and ARM, it still has a
significant difference with the proposed algorithms in terms of DR. Similar to the DT
classifier experiments, the RF classifier using the SABPIO algorithm showed significantly
better DR means than the other algorithms in 100 repetitions, with slightly higher FAR.
The proposed algorithm also maintained a low standard deviation, demonstrating the
robustness and interpretability of the selected feature subset.

Figure 9 Training and testing time and number of select features on the UNSW-NB15 dataset by RF.
Full-size DOI: 10.7717/peerj-cs.2176/fig-9

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 24/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-9
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Figure 11 displays the results of 100 repeated experiments on NSL-KDD for the feature
subsets selected by six feature selection algorithms. The experimental results indicate that
the SABPIO algorithm outperforms the other five algorithms in terms of accuracy and
precision, achieving 90.6% (±0.7%) and 91.5% (±0.6%) respectively, under the same
number of iterations, whether using a DT classifier or an RF classifier. The accuracy of the
other algorithms was 87.6% (±1.4%) and 83.2% (±1.2%).

Figure 12 displays the mean and standard deviation of the F1-Score from 100 repeated
experimental tests on the DT and RF classifiers for the feature subsets selected by the

Figure 10 (A and B) DR and FAR on the NSL-KDD dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-10

Figure 11 (A and B) Accuracy and precision on the NSL-KDD dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-11

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 25/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-10
http://dx.doi.org/10.7717/peerj-cs.2176/fig-11
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

SABPIO algorithm and other algorithms in the NSL-KDD dataset. The experimental
results indicate that the F1-Score of SABPIO reaches 0.887 in the DT classifier and 0.904 in
the RF classifier. SABPIO outperforms the other five algorithms with the best performance
and a lower standard deviation.

(3) Results of CIC-IDS-2017
We selected a random sample of 20% of the data in the CIC-IDS-2017 dataset for

experiments and tested the detection performance of SABPIO with CPIO, SPIO,
AdaBoost+EFS, IG, and WOA algorithms. Figure 13 displays the DR and FAR of 100
repeated trial tests on DT and RF classifiers using the feature subset selected by the
SABPIO algorithm and the remaining five feature algorithms. Figure 13A shows that
SABPIO achieves higher DR than other feature selection algorithms, with 99.892% and

Figure 12 F1-score on the NSL-KDD dataset by DT and RF.
Full-size DOI: 10.7717/peerj-cs.2176/fig-12

Figure 13 (A and B) DR and FAR on the CIC-IDS-2017 dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-13

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 26/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-12
http://dx.doi.org/10.7717/peerj-cs.2176/fig-13
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

99.897% in DT and RF classifiers, respectively. It is important to note that all evaluations
are objective and based on empirical evidence. Figure 13B indicates that SABPIO is at the
optimal level of FAR in both classifiers, except for a slightly higher FAR in the DT classifier
compared to the IG algorithm.

Figure 14 displays the accuracy and precision test results of the feature subset selected by
six feature selection algorithms on 20% of CIC-IDS-2017, repeated 100 times. The
experimental results indicate that, under the same number of iterations, the SABPIO
algorithm outperforms the other five algorithms in terms of accuracy and precision for
both DT and RF classifiers, achieving 99.72%, 99.80%, and 99.38%, respectively, with an
overall accuracy of 99.44%.

Figure 15 displays the mean and standard deviation of the F1-score from 100 repeated
experimental tests on DT and RF classifiers for the feature subsets selected by the SABPIO

Figure 14 (A and B) Accuracy and precision on the CIC-IDS-2017 dataset by DT and RF. Full-size DOI: 10.7717/peerj-cs.2176/fig-14

Figure 15 F1-score on the CIC-IDS-2017 dataset by DT and RF.
Full-size DOI: 10.7717/peerj-cs.2176/fig-15

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 27/32

http://dx.doi.org/10.7717/peerj-cs.2176/fig-14
http://dx.doi.org/10.7717/peerj-cs.2176/fig-15
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

algorithm and other algorithms in 20% of the CIC-IDS-2017 dataset. The experimental
results indicate that the F1-score of SABPIO reaches 0.996 in the DT classifier and 0.998 in
the RF classifier, demonstrating superior performance and lower standard deviation
compared to the other five algorithms.

