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ABSTRACT
The maximum clique problem in graph theory is a well-known challenge that involves
identifying the complete subgraph with the highest number of nodes in a given graph,
which is a problem that is hard for nondeterministic polynomial time (NP-hard
problem). While finding the exact application of the maximum clique problem in the
real world is difficult, the relaxed clique model quasi-clique has emerged and is widely
applied in fields such as bioinformatics and social network analysis. This study focuses
on the maximum quasi-clique problem and introduces two algorithms, NF1 and NR1.
These algorithms make use of previous iteration information through an information
feedback model, calculate the information feedback score using fitness weighting, and
update individuals in the current iteration based on the benchmark algorithm and
selected previous individuals. The experimental results from a significant number of
composite and real-world graphs indicate that both algorithms outperform the original
benchmark algorithm in dense instances, while also achieving comparable results in
sparse instances.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords γ -quasi-clique, Metaheuristic algorithm, Information feedback model, Historical
iteration

INTRODUCTION
Given a graph, a clique is a subset of vertices where each pair of vertices is adjacent, which
is a fundamental concept in graph theory. The Maximum Clique Problem (MCP) is a well-
known problem in this field (Akhtanov et al., 2022). However, in practical applications, the
strict definition of clique has significant limitations because it requires direct adjacency
between all pairs of vertices. To address this problem, the maximum γ -quasi-clique
problem (MQCP) extends theMCP and finds applications in various fields such as complex
network analysis (Tenekeci & Isik, 2020), clustering (Chen et al., 2019), and bioinformatics.
For instance, when searching for groups on social networks (Conde-Cespedes, Ngonmang
& Viennet, 2018), members may not be directly connected but can still form a closely
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connected social circle as a whole. Using the maximum clique concept alone might
overlook members with indirect connections in social network.

By utilizing the concept of relaxed cliques, specifically maximum γ -quasi-cliques, we
can uncover these absent member connections. Real-world social networks exhibit intricate
interpersonal relationships, and the maximum γ -quasi-clique model corresponds more
effectively to the connectivity structures observed in social networks.

Given a graph G= (V ,E) and a fixed constant γ ∈ (0,1], V and E are the vertex and
edge sets of graph G, respectively. ds(v) representing the degree of vertex v in solution set
S, and NG(v) are the adjacent vertex sets of vertex v in graph G. A γ -quasi-clique G[S]
is a graph induced by a subset V of vertices, such that dens(G[S])≥ γ , where γ ∈ (0,1] is
a fixed constant, dens(G)= |E|/(|V | ∗ (|V |−1)/2). The goal of MQCP is to identify the
largest γ -quasi-clique Sbest in the graph. MCP is a special case of MQCP. For each fixed
constant γ ∈ (0,1], MQCP is an NP-hard problem.

RELATED WORK
There are two main types of MQCP algorithms: exact algorithms and heuristic algorithms.
In recent years, several exact algorithms have been introduced to address the MQCP
(Djeddi, Haddadene & Belacel, 2019). However, these algorithms are limited to handling
small or medium-sized problems due to their high time complexities. Conversely, heuristic
algorithms like evolutionary algorithms can produce high-quality solutions for large-scale
MQCPs within a reasonable time frame (Pinto et al., 2018a; Pinto et al., 2018b), although
they do not guarantee optimality. To strike a balance between solution quality and time
complexity, some hybrid algorithms combine both exact and heuristic elements (Zhou, Liu
& Gao, 2023).

Pattillo et al. (2013) initially outlined key characteristics of the maximum γ -quasi-clique
problem, demonstrating NP-completeness for fixed decision versions with 0< γ < 1,
defining quasi-hereditary properties, and establishing an upper bound for analyzing
maximum γ -quasi-clique size. They also presented a mixed integer programming (MIP)
formulation and shared preliminary numerical results obtained through advanced solvers
to identify exact solutions. Subsequently, Pastukhov et al. (2018) introduced a branch
and bound algorithm for exact solutions to the maximum degree-based quasi-clique
problem, alongside a degree-based decomposition heuristic. More recently, Ribeiro &
Riveaux (2019) devised an exact enumeration algorithm that utilized the quasi-hereditary
property, supporting backtracking search tree strategies. Additionally, they introduced a
novel upper bound that consistently outperforms previous bounds, leading to a significant
reduction in search space and enumerated subgraphs.

