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ABSTRACT
Background. The current study explores the integration of a motor imagery (MI)-
based BCI systemwith robotic rehabilitation designed for upper limb function recovery
in stroke patients.
Methods. We developed a tablet deployable BCI control of the virtual iTbot for
ease of use. Twelve right-handed healthy adults participated in this study, which
involved a novel BCI training approach incorporating tactile vibration stimulation
during MI tasks. The experiment utilized EEG signals captured via a gel-free cap,
processed through various stages including signal verification, training, and testing.
The training involved MI tasks with concurrent vibrotactile stimulation, utilizing
common spatial pattern (CSP) training and linear discriminant analysis (LDA) for
signal classification. The testing stage introduced a real-time feedback system and a
virtual game environment where participants controlled a virtual iTbot robot.
Results. Results showed varying accuracies in motor intention detection across
participants, with an average true positive rate of 63.33% in classifying MI signals.
Discussion. The study highlights the potential of MI-based BCI in robotic rehabilita-
tion, particularly in terms of engagement and personalization. The findings underscore
the feasibility of BCI technology in rehabilitation and its potential use for stroke
survivors with upper limb dysfunctions.

Subjects Human-Computer Interaction, Brain-Computer Interface, Robotics
Keywords Brain-computer interface, EEG, Motor imagery, Rehabilitation

INTRODUCTION
Globally, stroke affects over 15 million people annually (World Stroke Organization, 2022),
with upper limb impairments being a common consequence. The burden of upper limb
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dysfunctions in stroke survivors presents a significant challenge in healthcare, both socially
and economically. These dysfunctions not only limit individual independence and quality of
life but also impose a massive socio-economic burden, with costs in the United States alone
exceeding $100 billion per year (Girotra et al., 2020). As the population ages, there is an
urgent need for improved rehabilitation care for individuals with upper limb dysfunctions.
Currently, physical therapy is the predominant form of treatment for stroke patients,
typically involving human therapists who aid in the recovery of the body parts affected
by the stroke. The advent of robotic rehabilitation has enhanced these traditional physical
therapy methods, offering innovative exercises that human therapists alone cannot provide
(Laut, Porfiri & Raghavan, 2016). Research has demonstrated that robotic rehabilitation
significantly aids in the improvement of hemiparetic upper extremity impairments in
individuals who have experienced a chronic stroke (Bertani et al., 2017).

In the context of robot-based rehabilitation, brain-computer interface (BCI)
technology offers a groundbreaking approach for stroke patients, especially those with
severe upper limb dysfunctions (Ang et al., 2009). BCI system based on non-invasive
electroencephalography (EEG) functions by detecting and interpreting the patient’s brain
signals associated with motor imagery (MI) (Lotte, 2009; Wolpaw, Millán & Ramsey, 2020;
Birbaumer, 2006). MI involves the mental simulation of specific motor sequences without
actual muscle movement (Andrade et al., 2017). MI activates several cortical areas akin to
those involved in motor execution, including the primary motor cortex, premotor cortex,
and somatosensory association cortices (Lorey et al., 2014; Ehrsson, Geyer & Naito, 2003;
Sauvage et al., 2013). Specifically, MI elicits an event-related desynchronization (ERD) in
the alpha band (8–12 Hz) and the beta band (13–30 Hz) during the mental visualization of
motor movements (Pfurtscheller & Neuper, 1997; Jeon et al., 2011; McFarland et al., 2000).
MI-based BCI training is extensively utilized by individuals aiming to enhance their motor
skills, including stroke survivors (Ang et al., 2009). When a patient imagines moving their
impaired limb, the BCI system identifies these specific motor imagery signals which are
crucial as it reflects the patient’s intent to move, despite the physical inability to do so due
to stroke-induced impairments.