CONCLUSION
Network intrusion detection detects attacks by monitoring traffic. However, the large
volume and high dimensionality of network data pose challenges to intrusion detection.
Redundant and irrelevant features seriously affect detection performance. To address
these, by incorporating mutation and simulated annealing into the map and compass
operator, as well as introducing a population decay factor in the landmark operator phase.
Experimental results indicate that the SABPIO algorithm effectively improves the
detection rate and reduces false alarms, as well as training time.

However, it should be noted that SABPIO is subject to limitations that depend on the
quality and completeness of the data. In the event that there are a significant number of
missing or outlier values in the dataset, SABPIO may not be able to achieve optimal
performance. In our future work, we will investigate how to improve the SABPIO
algorithm to handle incomplete data. Meanwhile, the number of network attack samples
and normal traffic samples is unbalanced in the actual network environment, so in further
research, we will consider the impact of sample distribution imbalance on the feature
selection algorithm.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the China Higher Education Institution Industry-University-
Research Innovation Fund (Nos. 2021FNB03001 and 2022IT020), the Stabilization
Support Program of The Shenzhen Science and Technology Innovation Commission (No.
20231130110921001), and the Key Scientific Research Project of Higher Education
Institutions of Henan Province (No. 24A520042). There was no additional external
funding received for this study. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
China Higher Education Institution Industry-University-Research Innovation Fun:
2021FNB03001 and 2022IT020.
The Shenzhen Science and Technology Innovation Commission: 20231130110921001.
Higher Education Institutions of Henan Province: 24A520042.

Competing Interests
Xiaohui Zhang is employed by Henan Xinda Wangyu Technology Co. Ltd.

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 28/32

http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Author Contributions
. Wanwei Huang conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

. Haobin Tian conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Sunan Wang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

. Chaoqin Zhang analyzed the data, prepared figures and/or tables, and approved the final
draft.

. Xiaohui Zhang performed the experiments, performed the computation work, prepared
figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available in the Supplemental File.
The intrusion detection datasets UNSW-NB15, NSL-KDD and CICIDS2017 that were

used in this study are available at, respectively:
- UNSW-NB15: https://research.unsw.edu.au/projects/unsw-nb15-dataset. Compiled

by the Cyber Range Lab of the Australian Centre for Cyber Security, this dataset is
intended for network intrusion detection, featuring modern attack types in a realistic
network traffic scenario.

- NSL-KDD: https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-
KDD/ (The original link was: https://www.unb.ca/cic/datasets/nsl.html). An improved
version of the KDD’99 dataset for network-based intrusion detection systems. It removes
redundant records, thus providing a more effective dataset for training and evaluating IDS
models.

- CICIDS2017: https://www.unb.ca/cic/datasets/ids-2017.html. Developed by the
Canadian Institute for Cybersecurity (CIC), provides a modern platform for IDS/IPS
system evaluation. It includes a diverse set of traffic scenarios and a variety of attacks,
making it an effective tool for IDS model training and evaluation.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2176#supplemental-information.

REFERENCES
Alazab A, Hobbs M, Abawajy J, Alazab M. 2012. Using feature selection for intrusion detection

system. In: 2012 International Symposium on Communications and Information Technologies
(ISCIT). Piscataway: IEEE, 296–301.

Alazzam H, Sharieh A, Sabri KE. 2020. A feature selection algorithm for intrusion detection
system based on pigeon inspired optimizer. Expert Systems with Applications 148(13):113249
DOI 10.1016/j.eswa.2020.113249.