Miao & Balasundaram (2020) defined the maximum γ -quasi-clique problem as an
optimization problem with a linear objective and a single quadratic constraint in binary
variables. They explored the Lagrangian dual of this formulation and introduced an upper
bounding technique using ellipsoid geometry to enhance the dual bound. Experimental
results on standard benchmarks demonstrated that the upper bound surpasses the bounds
obtained through mixed integer programming (MIP). One practical application of the
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maximum clique problem is in identifying hidden quasi-cliques. Abdulsalaam & Ali
(2021) focused on recovering planted quasi-cliques and introduced a convex nuclear
norm minimization (NNM) formulation. Through numerical experiments utilizing
existing mixed-integer programming formulations, the study found that the convex
formulation outperforms the mixed-integer programming approach when γ exceeds a
specific threshold.

Yu & Long (2023) proposed a new branch-and-bound algorithm FastQC and its
improved version DCFastQC, which significantly improved the computational efficiency
of the maximum quasi-clique enumeration problem by combining improved pruning
technology and new branching methods. It solves the efficiency bottleneck of existing exact
algorithms in dealing with this NP-hard problem, and verifies the significant performance
improvement of the new method on real data sets through a large number of experiments.

Marinelli, Pizzuti & Rossi (2021) proposed a new MIP reformulation [Dγ ] for the
γ -quasi-clique problem, derived from decomposing star inequalities. This reformulation
has shown similar performance to the tightest formulation [Cγ ] in existing literature.
Experiments also indicate that the surrogate relaxation [DS

γ ] produces comparable bounds.
The task of cohesive subgraph mining in static graphs has been extensively studied
in network analysis over the years. Lin et al. (2021) tackled this challenge by utilizing
traditional quasi-cliques and introducing a new model called maximal ρ-stable (δ,γ )-
quasi-clique to evaluate subgraph cohesion and stability. They developed a novel temporal
graph reduction algorithm to preserve all maximal ρ-stable (δ,γ )-quasi-cliques while
simplifying the temporal graph significantly. Furthermore, they introduced an efficient
branch-and-bound enumeration algorithm, BB &SCM, for the simplified temporal graph.

Despite the optimality guarantees of exact algorithms, their feasibility is limited for large-
scale quasi-clique instances. On the other hand, there are many fast heuristic algorithms
that efficiently handle such instances, providing good approximate solutions within
reasonable time frames. For example,Khosraviani & Sharifi (2011) introduced a distributed
γ -quasi-clique extraction algorithm using the MapReduce model, demonstrating excellent
scalability. The optimization of alternative density functions is crucial for finding dense
subgraphs. One widely adopted function is average degree maximization, leading to the
concept of the densest subgraph. Tsourakakis et al. (2013) defined a novel density function
that surpasses the densest subgraph in generating higher-quality subgraphs. They also
developed an additive approximation algorithm and a local search heuristic algorithm to
optimize this novel density function.

Mahdavi Pajouh, Miao & Balasundaram (2014) were the first to develop a combined
branch-and-bound algorithm for solving the maximum γ -quasi-clique problem,
utilizing an upper bound technique. Their findings highlight the algorithm’s competitive
performance, especially in sparse random graph instances and DIMACS clique benchmark
instances. Lee & Lakshmanan (2016) introduced the core tree concept, which organizes
dense subgraphs recursively, reduces the search space, and assists in finding solutions
through multiple tree traversals. They proposed three improved operations—add, delete,
and exchange—to improve solutions, along with two iterative maximization algorithms,
DIM and SUM, which approach QMQ deterministically and stochastically, respectively.
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Pinto et al. (2018a) and Pinto et al. (2018b) proposed two variants of a biased random
key genetic algorithm for solving the maximum quasi-clique problem and evaluated
the corresponding algorithm variables. They enhanced an optimized iterative greedy
algorithm by constructing a heuristic decoder to produce superior numerical results. The
results of their calculations demonstrate that this novel method improves upon existing
heuristic algorithms. In their subsequent research, Pinto et al. (2021) introduced a new
approach to addressing the maximal cardinality quasi-clique problem. Their LSQClique
algorithm, which combines a biased random-key genetic algorithm (BRKGA) with an
exact local search strategy, presented an innovative solution. Alongside this algorithm, they
introduced DECODER-LSQClique, a comprehensive method for solving the quasi-clique
problem.

