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ABSTRACT

The dual active bridge (DAB) converter is a power electronic device commonly used for
DC voltage regulation and stabilization. However, during its control process, external
disturbances, load variations, input voltage variations, switching tube voltage drops,
dead time, efc. lead to errors in the control output, thus reducing the control accuracy
of the system. Therefore, this article propose a robust control scheme for the output
voltage based on uncertainty and disturbance estimator. In this article, an average
small-signal model of the dual active bridge converter was established in terms of
the basic principles and operation mechanisms, simplifying the controller’s design.
Then, the basic principles of the uncertainty and disturbance estimator (UDE) are
introduced. The small-signal model of the dual active bridge (DAB) converter is applied
to the UDE to minimize output voltage error by enabling the controller to directly
regulate the shift ratio. Finally, this article discusses the application and effectiveness
of the uncertainty and disturbance estimator (UDE) in the simulation and control of
dual active bridge (DAB) converters. A series of experimental comparative studies are
conducted, demonstrating that this scheme offers significant advantages in suppressing
system uncertainties and disturbances.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Emerging Technologies

Keywords Dual active bridge converter, Uncertainty and disturbance estimation, Output voltage,
Small signal modeling

INTRODUCTION

Initially, the dual active bridge converter was proposed by De Doncker ¢ Divan (1991). After
more than 30 years of development, it has been widely used due to its benefits, including
bi-directional power transfer, a wide voltage regulation range, and zero-voltage turn-off
(Shao et al., 2019). However, during the control of a dual active bridge converter, the
external perturbations, load variations, input voltage fluctuations, switching tube voltage
drops, dead time, and other factors lead to errors in the control output, thus reducing the
control accuracy of the system. Therefore, various control methods have been proposed
for output voltage control.The simplest method to regulate the output voltage feedback is
through a proportional-integral (PI) controller, which adjusts the phase-shift ratio based
on output voltage feedback. Additional feed-forward paths can be incorporated to enhance
the PI controller and further improve output voltage regulation (Qin ¢ Kimball, 2014). The
linearization control method also belongs to a kind of PI control, which uses linearization
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to eliminate the nonlinear term in the DAB, and this control can reduce the sensitivity
of the system stability to the load condition and the reference voltage, and enlarge the
stability margin (Tong et al., 2019). While the feed-forward compensation strategy indeed
improves the transient response of the DAB to output load variations, its effectiveness comes
at the cost of increased computational complexity (Segaran, Holmes ¢» McGrath, 2013).
Another drawback is the swift decline in control performance when system parameter
uncertainty is present. The disturbance observer feed-forward compensates the observed
ensemble disturbance at the control input. This collective disturbance encompasses the
system’s uncertain discordant disturbances. Therefore, disturbance-observer based control
(DOBC) can attain superior control performance (Ali et al., 2019). Predictive control stands
as an alternative method employed for output voltage regulation, differing from feedback
control. In feedback control, parameter selection predominantly relies on trial and error
or machine learning, wherein improper parameter choices may induce system instability.
Consequently, the design of subparameters becomes considerably intricate (Chen et al.,
20205 Chen et al., 2019b). Another control method widely used in DAB systems is sliding
mode control(SMC), the traditional SMC has the disadvantage of jitter, which becomes
a serious problem in the control of the DAB converter, so the research on the problem
focuses on how to reduce the system jitter vibration, Such as double integral sliding mode
control (Jeung, Choi & Lee, 2016), super-twisted sliding mode control (Tiwary et al., 2023),
and so on.

In addition, for the uncertainty and disturbance of the system, the method of uncertainty
and disturbance estimator(UDE) is a well-established method, which was proposed
by Qing-Chang Zhong in 2004 (Zhong ¢ Rees, 2004), and then successively applied in
nonlinear (Deshpande ¢» Phadke, 2012), discrete (Padmanabhan, 2021), and non-ray-
imitating (Ren, Zhong ¢ Chen, 2015) systems, such as in permanent magnet synchronous
motors (Ren et al., 2017), dynamic positioning of vessels (Huang et al., 2021), and LCL-
type grid-tied inverters (Xiong, Ye & Zhu, 2023). For DC-DC converters, particularly in
the context of regulating lift-voltage converter output voltages, this method has proven
successful. Here, the controller ensures nominal performance across the full operating
range by swiftly assessing and mitigating uncertainties and disturbances (Tian et al., 2019).
Wi et al. (2019) present an output power model for DAB converters, amalgamating a
DAB circuit model with a phase shift scheme to offer a comprehensive model for DAB
converters. Based on this model, a UDE-based voltage controller is designed and the
effectiveness of the controller is verified. Wu et al. (2020) applies the UDE control method
for a constant power load of a DAB converter. for the first time, the output impedance of
a UDE-controlled DAB converter is modeled and analyzed for stability. So far, the control
of DAB converter mostly starts from its power, and few directly control its the shift ratio
to realize the stable output voltage.