The innovative aspect of BCI in robotic rehabilitation lies in its integration with
robotic systems. For instance, the iTbot is an end-effector-type robot specifically designed
for the rehabilitation and reinforcement of motor skills in individuals suffering from
neuromuscular ailments, such as those resulting from stroke (Khan et al., 2022). The iTbot
assists in the rehabilitation training of elbow flexion and extension motions. If integrated
with BCI, the system will capture the patient’s motor intention, and translate these signals
into commands. The BCI commands will then be communicated to the iTbot, which
in turn will assist the patient in performing the intended movement. Such a symbiotic
relationship between the patient’s brain signals and the robot’s mechanical assistance will
foster an interactive environment for rehabilitation, enabling the patient to partially regain
motor control and continue their rehabilitation exercises, facilitating improved recovery
and functional independence.

For training the BCI system, combining tactile stimulation with MI has been found to
enhance MI effectiveness. Research conducted byMikula et al. (2018) revealed that during
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a reaching task, hand proprioception was improved with the addition of vibrotactile
stimulation. Electrophysiological studies also support that MI paired with sensory
stimulation significantly increased motor evoked potentials (Mizuguchi et al., 2015).
Additionally, Ramu & Lakshminarayanan (2023) demonstrated that a brief vibratory
stimulation on the digit before MI enhanced ERD response compared to without vibration
and increased digit discrimination when classified using a machine learning algorithm.

Therefore, the purpose of the current study is to integrate motor imagery and a
rehabilitation robot to leverage the motor intent captured by the MI-BCI system to
control the iTBot. To achieve this, we aim to develop a prototype of a BCI system where
the training will be performed with vibration stimulation. Furthermore, the BCI system
will be used to control a virtual iTbot game for smartphone/tablet in real-time.

METHODS
BCI system development
The BCI system was developed using EEG signals acquired from the OpenBCI Cyton
Daisy module (OpenBCI, Inc., Brooklyn, NY, USA), featuring a gel-free 16-electrode EEG
cap. The system adheres to the international 10-20 system for electrode placement, with
electrodes located at FP1, FP2, C3, C4, CZ, P3, P4, PZ, O1, O2, F7, F8, F3, F4, T3, and T4. In
this study, the gel-free cap technology was employed, eliminating the need for conductive
gel application while ensuring each electrode site maintained a good impedance level for
high-quality EEG signal acquisition. Impedance level was checked in the OpenBCI GUI.
The ground and reference electrodes were optimally positioned to enhance signal clarity
and minimize artifacts. The cap was securely placed on each subject’s scalp, ensuring
consistent electrode contact and stability throughout the data collection. A short sensory
stimulation was applied to the left or right wrist during the BCI training stage. The sensory
stimulation was applied via vibration through a flat vibration micro motor (Sunrobotics,
Gujarat, India). The vibration motor produced a white-noise vibration, with its frequency
spectrum filtered to range from 0 to 500 Hz (Fig. 1).
A video game was developed to establish a virtual environment that mimics movements

generated by brain signals through both visual and auditory feedback. Created using the
Unity game engine (Unity Technologies, San Francisco, CA, USA), the game enabled
subjects to control a virtual iTbot robot. The iTbot is a three degrees-of-freedom end-
effector type robot used for upper limb rehabilitation. A digital version of the iTbot was
built inside Unity with the same degrees-of-freedom. The game was built with Android
studio in Unity as a smartphone/tablet application (Fig. 2). The game was run on a tablet
that the subjects held in their hands and controlled using BCI. The goal within the game
was to pop balloons positioned around the robot using its end effector.

Subjects
The study involved twelve right-handed healthy adults, including five females and
seven males, aged between 21 and 39 years. Each participant confirmed verbally that
they had no history of upper limb injuries, musculoskeletal disorders, or neurological
conditions. None of the subjects had previous experience with motor imagery.
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Figure 1 Subject wearing the OpenBCI gel-free cap and performing BCI training with vibrationmo-
tors mounted on left and right wrists.