In a related study, Zhou, Benlic & Wu (2020) proposed the opposition-based memetic
algorithm (OBMA), which utilizes a backbone-based crossover operator to create new
offspring and incorporates a constrained neighborhood taboo search for local optimization.
By integrating opposition-based learning (OBL), the algorithm enhances the search
capabilities of traditional memetic algorithms, providing a robust solution. Additionally,
Peng et al. (2021) introduced the hybrid artificial bee colony algorithm (HABC) to tackle
the MQC problem. This novel approach integrates various specialized strategies into
the artificial bee colony framework. The algorithm starts with an opposition-based
initialization phase and then cycles through employed bees, onlooker bees, and scout
bees phases iteratively to effectively conduct the search.

Khalil et al. (2022) introduced a parallel solution for extracting maximal quasi-cliques
by utilizing the distributed graphics mining framework G-thinker. G-thinker is specifically
tailored for single-machine multi-core environments to improve accessibility for regular
end-users. In order to simplify the development of parallel applications, the researchers
also created a general framework called T-thinker, focusing on a divide-and-conquer
strategy. The study also addresses the difficulty of mining large quasi-cliques directly from
the dense regions of a graph. They identified and effectively resolved the issue of repeated
searches associated with the nearest method by implementing a well-designed concurrent
data structure called a trie.

Sanei-Mehri et al. (2021) focused on enumerating top-degree-based quasi-cliques and
highlighted the NP-hard nature of determining the largest quasi-clique. Their method
involves identifying kernels of dense and large subgraphs, expanding subgraphs around
these kernels to achieve the desired density. They proposed the kernelQC algorithm as a
heuristic approach for enumerating the k-largest quasi-clique in a graph. In a related study,
Payne et al. (2021) introduced the Automatic Quasi-Clique Merger (AQCM) algorithm,
derived from the QCM (quasi-clique merger). AQCM performs hierarchical clustering in
datasets, using a relevant similarity measure to assess the similarity between data sets.

Recently,Chen et al. (2021) proposedNuQClq, a local search algorithm that incorporates
two innovative strategies. The first strategy addresses tie-breaking in the primary scoring
function by introducing a new secondary scoring function. The second strategy overcomes
local search stagnation by introducing a novel configuration checking strategy named
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BoundedCC . Experimental results demonstrate the algorithm’s superior performance,
surpassing all existing methods.

In addition, there have been many studies on the quasi-clique problem in recent years.
Ali et al. (2023) proposed a new hierarchical graph pooling method Quasi-Clique Pool,
which is based on the concept of quasi-clique to extract dense incomplete subgraphs in
the graph, and introduces a soft peeling strategy to preserve the topological structure
relationship between nodes. Experimental results show that combining Quasi-Clique Pool
with the existing graph neural network architecture improves the accuracy by an average
of 2% on six graph classification benchmarks, which is better than other existing pooling
methods. Konar & Sidiropoulos (2024) studied the optimal quasi-clique problem (OQC)
and revealed that the density of the OQC solution obtained by continuous changes in
parameter values is equal to that of the classic densest- k-subgraph problem. Santos et al.
(2024) conducted a study on the multi-objective quasi-clique problem (MOQC), which
aims to maximize both the number of vertices and the edge density of the quasi-clique.
This problem is an extension of the single-objective quasi-clique problems, such as the
maximum quasi-clique problem and the dense- k-subgraph problem. They discussed the
relationship between the MOQC problem and the single-objective quasi-clique problem,
and introduced some theoretical properties. Additionally, based on the ε-constraintmethod
algorithm, a three-stage strategy method is proposed to solve the MOQC problem.