In terms of system modeling for DAB, there are mainly average models (Rodriguez
Alonso et al., 2010; Chen et al., 2019a), generalized average models (Qin ¢ Kimball, 2012),
and discrete time models (Shi et al., 2017). The averaging model is a method that ignores
the dynamics of the inductor current and only considers the voltage dynamics at the
output. The generalized average model takes into account the inductor current as well
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as the voltage at the output, and it uses the Fourier transform to handle time-varying
and periodic physical quantities. The generalized averaging model necessitates a balance
between accuracy and complexity. Both aspects escalate with the inclusion of additional
Fourier series terms in the model. Similar to the generalized averaging approach, the
discrete-time model considers the dynamics of the current, treating the state variables as
evolving at distinct time intervals, thus introducing increased computational complexity.
Therefore, in the control of the output voltage studied in this article, the dynamics of the
current does not need to be taken into account, and by combining the complexity and
accuracy of the modeling, the choice of the averaging model will be the most reasonable
method.

In this article, the average model of the DAB converter is established in ‘Modelling
of a Dual Active Bridge Converter’. ‘Controller Design’ introduces the basics of the
UDE scheme, which simplifies the design of the controller by transforming the complex
nonlinear converter model into a simple linearized model through small-signal variations.
This section integrates the small-signal model of the DAB with the UDE method, enabling
the controller’s output to be directly shifted in comparison to the small-signal control law
of the UDE scheme. ‘Experimental Studies’ verifies the effectiveness of the scheme through
a series of comparison experiments. ‘Conclusions’ summarizes the experimental results of
this article. It improves the dynamic performance of the system and reduces the tracking
error compared to the conventional control scheme.

MODELLING OF A DUAL ACTIVE BRIDGE CONVERTER

The structure of the dual active bridge converter is shown in Fig. 1.

The topology consists of five parts: two H-bridges consisting of eight switching tubes on
the primary and secondary sides, a high-frequency isolation transformer with a ratio of n:1;
an input voltage V1, a load resistor R, and an output filtering capacitor C. The voltage of the
load on the output side is V. In the single phase shift (SPS) mode of operation, the diagonal
switching tubes on both sides of the full bridge conduct and turn off at the same time, and
the on and off time each accounts for 50% of the switching period T. The output waveforms
of both sides of the full bridge are square waves, assuming that the converter’s operating
frequency is f, and the switching half-cycle of the drive signal is T, =0.5/f =0.5T, and
defining the shift ratio of the primary and secondary bridges as D (0 < D < 1), then the
operating waveform of DAB at t) =0, t, = DT, t3 =T, t5s = Ts(1 + D), ts =T is shown in
Fig. 2.

The inductor current expression at these four times is as follows:

V; V-

iL(t):iL(tO)‘f‘%(t_tO)»te[thtZ] (1)
Vi—nV-

iL<t)=iL<tz>+1T”2(t—tz>,re[tz,tg] (2)
V; V-

iL<t>=iL<t3>—%(t—t3>,r € lts,15] 3)
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Figure 1 The structure of the dual active bridge converter.

Full-size G DOI: 10.7717/peerjcs.2175/fig-1

. . —Vi+nV.
1L<t>=u<t5>+%(t—ts>,

t € [ts, t6].

(4)

From the above analysis of the modulation principle and the operating state, it can be

seen that when the system is in a steady state, the following conditions exist:

i (ty) = —ir(t3)

ir(t) =—ir(ts.)

(5)

(6)

Combining the above conditions and the current Eqs. (1) to (6) for each mode, the

current expressions for moments ty and t, can be found as follows:

i) = ﬁ[nvzu—w)—vl]

i) = ﬁ[nvz—vlu—w)].