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 29/32

http://dx.doi.org/10.7717/peerj-cs.2176#supplemental-information
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/
https://web.archive.org/web/20150205070216/http://nsl.cs.unb.ca/NSL-KDD/
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://dx.doi.org/10.7717/peerj-cs.2176#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2176#supplemental-information
http://dx.doi.org/10.1016/j.eswa.2020.113249
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Aldabash OA, Akay MF. 2024.WS-AWRE: intrusion detection using optimized whale sine feature
selection and artificial neural network (ANN) weighted random forest classifier. Applied Sciences
14(5):2172 DOI 10.3390/app14052172.

Aljawarneh S, Aldwairi M, Yassein MB. 2018. Anomaly-based intrusion detection system through
feature selection analysis and building hybrid efficient model. Journal of Computational Science
25(3):152–160 DOI 10.1016/j.jocs.2017.03.006.

Ambusaidi MA, He X, Nanda P, Tan Z. 2016. Building an intrusion detection system using a
filter-based feature selection algorithm. IEEE Transactions on Computers 65(10):2986–2998
DOI 10.1109/TC.2016.2519914.

Amiri F, YousefiMMR, Lucas C, Shakery A, Yazdani N. 2011.Mutual information-based feature
selection for intrusion detection systems. Journal of Network and Computer Applications
34(4):1184–1199 DOI 10.1016/j.jnca.2011.01.002.

Devendiran R, Turukmane AV. 2024. Dugat-LSTM: deep learning based network intrusion
detection system using chaotic optimization strategy. Expert Systems with Applications
245(2):123027 DOI 10.1016/j.eswa.2023.123027.

Di Mauro M, Galatro G, Fortino G, Liotta A. 2021. Supervised feature selection techniques in
network intrusion detection: a critical review. Engineering Applications of Artificial Intelligence
101(10):104216 DOI 10.1016/j.engappai.2021.104216.

Duan H, Qiao P. 2014. Pigeon-inspired optimization: a new swarm intelligence optimizer for air
robot path planning. International Journal of Intelligent Computing and Cybernetics 7(1):24–37
DOI 10.1108/IJICC-02-2014-0005.

Ganapathy S, Kulothungan K, Muthurajkumar S, Vijayalakshmi M, Yogesh P, Kannan A. 2013.
Intelligent feature selection and classification techniques for intrusion detection in networks: a
survey. EURASIP Journal on Wireless Communications and Networking 2013(1):1–16
DOI 10.1186/1687-1499-2013-271.

Geetha BT, Mohan P, Mayuri AVR, Jackulin T, Aldo Stalin JL, Anitha V, Kumar A. 2022.
Pigeon inspired optimization with encryption based secure medical image management system.
Computational Intelligence and Neuroscience 2022(3):1–13 DOI 10.1155/2022/2243827.

Hamed T, Dara R, Kremer SC. 2018. Network intrusion detection system based on recursive
feature addition and bigram technique. Computers & Security 73(3):137–155
DOI 10.1016/j.cose.2017.10.011.

Hao T, Yingnian W, Jiaxing Z, Jing Z. 2023. Study on a hybrid algorithm combining enhanced
ant colony optimization and double improved simulated annealing via clustering in the traveling
salesman problem (TSP). PeerJ Computer Science 9:e1609 DOI 10.7717/peerj-cs.1609.

Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The elements of statistical learning:
data mining, inference, and prediction. New York: Springer.

Jaw E, Wang X. 2021. Feature selection and ensemble-based intrusion detection system: an
efficient and comprehensive approach. Symmetry 13(10):1764 DOI 10.3390/sym13101764.

Kasongo SM, Sun Y. 2020. Performance analysis of intrusion detection systems using a feature
selection method on the UNSW-NB15 dataset. Journal of Big Data 7(1):105
DOI 10.1186/s40537-020-00379-6.