Elephant Herding Optimization (EHO) is a meta-heuristic optimization algorithm
inspired by the natural behavior of elephant herds. It utilizes an information feedback
model to adjust the distances of elephants within each clan in relation to their maternal
elephant’s position. The efficacy of the EHO method has been validated across various
benchmark problems (Li et al., 2020), establishing its superiority in optimization. Shao &
Fan (2021) introduced the BAS algorithm, which incorporates an elite selectionmechanism
and a neighbor mobility strategy. Initially, the algorithm computes the Euclidean distance
between individual fitness values and the optimal individual fitness. If this distance falls
below a predetermined threshold, individual positions are dynamically updated to enhance
population diversity. Elite individuals, showing strong convergence and robustness, are
then chosen to lead other individuals in exploring better positions. In a similar context,
Qin et al. (2023) proposed the Historical Information-based Differential Evolution (HIDE)
algorithm. This algorithm introduces a mechanism to identify individuals in a stagnant
state and amutation strategy based on discarded parent vectors from different time periods,
enabling stagnant individuals to escape local optima. Moreover, a novel control parameter
update method based on historical information was devised.

This article presents a new algorithm for identifying maximum γ -quasi-clique, inspired
by the NuQClq algorithm and incorporating an information feedback model. While this
model has been widely used in various fields, its application to guide γ -quasi-clique
search algorithms is a unique approach. The subsequent sections of this study explore
the secondary scoring function, information feedback model, and two newly proposed
algorithms. Experimental analyses are performed on these variations to evaluate their
effectiveness. The organization of the following sections is as follows: first, we discuss the
secondary scoring function; second, we focus on the information feedback model. Then,
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we introduce the NF1 and NR1 algorithms. The experimental results are detailed in the
Experiment section. Finally, conclusions are drawn to summarize the key findings.

SECONDARY SCORING FUNCTION
Before introducing the information feedback model, it is important to first explain the
secondary scoring function in NuQClq. In the main scoring function of the previous
MQCP heuristic algorithm, many vertices often have identical scores, leading to a higher
risk of results converging to local optima. To address this issue, the author introduced a
secondary scoring function based on the concept of cumulative saturation. This function
calculates the secondary score of a vertex by considering variables such as ds(v) and recent
trends, aiding in the decision to add or remove the vertex.

They are based on the number of endpoints included in S (recorded asλ(e)) to distinguish
each edge, i.e. for any edge, There are three possible values.

• λ(e)= 0 means the endpoint of e is not included in S.
• λ(e)= 1 means that S contains only one endpoint of e. if and only if λ(e)= 1, an edge
is called critical.
• λ(e)= 2 means that both endpoints of E are in S. if and only if λ(e)= 2, this edge is
called full.

Encouraging critical edges to transform into full edges is essential for finding the
maximum γ -quasi-clique. The main scoring function overlooks the results of intermediate
steps, hindering the ability to obtain better results. To address this, the intermediate process
should be recorded and analyzed. This is achieved by defining a vertex property known as
saturation. In the local search algorithm, the saturation of vertex v at step t in the input
graph G= (V ,E) is calculated as follows:

0t (v)=
∑

e∈E(v)

I (e) (1)

I (e) is an indicator of critical, i.e λ(e)= 1, I (e)= 1, otherwise I (e)= 0. Based on the
concept of saturation, a cumulative saturation function is designed as the secondary
scoring function of NuQClq algorithm:

0(v)=
T∑

t=t0(v)

0t (v)−TS(v) ·1G (2)

where t is the current number of steps, t0is the number of steps that vertex v changed its
state (added or deleted) last time, and TS(v) is the number of steps of vertex v since t0,4G
is the maximum degree of vertex v in the vertex set V . At the current step t , there are two
situations.

Situation 1 v 6∈ S
In this situation, TS(v)= 0. So, 0(v) is the sum of 0t (v) over steps since t0(v). And we

prefer to add vertices with bigger 0(v).
Situation 2 v ∈ S
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In this situation,0(v)≤ 0. Andwe prefer to remove vertices with smaller0(v) (i.e., bigger
|0(v)|).

Based on the above situation, the addition rules and deletion rules of vertices are obtained
respectively.

Add rule
Select the vertex with the highest ds(v) value( ds(v)indicates the number of vertices
connected to vertex v in S), and select the vertex with the highest 0(v) value to break the
ties, and further ties will be broken randomly.