Full-size DOI: 10.7717/peerjcs.2174/fig-1

Figure 2 Game screen as seen on the tablet showing a virtual iTbot.
Full-size DOI: 10.7717/peerjcs.2174/fig-2

The Vellore Institute of Technology Review Board approved the study’s protocol
(VIT/IECH/IX/Mar03/2020/016B). Before participating in the experiment, all subjects
read and signed a written informed consent form.
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Experimental procedure
The study adopted the motor imagery CSP scenarios from OpenVibe (Inria Hybrid Team,
Campus de Beaulieu, France) andmade modifications to it. There were several stages to the
study namely the signal verification stage where the signal quality was checked, followed
by the training stage where the calibration signals were obtained while subjects were asked
to imagine moving their left or right hand based on a cue with a short sensory stimulation
applied to the corresponding left or right wrist when the cue was displayed. Following the
training stage was the testing stage where subjects had to imagine moving their left and
right hand based on the cue with feedback in the form of a bar graph that moved left or
right. Finally, the subjects played a game with real-time control of a virtual iTbot using
motor imagery.

Signal verification stage
The OpenVibe Acquisition Server was used to connect to the OpenBCI EEG. Once the
device was connected the signal verification was accomplished in the mi-csp-0-signal-
monitoring scenario in OpenVibe. The scenario had a band pass filter between 1 to 40 Hz
and filter order 4 that was applied on the raw signals. Running the scenario displayed a live
plot with both the raw and filtered signals from each channel, where they could be checked
for noise and artifacts. Once the signals were verified the scenario was stopped.

Training stage
Signal acquisition
Following the verification stage, training the BCI system was performed by running three
scenarios consecutively in OpenVibe. In the mi-csp-1-acquisition scenario, EEG signals
were acquired to train the classifier to discriminate between the left and right hand imagined
movements. The scenario was configured to have 50 trials each for the two classes namely,
left and right hand, randomly displayed to each subject. An initial baseline period of 20 s
was followed by the trials with a 30 s break between every 10 trials. Each trial was 5 s
long with the cue in the form of arrows pointing left or right to indicate the hand to be
imagined displayed to the subject for the first 1.25 s followed by which the subjects were
instructed to imagine moving the corresponding hand. EEG signals were recorded at 250
Hz continuously during the trials. Following the randomized trials, a confusion matrix
showing the performance of the classifier was generated in the mi-csp-5-replay scenario.

The short sensory stimulation was applied to the corresponding left or right wrist while
the cue was displayed for the duration of the cue. The vibrators were connected to an
ESP8266 module that was connected to the OpenVibe scenario using the Open Sound
Control (OSC) communication protocol.

Common spatial pattern training
Following the signal acquisition, the mi-csp-2-train-csp scenario was run to train common
spatial pattern (CSP) to produce a spatial filter that maximizes the difference between
the signal of the two classes. CSP is a mathematical approach designed to decompose a
multivariate signal into distinct subcomponents. The essence of this procedure is to identify
and separate components that exhibit the greatest variance differences when comparing
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two specific time windows. CSP calculated wT (Eq. (1)), which is crucial for maximizing
the variance radius between the two selected time windows (Antony et al., 2022).

w = argmaxw‖wX1‖
2/‖wX2‖

2. (1)

The EEG signal obtained in the previous scenario was filtered in a large frequency band
(8–30 Hz) to cover both alpha and beta frequency band range. The filtered continuous
EEG data was then segmented to 4-second long epochs. The epochs from the left hand and
right hand trials were segregated and the CSP was computed. CSP is vital for extracting
signal components that are specifically useful for binary classification configurations. The
significance of CSP lies in its ability to identify components of the signal whose variance
is most informative for the classification task at hand. Studies (Zhang et al., 2020; Singh,
Gautam & Sharan, 2022; Yu et al., 2019) have shown that these components often possess
superior spectral characteristics compared to the raw channels. Consequently, employing
the CSP node can lead to enhanced classification accuracy, making it a critical element in
the analysis of time series data for binary classification purposes.