(7)

(8)

The current in the secondary capacitor C varies periodically in four linear differential

equations with an expression for each subinterval as follows

%:—nq(t)—%,te[m,@] 9)
%:nq(t)—%,te[tz,tg] (10)
%:nq(t)—%,te[g,g] (11)
%:—nq(t)—%,te[g,%]. (12)
Tian et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2175 4/19


https://peerj.com
https://doi.org/10.7717/peerjcs.2175/fig-1
http://dx.doi.org/10.7717/peerj-cs.2175

PeerJ Computer Science

A
5155, 5 i |
S8 [ g
S59S6 i %
o ; | >
57,85 | |
Vo | | i o
Ve i 1 >
i /\\\ >
ot to ty tyts te

Figure 2 Operating timing of the dual active bridge converter.
Full-size & DOI: 10.7717/peerjcs.2175/fig-2

From Fig. 2, we can see that the DAB operating waveform is symmetric, then we only
need to analyze its te[0, T;] part, which can be obtained by combining Egs. (1) to (4) in
the above four parts:

dV2 V1+V2 n V2

- t——[Vo(1—2D)—V,]— —,t € [0, DT, 13
7 7" 4ﬂ[ 2( )— Vil R €l ] (13)
de Vl—Vz n V2

— = t—DTs)+—[V,—(1=-2D)V ]— —=,t € [DTs, T;]. 14
I i n( )+4f1[ 2 ( Vil R €l ] (14)
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Averaging the above two Eqs. (13) and (14) over the period range of t €[0, Ts] yields

the average model of the DAB converter
de . V2 i nV1
dt ~ RC 2fLC

When the system is in a steady state, dV,/dt is equal to 0, the relationship between the

D(1-D). (15)

output voltage and the input shift ratio can be obtained as follows
V, — nVlR
2= 7

where it can be seen that the output voltage V; is related to the input voltage, load resistance,

D(1—D) (16)

inductance, frequency, and shift ratio, and is independent of the transformer ratio n.

In the averaged equation, the input to the state equation is a quadratic function on the
shift ratio D. Therefore, assuming that when the system is in the steady state, there exists
a smaller transformation, the system model can be small-signalized, so that V, =V, +
v, D =Dy, + d, where V,w, D,, are the steady-state value of the system, v;, d are the
small change of the system. combining the above conditions, the averaged Eq. (16) can be
obtained

v, = Av,+Bd (17)

L p_mi(1-2D,)
RC’ 2LC

At this point, we have obtained the state space expression for the model of the averaged

A=— (18)

small letter system, and also the expression for the transfer function of the shift ratio d to

the output v,. These expressions can be used for the design of the controller.
RV(1-2D,,

Gls)=2 = M

d 2fL(RCs+1)

CONTROLLER DESIGN

Introduction to UDE controllers

Consider a single-input single-output linear time-varying uncertainty system

(19)

x(t)=(A+AA)x(t)+ (B+AB)u(t)+f(t)

y(t)=x (20)

where x(t) is the state vector of the system and x(t) = [X1, X, ......, X,] 7, A is the known
state matrix of the system, B is the gain of the system’s inputs, A A A B is the system’s
uncertainty term, which consists of the system component’s parameter ingress and so on,
u(t) is the system’s inputs, and f(t) is the system’s presence of external perturbations.

For the above system, a stable reference model needs to be chosen to satisfy the desired
specifications of the closed-loop control system, such as the amount of overshoot of the
system, the regulation time, etc. The reference model is assumed to be

Xm () = AmXm(t) + Bc(t) (21)
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where x,,(t) is the state vector of the reference and c(t) is the given signal to the reference
model.