Delete rule
select the vertex with the lowest ds(v) value, and select the vertex with the highest |0(v)|
value to break the ties, and further ties will be broken randomly.

The concept of secondary scoring function is an important foundation for our newly
proposed two variants based on the information feedback model. Next, we will introduce
the information feedback model.

INFORMATION FEEDBACK MODEL
The MQCP heuristic algorithm progresses through various stages: parameter and solution
set initialization, iterative search, and result output. However, in the iterative search phase
typical of many metaheuristic algorithms, the valuable insights gathered from vertices
in previous iterations are frequently overlooked. Leveraging this information during the
search process offers a promising opportunity for significantly enhancing the quality of
the final results. Wang & Tan (2017) introduced an information feedback model aimed at
leveraging insights from previous vertices to guide subsequent searches. Using a simple
fitness weighting approach, individuals in the current iteration are updated with basic
algorithms and selected past individuals. Through experimental validation, the authors
demonstrated the superior performance of the variant over the basic algorithm on 14
standard test functions and 10 real-world problems from CEC2011. Several algorithms
have been improved by integrating information feedback models, such as the MOEA/D
algorithm. Zhang et al. (2020) further enhanced this with their MOEA/D-IFM algorithm,
incorporating information feedback models and a new selection strategy for better
performance. On the other hand, while NSGA-III excels in multi-objective optimization,
it struggles with large-scale problems. To address this, Gu &Wang (2020) integrated an
information feedback model into NSGA-III, significantly enhancing its capabilities for
large-scale optimization. Experimental results confirm the competitive performance of
their proposed algorithm across various test problems.

Assuming x ti is the i-th individual in the t -th iteration, and f ti is its fitness value. Here t
is the current iteration, 1≤ i≤K is an integer, K is the population size, and in the MQCP
problem, K is the number of vertices. y t+1i is the individual generated by the original
algorithm, and f t+1i is its fitness. The framework of the information feedback model is
provided by individuals in the t −2, t −1, t and t +1 iterations. By selecting different
numbers of individuals, the model can be extended to different forms such as F1, R1, F2,
R2, etc. Below are examples of F1 and R1 types.
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F1 and R1
This is the simplest case. The i-th individual can be generated as follows:

x t+1i =αy t+1i +βx
t
j (3)

where x tj is the position of individual j(j ∈ {1,2,...,K }) at t , and f tj is its fitness. α and β
are weighting factors that satisfy α+β = 1. They can be given as:

α=
f tj

f t+1i + f tj
,β =

f t+1i

f t+1i + f tj
(4)

Individual j can be determined by the following definition.

Definition 1
When j = i, the model in Eq. (3) is called model F1.

Definition 2
When j =m, the model in Eq. (3) is called model R1, where m is a randomly selected
individual between 1 and K , excluding i.

The population diversity of individuals generated by Definition 2 is higher than that of
individuals generated by Definition 1. Whenm= i, Model R1 will have an F1 probability of
1/K . The binding of these individuals with the NuQClq algorithm results in NF1 and NR1,
respectively. The information feedback model q (where q represents the number of selected
individuals) theoretically has the ability to select previous individuals, but the method
becomes more complex when a large number of individuals are used. Experimental results
show that when q≥ 2, the outcomes are very unsatisfactory. Hence, this article showcases
the improved algorithms NF1 and NF2 when q= 1. Our algorithm flowchart is shown in
Fig. 1.

NF1 AND NR1
The local search algorithm is a heuristic approach used to solve optimization problems.
This method iteratively explores the solution space from a starting point to improve
solution quality. Unlike exact algorithms that ensure optimality but may face challenges
with large-scale instances, local search algorithms provide faster, approximate solutions,
making them suitable for larger problems. In optimization, these algorithms are widely
applied for navigating complex solution spaces and offering reasonable solutions within a
reasonable time.