Linear discriminant analysis
Themotor intention of each subjectwas classified in themi-csp-3-classifier-trainer scenario.
In our study, we evaluated the three classifiers available in theOpenVibe toolbox, specifically
the linear discriminant analysis (LDA), support vector machine (SVM), and multilayer
perceptron (MLP). After conducting comparative analyses, the results demonstrated that
the LDA classifier showed the highest classification accuracy of 63.32% while MLP showed
59.86% and SVM showed 63.26%. Based on these findings, we selected the LDA classifier
for our study. LDA, a method in supervised machine learning, excels in classifying input
data into two ormore distinct classes by linearlymapping features with categorical labels. Its
primary function is to enhance class separation by maximizing the ratio of between-class
variance to within-class variance. This approach not only improves the clarity of class
distinctions but also maintains computational efficiency, making it ideal for real-time
applications like BCI. LDA’s statistical basis provides a clear interpretive framework,
ensuring both high accuracy in classification tasks and straightforward interpretability,
essential in fields like neuroscience and rehabilitation engineering.

The CSP spatial filter trained in the previous scenario is applied to the band pass filtered
(8–30 Hz) EEG signals. Following which the signal was epoched to extract a four-second
segment of the signal, commencing half a second after the display of the cue to the user.
Post this step, the signal is divided into one-second blocks, occurring every 16 s. The
logarithmic band power of these segments is then calculated using two ‘Simple DSP’ boxes
along with the ‘Signal Average’ box. The process ultimately facilitates the conversion of the
signal matrices into feature vectors. The extracted features were then used to train the LDA
classifier with a 5-fold cross validation, where the data was divided into five parts, with
four parts used for training and one part for testing, iteratively. At the end of the training
the classifier performance was displayed as a percentage for both training and testing. The
classifier trainer also produced a configuration file to be used for the online testing stage.
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Testing stage
Once the CSP and the LDA classifier was trained, the mi-csp-4-online scenario (Fig. 3) was
run where the subjects underwent trials similar to the training stage with the cue based
motor imagery trials but with real-time feedback in the form of a horizontal bar graph that
shifted left or right based on the classified motor intent.

The game interfaced in real-time with the ’mi-csp-4-online’ scenario via OSC, receiving
live classification percentages for imagined movements of the left and right hands. The
OSC control enabled a wireless link between the laptop running OpenVibe and the tablet
running the game. In this interactive setting, participants could navigate the robotic
arm along the x , y , and z axes using the toolbar on the side of the game screen that
displayed the X, Y, and Z buttons. After choosing an axis, the participants were able to
direct the robot’s movement through motor imagery (Fig. 4). This involved imagining the
movement of either their left or right hand, which corresponded to the robot’s movement
direction. For the x axis, this meant moving left or right; for the y axis, it meant moving
forward or backward; and for the z axis, it involved moving up or down. The robotic
arm responded to these imagined movements, initiating motion when the classification
percentage for an imagined movement reached a 60% threshold, and continued moving
as long as the percentage remained above this threshold. To add an element of challenge
and engagement, the game included a timer, encouraging subjects to pop all the balloons
as quickly as possible. This gaming task served as the concluding activity for the subjects.

RESULTS
The current study focused on evaluating the effectiveness of a BCI system integrated with
robotic rehabilitation technology for aiding stroke survivors with upper limb dysfunctions.
We evaluated the classification accuracy of motor intention detection using the LDA based
method during the motor imagery training session through a confusion matrix, which
is crucial in understanding how accurately the BCI system can interpret motor imagery
signals.

The comparison of training and testing accuracy during the motor imagery training
session for each subject is visually represented in the bar graph (Fig. 5). We noticed that the
testing accuracy was higher than the training accuracy for almost all participants, but the
difference wasn’t very large. The results could indicate that our model was generalizing well
rather than just memorizing the training data. We used a 5-fold cross-validation method
to help prevent overfitting.

The average confusion matrix across all subjects was calculated to provide insights into
the classification performance during the motor imagery training session (Fig. 6). The
provided metrics pertain to the performance of a classification model in distinguishing
between left and right MI signals. A true positive (TP) rate of 0.6333 indicates that the
model correctly identified approximately 63.33% of the MI signals, demonstrating its
effectiveness in recognizing instances of MI. On the other hand, a false positive (FP)
rate of 0.3658 reflects that around 36.58% of the time, left MI signals were incorrectly
classified as right MI. The false negative (FN) rate of 0.3675 suggests that the model missed
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Figure 3 Schematic of the online scenario used once the CSP spatial filter and the classifier is trained.
Full-size DOI: 10.7717/peerjcs.2174/fig-3

about 36.75% of actual left MI signals, failing to detect them correctly. Finally, the true
negative (TN) rate of 0.6325 shows that the model correctly identified right MI signals
approximately 63.25% of the time.