To achieve close tracking of the reference state x,,(t), the tracking error is defined as
e(t) = xm(t) —x(1) (22)
and define the tracking error to satisfy
e(t)=(An+K)e(t) (23)

where K is the error feedback gain matrix and A,,+K satisfies the Hurwitz matrix condition.
This is obtained by combining Eqgs. (20) to (23) above

Ke(t) =Aux(t)+Byc(t) —Ax(t) —Bu(t) — AAx(t) — ABu(t) —f(t) (24)
Bu(t) =A,x(t)+B,,c(t) — Ax(t) — Ke(t) — uy (25)
where ud is the aggregate perturbation, including system uncertainty and external
perturbations.

ug=AAx(t)+f(t)+ ABu(t) =x (t) — Ax(t) — Bu(t). (26)

The following conditions need to be satisfied when an exact solution to Eq. (26) exists
(I —BB1)(A;ux(t) + Bc(t) — Ax(t) — Ke(t) —ug) =0 (27)

where BT = (BB)~1B7 is the pseudo-inverse of B and I is the unit matrix. Up to this
point, the uncertainties and perturbations of the system can be observed as a known
function of the system state and control signals. However, it cannot be used directly in the
control law. Therefore the method of adding a filter is used to estimate the uncertainties
and disturbances to construct the control law. Assuming that the filter G (s) has unity gain
over the full frequency range of the signal u;(t), us(t) can be approximated as

Ude(t) =ud*gf(t)
= (x'(t) —Ax(t) — Bu(t)) * g (t) (28)

where * is the convolution operator and g¢(t) is the impulse response of G¢(s).
Replace the set total perturbation u,(t) in Eq. (25) with its estimated value

Bu(t) = Apmx(t) +Bpc(t) — Ax(t) — Ke(t) — (x'(t) — Ax(t) — Bu(t)) * g (t). (29)

Thus the UDE —based control law can be written as

_ptr_ o1y 5Gr() -1 1
u(t)=B"[-Ax(t)—L {1—Gf(s)}*x(t)+L {—I—Gf(s)}
*(A,;x(t) +B,c(t) —Ke(t))] (30)

where L™! e is the Laplace inverse transform.
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Design of UDE controller for DAB converter
When there are uncertainty perturbations and external disturbances in the system,
combined with Eq. (17), the state space equation of the DAB converter can be written
as Eq. (20).

Based on the analysis in the previous chapters, it is known that the designed UDE control
method should be based on a small signal model, so according to the following conditions:

Va(t) = Vo (1) +va(t) (31)
D=D, +d (32)
Vam(t) = Vawm(t) +vam(t) (33)
Vief = Vigref + Vref (34)
e(t) = ey (t)+ Ae(r) (35)

where Va,y, Dy, Vawm, Viefs €, are the output voltage at the steady state point, the shift
ratio, the output voltage of the reference system, the expected value of the voltage, and the
tracking error; vz, d, Va,m,Vref, and Ae are based on the small variations of the respective
signals at the steady state point, respectively. Combined with the principle of the UDE
from the previous section:

Vawm(£) = =0t Vo () + Vref (36)
Ae(t) =vou(t) —va(t) (37)
Aé(t)=(—a—K)Ae(t) (38)
Bd(t) = —avy(t) +avef (1) —Avy(t) + K Ae(t) —uy (39)
ug = AAvy(t)+ ABu(t)+f(t) =v,(t) — Ava(t) — Bd(t) (40)
Uge = (v;(t) —Avy(t) — Bd(t)) * gr (41)

Tian et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2175 8/19


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2175

PeerJ Computer Science

where the reference system needs to satisfy stability, then o >0. a+k needs to satisfy the
Hurwitz matrix condition.

Thus the control law for the DAB input shift ratio d in the small signal model can be
obtained as

G 1
d(0) =B+[—sz(t)—L1(15_f—(;(f5()s))*vz(t)+Ll(l——Gf(s))

*(—ovy(t) +ovrer (1) + K Ae(t))].
Bringing Eqs. (37) to (41) into (20) yields
V)= —avy(t) +ove (1) + K Ae(t) —ug* g + ug. (43)

The expression for the system output concerning the desired input concerning the
aggregate perturbation can be obtained by taking the Rasch transform of the above
equation and simplifying it

v(s) = o(s+0a) Weer () + (s— (—a —K)) ' (1= Gr(5)) Ual(s) (44)
in which

Hy=a(s+a)™! (45)
Hy(s) = (sI — (—a —K)) "' (1= Gf(s)) (46)
Hi(s) = (s[ — (—a—K))™! (47)
Hy(s) = 1— Gy (s) (48)

where H,, is the same as the reference model V . to Vs, transfer function given in
Eq. (36), and the transfer function is independent of the error feedback gain k. The second
half of Eq. (44) represents the system error after the set total perturbation is attenuated
through Hy. It can be observed that the UDE controller essentially possesses a structure
with two degrees of freedom. Here, the reference model defines the desired system response
point, while the perturbations are determined by the error feedback gain k in conjunction
with the filter.