In many scenarios, we cannot get the global state of the graph. In this case, the artificial
intelligence approach of local search can effectively solve the problem because it only
needs local information to perform the search operation. When solving the maximum
quasi-clique problem, the local search algorithm can adjust the quality of the solution by
adding or removing vertices according to the current state, without the support of global
graph information. The advantage of this local search method is that it can quickly find the
local optimal solution without complete graph information, so it is practical and feasible in
solving practical problems. A local search algorithm follows a basic process: starting with a
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Figure 1 Flowchart for two variants.
Full-size DOI: 10.7717/peerjcs.2173/fig-1

randomly generated solution, it uses a specific strategy to gradually improve this solution
within the solution space, with the goal of finding a better solution. After a set number of
iterations, if no better solution is found, the algorithm either stops or starts a new search
with a new randomly generated solution. The key element of the algorithm is the vertex
selection mechanism, which determines the search direction and impacts the effectiveness
of the overall local search strategy.

The information feedback model adopts specific calculation methods for different
parameters in different problem domains. For example, the particle swarm optimization
algorithm (Wang & Tan, 2017) incorporates inertial parameters in fitness calculation to
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control flying dynamics. On the other hand, when addressing the maximum quasi-clique
problem, vertex degree becomes a crucial parameter for evaluating fitness. However, relying
solely on vertex degrees often leads to suboptimal results. The NuQClq algorithm proposed
by Chen et al. (2021) introduces a comprehensive evaluation parameter that proves to be
more effective. The algorithm’s secondary scoring function captures important information
related to vertices in the maximum quasi-clique problem, including neighboring points’
degrees and vertex degrees. In our enhanced algorithm, we have implemented two two-
dimensional arrays, namely scoreHistory and populationHistory, to meticulously record the
secondary scores assigned to vertices by the NuQClq algorithm in each iteration, along
with the quasi-clique size. By leveraging this compiled information, we carefully select the
vertices to participate in subsequent iterations.

Model 1: Imformation Feedback F1
Input: a graph G= (V ,E); current iteration rounds;
vertex v
Output: imformation feedback score;
1. while current iteration round ≥ 3 do
2. calculate f ti and f t+1i with scoreHistory(v);
3. calculate α and β with f ti and f t+1i ;
4. calculate imformation feedback score with α, β
and populationHistory(v);
5. return imformation feedback score.

Model 2: Imformation Feedback R1
Input: a graph G= (V ,E); current iteration rounds;
vertex v
Output: imformation feedback score;
1. while current iteration round ≥ 3 do
2. select u∈V randomly;
3. calculate f tj and f t+1i with scoreHistory(v);
4. calculate α and β with f tj and f t+1i ;
5. calculate imformation feedback score with α, β,
populationHistory (u) and
populationHistory(v);
6. return imformation feedback score.

The calculation of F1 and F2 begins when the current iteration count is 3 or more. F1
computes f ti and f t+1i using scoreHistory values of vertex v from the previous and current
iterations. R1 randomly selects a vertex u and computes f tj and f t+1i based on scoreHistory
values of u in the previous iteration and v in the current iteration. The resulting fitness
values are then used to derive α and β, which, along with populationHistory values from
previous and current iterations, inform information feedback scores for guiding vertex
selection or deletion strategies in the next iteration. Two variants of the NuQClq algorithm,
NF1 and NR1, are derived from these models, as depicted in Algorithm 1 .
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Utilizing the model outlined above, we delineate a comprehensive process for two
variants of theNuQClq algorithmdesigned to tackle themaximum γ -quasi-clique problem:
NF1 andNR1 (outlined in Algorithm 1). The algorithm initiates by establishing the selected
vertex set, denoted as S (line 1), employing the construction method from NuQClq to
formulate viable solutions. Subsequently, a local search strategy is employed to refine
these solutions. When S represents a γ -quasi-clique with an edge density not falling below
γ , the algorithm endeavors to augment S by adding more vertices. Each vertex, during
addition or removal operations, maintains its secondary score for the current iteration
scoreHistory(v) and the size of the γ -quasi-clique populationHistory(v). The algorithm
then calculates the information feedback score, incorporating the F1 or R1 information
feedbackmodel. The vertex addition operation involves selecting the vertex with the highest
score (line 4). Conversely, if S does not constitute a γ -quasi-clique, the algorithm adds a
vertex to S by choosing the one with the highest information feedback score (line 9), while
removal involves selecting the one with the lowest information feedback score (line 11). In
cases where a suitable solution cannot be found within certain iterations and the specified
execution time has not been reached, the algorithm initiates a restart (Line 14).