The accuracy of MI signal detection directly impacts the effectiveness of robotic systems
like the iTbot in assisting patients with motor skill rehabilitation. While the results show
promise, they also indicate areas for improvement, particularly in reducing false positives
and negatives, which are vital for ensuring precise and beneficial rehabilitation exercises.

DISCUSSIONS
In the current study, healthy participants were engaged in a task that involved imagining
the movement of their upper limbs. This motor imagery was used to control a virtual
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Figure 4 Experimental setup for the testing session showing the subject playing the game on a tablet.
Full-size DOI: 10.7717/peerjcs.2174/fig-4

rehabilitation robot’s movement along the three axes in a simulation. The aim was to
explore the potential of such a system in supporting rehabilitation of upper limb functions.
EEG signals were captured using a cap equipped with OpenBCI gel-free electrodes. These
signals were processed to produce control commands, which in turn manipulated the
movements of the virtual robot in the simulation. The study not only focused on the
efficiency of signal processing and the accuracy of movement classification but also on how
sustainably participants could control the application in real-time.

The study integrated short vibrotactile stimulation just prior to MI during the training
phase. This strategic inclusion was guided by the encouraging outcomes observed in our
preceding research (Ramu & Lakshminarayanan, 2023). This earlier study revealed that
vibrotactile stimulation could amplify event-related desynchronization in the beta-band
within the contralateral sensorimotor area during MI, which reflects enhancement in
motor tasks (Khanna & Carmena, 2015). Our past findings indicated that such vibrotactile
stimulation might exert its effects on the sensorimotor cortex, possibly by enhancing
proprioception (Rizzolatti, Luppino & Matelli, 1998; Mikula et al., 2018). Proprioception,
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Figure 5 LDA accuracy percentage for training and testing data sets averaged across 5-folds for each
subject for the motor imagery training data.

Full-size DOI: 10.7717/peerjcs.2174/fig-5

Figure 6 Average confusionmatrix of the motor imagery training session classification performance.
Full-size DOI: 10.7717/peerjcs.2174/fig-6

the awareness of the position and movement of one’s body parts, has been documented
to boost corticospinal excitability during MI (Vargas et al., 2004). This aspect is critical,
considering proprioception and tactile sensation share neural pathways, particularly in
the posterior parietal neurons responsible for high-level spatial representations (Rizzolatti,
Luppino & Matelli, 1998). Moreover, our earlier investigations underscored the role of the
brain in utilizing diverse sensory information to construct an internal representation of the
environment (Knill & Pouget, 2004; Ernst & Bülthoff, 2004). This internal representation
is essential for motor imagery, relying on it to anticipate future sensory and motor states
during the imagination of movement (Gentili & Papaxanthis, 2015; Nicholson, Keogh &
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Choy, 2018). The vibrotactile stimulation in our study was anticipated to provide essential
sensory input, thereby enhancing this internal representation through proprioception.
Specifically, the stimulation of the digits aimed to enrich the ERD response during MI
by bolstering the sensory information needed to generate this internal representation
(Rulleau et al., 2018). Therefore, the application of short vibrotactile stimulation before
MI in our online BCI training phase was a decision rooted in these empirical insights. We
hypothesized that this approach would improve the efficiency of the BCI by enhancing the
clarity and precision of the MI-related neural signals, as suggested by our previous study’s
results in offline BCI classification.