Li XK, ChenW, Zhang Q,Wu L. 2020. Building auto-encoder intrusion detection system based on
random forest feature selection. Computers & Security 95(1):101851
DOI 10.1016/j.cose.2020.101851.

Louk MHL, Tama BA. 2023. Dual-IDS: a bagging-based gradient boosting decision tree model for
network anomaly intrusion detection system. Expert Systems with Applications 213(1):119030
DOI 10.1016/j.eswa.2022.119030.

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 30/32

http://dx.doi.org/10.3390/app14052172
http://dx.doi.org/10.1016/j.jocs.2017.03.006
http://dx.doi.org/10.1109/TC.2016.2519914
http://dx.doi.org/10.1016/j.jnca.2011.01.002
http://dx.doi.org/10.1016/j.eswa.2023.123027
http://dx.doi.org/10.1016/j.engappai.2021.104216
http://dx.doi.org/10.1108/IJICC-02-2014-0005
http://dx.doi.org/10.1186/1687-1499-2013-271
http://dx.doi.org/10.1155/2022/2243827
http://dx.doi.org/10.1016/j.cose.2017.10.011
http://dx.doi.org/10.7717/peerj-cs.1609
http://dx.doi.org/10.3390/sym13101764
http://dx.doi.org/10.1186/s40537-020-00379-6
http://dx.doi.org/10.1016/j.cose.2020.101851
http://dx.doi.org/10.1016/j.eswa.2022.119030
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Moustafa N, Slay J. 2015. UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information
Systems Conference (MilCIS). Piscataway: IEEE, 1–6.

Moustafa N, Slay J. 2017. A hybrid feature selection for network intrusion detection systems:
central points. ArXiv DOI 10.48550/arXiv.1707.05505.

Rashid M, Kamruzzaman J, Imam T, Wibowo S, Gordon S. 2022. A tree-based stacking
ensemble technique with feature selection for network intrusion detection. Applied Intelligence
52(9):9768–9781 DOI 10.1007/s10489-021-02968-1.

Saviour MPA, Samiappan D. 2023. IPFS based storage authentication and access control model
with optimization enabled deep learning for intrusion detection. Advances in Engineering
Software 176(no.1):103369 DOI 10.1016/j.advengsoft.2022.103369.

Sharafaldin I, Lashkari AH, Ghorbani AA. 2018. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp 1:108–116
DOI 10.5220/0006639801080116.

Shoghian S, Kouzehgar M. 2012. A comparison among wolf pack search and four other
optimization algorithms. International Journal of Computer and Information Engineering
6(12):1619–1624 DOI 10.5281/zenodo.1059946.

Sood K, Nguyen DDN, Nosouhi MR, Kumar N, Jiang F, Chowdhury M, Doss R. 2023.
Performance evaluation of a novel intrusion detection system in next generation networks. IEEE
Transactions on Network and Service Management 20(3):3831–3847
DOI 10.1109/TNSM.2023.3242270.

Stiawan D, Idris MYB, Bamhdi AM, Budiarto R. 2020. CICIDS-2017 dataset feature analysis with
information gain for anomaly detection. IEEE Access 8:132911–132921
DOI 10.1109/ACCESS.2020.3009843.

Tama BA, Comuzzi M, Rhee KH. 2019. TSE-IDS: a two-stage classifier ensemble for intelligent
anomaly-based intrusion detection system. IEEE Access 7:94497–94507
DOI 10.1109/ACCESS.2019.2928048.

Tavallaee M, Bagheri E, Lu W, Ghorbani AA. 2009. A detailed analysis of the KDD CUP 99 data
set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense
Applications. Piscataway: IEEE, 1–6.

Thakkar A, Lohiya R. 2022. A survey on intrusion detection system: feature selection, model,
performance measures, application perspective, challenges, and future research directions.
Artificial Intelligence Review 55(1):453–563 DOI 10.1007/s10462-021-10037-9.