The front and back parts of Eq. (44) need to be stabilized separately according to the
superposition principle to achieve a stable output. When the reference system is chosen,
the transfer function of the reference system is always stabilized when « > 0. Also, since
the desired output Vs of the system is always bounded, the stabilization of the first
half of Eq. (44) can be achieved. For the stabilization of Hy, it is required that -«-K <0,
and additionally, it is required that the filter is a strictly stable filter and the aggregate
perturbations are also bounded so that ultimately the system can be realized with bounded
inputs and bounded outputs.
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Figure 3 System block diagram of DAB converter based on UDE controller.
Full-size Gl DOI: 10.7717/peerjcs.2175/fig-3

So far, in the UDE controller, the reference system, error feedback gain K, filter Gf(s),
and the block diagram of the UDE-controlled DAB converter are required to be designed

as shown in Fig. 3.
Assume that the general form of the filter is as follows:

Gr)=—— =P (49)
s+1 s+8

The tracking error of the system can be written as

E(s)=—Ha(s)Ua(s). (50)

Combining Eqs. (47) to (50), the Hy, Hy, and Hy amplitude—frequency characteristic
curves can be drawn as shown in Fig. 4. When Hg(s) is kept constant and the bandwidth
of filter Gy(s) increases, i.e., when 7 decreases and 8 increases, the curve Hf(s) will move
downward in the low-frequency band, forcing the curve H;(s) to move downward in the
low-frequency band as well, which results in a more pronounced attenuation effect on the
low-frequency band of the aggregate perturbation. Therefore, the larger the bandwidth of
the filter Gy (s), the stronger the anti-disturbance performance and the smaller the tracking
error of the UDE controller.

EXPERIMENTAL STUDIES

In order to verify the effectiveness of applying the UDE controller to the DAB converter,
a simulation model of the system was built in the simulation software by applying the
parameter data in Table 1. From the previous section, it can be seen that the model is
based on a small signal, so it is necessary to select a stable point, according to Eq. (16),
selected at an input voltage of 400 V and an output voltage of 400 V. The other parameters
are shown in Table 1, which gives the value of the shift ratio at the steady state point

as 0.052786. To verify the superiority of the UDE controller, a PI controller was also
designed(PI (s) =k, +ki/s),kp, = 7.143*107* ki = 6.525*1072. The closed-loop bandwidth
of the control system is the same as the reference system bandwidth of the UDE controller
and the system is critically damped under PI control. The reference system « for UDE
control is 300, the error feedback gain k is 0 (Zhong ¢ Rees, 2004), and B in the filter is
600, and the following simulations are performed.
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Table 1 DAB circuit parameters.

Parameter Value Parameter Value
Input voltage V1 400V Reference V2 420V
Turns ratio n Switching frequency 20 kHz
Leakage inductance L 125 uH Output capacitor C 400 WF
Load resistor R 50

Figure 5 shows the transient response curve under the control system of the PI controller
and UDE controller when the desired voltage changes. In the figure, UDE-V2 represents
the curve of the system output voltage under the control of the UDE controller. PI-V2
represents the curve of the system output voltage under the control of the PI controller.
Vref represents the desired value of the system output voltage. UDE-e represents the error
of the system output voltage under the control of the UDE controller. PI-e represents the
error of the system output voltage under the control of the UDE controller. V1 represents
the system source-side voltage. R represents the load resistance of the system. Before 0.1 s,
the output voltage of the system is stabilized at 400 V, and the desired voltage is changed
from 400 V to 370 V during 0.1 s, other conditions remain unchanged, and the output
voltage of the UDE control system reaches the desired value of the output voltage after 0.02
s, and the output voltage of the control system of PI controller reaches the desired value
of the output voltage after 0.04 s. The output voltage of the UDE control system reaches
the desired value of output voltage after 0.02s, and that of the PI controller control system
reaches the desired value of output voltage after 0.04s. It can be seen that the UDE controller
is able to track the desired value of the voltage, and compared with the PI controller, the

Tian et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2175 11/19


https://peerj.com
https://doi.org/10.7717/peerjcs.2175/fig-4
http://dx.doi.org/10.7717/peerj-cs.2175

PeerJ Computer Science

|
w
(e]

—40

Resistant (Q)

o~
o1

Tracing Error (V)
| |
T

e —

el
— e

20

—_
o
L

o

o — w— =

55

(@]
o

0.10

0.12

Time (Seconds)

Figure5 V. step change system response curve.
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UDE controller shows better dynamic performance, the waveform of the output voltage is

smoother, and the time to reach the steady state is shorter.