Incorporating control mechanisms in therapeutic devices is pivotal for the efficacy
of robotic-assisted rehabilitation training. Specifically, patients suffering from acute
hemiplegia show promising improvements when engaged in a passive training regimen.
This approach involves the automated guidance of the impaired limb following a set
trajectory, enabling passive yet repetitive movements (Rahman et al., 2012). The design
of these rehabilitation systems is inherently more complex than conventional robotic
manipulators, given the intricate non-linear dynamics of the robots, the presence of
unforeseen external disturbances, and the unique viscoelastic characteristics of human
joints (Wu, Chen & Wu, 2019). To refine the precision of position control in repetitive
reaching exercises, various innovative control strategies have been implemented in
rehabilitation robots. These strategies range from adaptive control (Feng et al., 2016) and
flatness-based control (Brahmi et al., 2021) to EMG-based control (Rahman, Ochoa-Luna
& Saad, 2015), admittance control (Ayas & Altas, 2017), and a blend of fuzzy logic and
backstepping control (Chen, Li & Chen, 2016). Building on these developments, evaluating
the feasibility of integrating BCI control with an end-effector type robot presents a
novel avenue in robotic rehabilitation. The addition of BCI control could offer a more
personalized and responsive rehabilitation experience. By interpreting the patient’s neural
signals directly, the BCI system can potentially provide real-time adjustments to the robot’s
movements, aligningmore closely with the patient’s intendedmotor functions. This synergy
between neural intent and robotic movement could not only enhance the effectiveness
of the therapy but also potentially accelerate the patient’s recovery by promoting active
participation and neuroplasticity. However, this integration poses significant challenges,
including the need for robust signal processing algorithms to accurately interpret neural
signals and the development of adaptive control strategies that can seamlessly respond to
these signals in a dynamic rehabilitation environment.

In our study, we developed a virtual version of an end-effector robot designed for a
unique game where participants were tasked with popping balloons using the robot. The
selection of classifiers and signal processing techniques for our virtual prototype drew
upon extensive research, guided by insights from previously published systematic reviews
(Palumbo et al., 2021; Prashant, Joshi & Gandhi, 2015; Camargo-Vargas, Callejas-Cuervo &
Mazzoleni, 2021). However, the final design of our model was also shaped significantly by
observations made during the training sessions with participants. It is crucial to underscore
that our prototype serves as an initial proof of concept. Its primary purpose is to assess the
viability and potential enhancements in the design of BCIs for upper limb rehabilitation.

Lakshminarayanan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2174 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2174


Interestingly, we observed that participants displayed greater engagement andmotivation
during the video game interaction phase compared to the initial setup and training phases.
Many studies have concentrated on the need to give sufficient feedback to individuals
during training in the MI and BCI loops (Ono, Kimura & Ushiba, 2013; Vuckovic &
Osuagwu, 2013). The feedback appears to be connected to the development of the MI
ability since it improves the command classification accuracy in the BCI (González-Franco
et al., 2011). Feedback further enhances the training regimen, makes it more interactive,
and helps improve the subject’s interest in and participation in the activity. The most
commonly used and widely investigated method of feedback is visual, which requires the
participant to focus attention and concentrate on the BCI system (López-Larraz et al.,
2011). Our findings reinforce the idea that interactive feedback is not only engaging but
also facilitates a more effective training process and a stronger connection between the BCI
system and the user.

Our study faced several limitations, one of which is the classification accuracy percentage,
though above the statistical chance level, is still not high as seen in other similar MI studies.
This could be due to the limited number of participant and the inter-subject variability
in EEG signals. Furthermore, the study only tested healthy participants making it hard to
generalize the BCI results. However, the aim of the study is to develop a prototype for a
virtual iTBot rehabilitation robot controlled via BCI which we were able to accomplish.
Future studies will focus on improving the BCI classification accuracy by employing other
algorithms and testing patient population as well.

CONCLUSION
Our study explored the integration of BCI technology with a virtual end-effector robot in a
game setting. The results of our study highlight the potential of BCI technology in offering
a more engaging, personalized rehabilitation experience. Participants showed increased
motivation during the gaming phase, underscoring the importance of interactive feedback
during rehabilitation exercises. While it opens promising avenues for future research in
integrating rehabilitation robots with BCI control, it also highlights the challenges in
achieving higher classification accuracy.
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