Thakkar A, Lohiya R. 2023. Fusion of statistical importance for feature selection in deep neural
network-based intrusion detection system. Information Fusion 90(1):353–363
DOI 10.1016/j.inffus.2022.09.026.

Tian AQ, Chu SC, Pan JS, Cui H, Zheng WM. 2020. A compact pigeon-inspired optimization for
maximum short-term generation mode in cascade hydroelectric power station. Sustainability
12(3):767 DOI 10.3390/su12030767.

Tsai CF, Lin CY. 2010. A triangle area based nearest neighbors approach to intrusion detection.
Pattern Recognition 43(1):222–229 DOI 10.1016/j.patcog.2009.05.017.

Vijayanand R, Devaraj D. 2020. A novel feature selection method using whale optimization
algorithm and genetic operators for intrusion detection system in wireless mesh network. IEEE
Access 8:56847–56854 DOI 10.1109/ACCESS.2020.2978035.

Ye Z, Luo J, Zhou W, Wang M, He Q. 2023. An ensemble framework with improved hybrid
breeding optimization-based feature selection for intrusion detection. Future Generation
Computer Systems 151:124–136 DOI 10.1016/j.future.2023.09.035.

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 31/32

http://dx.doi.org/10.48550/arXiv.1707.05505
http://dx.doi.org/10.1007/s10489-021-02968-1
http://dx.doi.org/10.1016/j.advengsoft.2022.103369
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.5281/zenodo.1059946
http://dx.doi.org/10.1109/TNSM.2023.3242270
http://dx.doi.org/10.1109/ACCESS.2020.3009843
http://dx.doi.org/10.1109/ACCESS.2019.2928048
http://dx.doi.org/10.1007/s10462-021-10037-9
http://dx.doi.org/10.1016/j.inffus.2022.09.026
http://dx.doi.org/10.3390/su12030767
http://dx.doi.org/10.1016/j.patcog.2009.05.017
http://dx.doi.org/10.1109/ACCESS.2020.2978035
http://dx.doi.org/10.1016/j.future.2023.09.035
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

Yin Y, Jang-Jaccard J, Xu W, Singh A, Zhu J, Sabrina F, Kwak J. 2023. IGRF-RFE: a hybrid
feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset.
Journal of Big Data 10(1):15 DOI 10.1186/s40537-023-00694-8.

Yuan GS, Duan HB. 2024. Extremum seeking control for UAV close formation flight via improved
pigeon-inspired optimization. Science China Technological Sciences 67:435–448
DOI 10.1007/s11431-023-2463-0.

Yulianto A, Sukarno P, Suwastika NA. 2019. Improving adaboost-based intrusion detection
system (IDS) performance on CIC IDS 2017 dataset. Journal of Physics: Conference Series
1192:012018 DOI 10.1088/1742-6596/1192/1/012018.

Zhou Y, Cheng G, Jiang S, Dai M. 2020. Building an efficient intrusion detection system based on
feature selection and ensemble classifier. Computer Networks 174(8):107247
DOI 10.1016/j.comnet.2020.107247.

Zorarpaci E. 2024. A fast intrusion detection system based on swift wrapper feature selection and
speedy ensemble classifier. Engineering Applications of Artificial Intelligence 133(13):108162
DOI 10.1016/j.engappai.2024.108162.

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2176 32/32

http://dx.doi.org/10.1186/s40537-023-00694-8
http://dx.doi.org/10.1007/s11431-023-2463-0
http://dx.doi.org/10.1088/1742-6596/1192/1/012018
http://dx.doi.org/10.1016/j.comnet.2020.107247
http://dx.doi.org/10.1016/j.engappai.2024.108162
http://dx.doi.org/10.7717/peerj-cs.2176
https://peerj.com/computer-science/

	Integration of simulated annealing into pigeon inspired optimizer algorithm for feature selection in network intrusion detection systems ...
	Introduction
	Related work
	Continuous pigeon inspired optimizer
	ProposED improvement of pio
	Experiments and results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