Figure 6 shows the performance of two different controllers in controlling the output

voltage during the step change of input voltage, the input voltage changes from 400 V
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to 500 V in 0.3 s, and the output voltage of the UDE control system reaches the desired
value of the output voltage after 0.02 s, and the fluctuation value of the voltage is 6 V,
and the output voltage of the PI controller control system reaches the desired value of the
output voltage after 0.05 s, and the fluctuation value of the voltage is 14 V. This shows that
the UDE controller has better control performance than the PI controller when the input
voltage changes drastically.

Figure 7 shows the response curve of the system when the load resistance changes
stepwise, the load resistance changes from 50 €2 to 75 €2 in 0.5s, the output voltage of the
UDE control system reaches the desired value of the output voltage after 0.02s, and the
fluctuation value of the voltage is 5V, and the output voltage of the PI controller control
system reaches the desired value of the output voltage after 0.05s, and the fluctuation
value of the voltage is 13V. Compared with the PI controller, the UDE can converge to the
desired value of the voltage faster and the voltage fluctuation is smaller. Compared with
the PI controller, the UDE can converge to the desired value of the voltage faster and the
voltage fluctuation is smaller.

In addition to further verify the performance of the designed controller under continuous
disturbance, the load resistance is set to R = 50+20sin(100t). From Fig. 8, it can be seen that
the output voltage fluctuation of the UDE controller control under continuous disturbance
is smaller, 400 & 5V, and the output voltage curve is closer to the expected value of 400V,
while the output voltage fluctuation of the PI controller control is 400 £ 13V.

In conclusion, the UDE control has better performance in the face of system uncertainties
and disturbances.

CONCLUSIONS

In this article, a UDE-based robust voltage control scheme for DAB converters is proposed,
which is used to improve the tracking performance and the suppression of the system
against internal and external disturbances and uncertainties. In order to simplify the
design of the controller and improve the compatibility of the controller, a generalized DAB
converter small-signal model based on converter shift comparison is proposed. Then, using
the proposed universal DAB model, a UDE-based voltage controller is proposed to analyze
the conditions for the UDE controller to achieve the stability of the output voltage of the
DAB converter. The parameters that need to be designed are the closed-loop bandwidth of
the reference system «, the error feedback gain K, and the filter bandwidth B. When the
stability is satisfied, controller design is conducted under conditions encompassing step
changes in input voltage, step changes in load resistance, continuous variations in load
resistance, and so on. Under the conditions of input voltage step change, load resistance step
change, load resistance continuous change, etc., the system output response is simulated
and experimented, and the results verify the effectiveness and superiority of the program.
In future work, the UDE method can also be used to analyze the non-matching
uncertainty of the system, however, the perturbation of the non-matching uncertainty is
not reflected in our model, so it is necessary to consider more suitable modeling methods.
In addition, it is necessary to continue optimizing the reference system and parameter

Tian et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2175 13/19


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2175

PeerJ Computer Science

= i
750440 Vref |
< ] = - — PI-V2
e I o R el 1
5420 ] — =

= 410 - - - .
< ?%' — UDE-¢
I —= Ple]
FiEeeesceaa e

S 153 e

-~ =20 - - - |
’>\ -

<500 V1
g -

2450

> -

5400

S ' T T 1
S 653

560 - R
S Hh

S50

2 45 =

240 3

~= 35 - - - ]

0. 30 0. 32 0.34 0.36

Time (Seconds)

Figure 6 Input voltage step change system response curve.
Full-size G4l DOI: 10.7717/peerjcs.2175/fig-6

selection. In this article, the simulation was only carried out in the simulation software, and
the hardware platform was not built, which is a point that needs to be continued research
in the future. In this way, tracking performance and dynamic response of the system can

be better achieved.
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