Algorithm 1: NF1 and NR1
Input: a graph G= (V ,E); the parameter γ
Output: the best γ -quasi-clique Sbest ;
1. S← an initial solution; current iteration round← 0;
2. while current iteration round <MaxRound do
3. if dens(G[S])≥ γ then
4. select a vertex v by choosing highest imformation feedback score, and
S← S∪v ;
5. update scoreHistory (v) and populationHistory(v);
6. update Sbest if a new better solution is found;
7. current iteration round← 0;
8. else
9. select v by choosing highest imformation feedback score; S← S∪v ;
10. update scoreHistory(v) and populationHistory(v);
11. select u by choosing lowest imformation feedback score; and S← S\u;
12. update scoreHistory(u) and populationHistory(u);
13. current iteration round← current iteration round+1;
14. if not reach the limited time then restart the algorithm;
15. return Sbest .

In algorithms, the space complexity of the two-dimensional arrays scoreHistory and
populationHistory depends on their number of rows and columns, which correspond to the
maximum number of iterations and total number of vertices, respectively. Therefore, the
spatial complexity is O(M ·V ). Vertex selection is mainly achieved through information
feedback scoring, which involves tasks like comparing target values and updating result
arrays. The time complexity of these operations is mainly influenced by the size of the
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candidate array, leading to an overall algorithm time complexity of O(M ·V ), where M is
the maximum number of iterations and V is the total number of vertices.

The algorithm records historical second-level rating information and maximum γ -
quasi-clique information obtained from each iteration of every vertex. When the iteration
number is 3 or higher, the information feedback rating is calculated, and vertex selection
is based on this rating. If the number of iterations is less than 3, a vertex v is randomly
selected from the set to add to the candidate set, and its second-level score is calculated,
along with recording themaximum cluster it forms.When the iteration reachesMaxRound,
the process resets to 0 and continues until the restricted search time is reached.

EXPERIMENT
Our novel variants and the NuQClq algorithm differ in their approach to enhancing
search diversity. While NuQClq uses a secondary scoring function, it does not fully utilize
information from previous vertices to guide the search comprehensively. On the other
hand, our proposed variants consider the maximum γ -quasi-clique formed by historical
vertices as crucial information. They incorporate the secondary scoring function into
fitness evaluation, introducing a weighted calculation that includes the maximum clique
formed by vertices from both current and previous iterations. This process generates an
information feedback score, guiding the γ -quasi-clique search. In the following sections,
we will present the results of experimental analyses conducted on the two variants and
NuQClq.

Table 1 presents the experimental outcomes of NuQClq, NF1, and NR1 across 50
instances in dense instance. The search time was limited to a maximum of 1000 seconds per
instance. NF1 demonstrated superior or comparable results in 48 instances, highlighting
its effectiveness. However, exceptions were noted in the DIMACS benchmark graph
C2000.9 and BIHOSLIB instance graph frb59-26-2, both with a density threshold γ of
0.95, where NF1 slightly underperformed NuQClq. On the other hand, NR1, with a
density threshold γ of 0.95, showed a lower result for C2000.9 compared to NuQClq but
performed better in the remaining 49 instances. Interestingly, both variants consistently
achieved better or comparable results for all instances at a density threshold γ of 0.999.
These experimental results highlight the effectiveness of NF1 and NR1 in addressing
the maximum γ -quasi-clique problem, particularly showing improvements at a higher
density threshold of γ = 0.999. These advancements suggest the potential impact of these
algorithms on real-world instances.

In light of the properties of sparse graphs, we opted to evaluate the efficiency of three
algorithms at reduced quasi-clique density thresholds. Table 2 displays the outcomes of
the experiments conducted on sparse graphs using these algorithms. The results suggest
that NF1 and NF2 are capable of identifying the largest quasi-clique in sparse graphs.
Additionally, we performed a statistical analysis on the degree distribution of vertices in
both dense and sparse graphs, selecting 5 representative graphs of each type to capture the
overall patterns. Figures 2 and 3 depict the vertex degree distribution of the sparsely and
partially densely populated graphs that were examined.
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Table 1 Comparison of experimental results in dense instance.

Instance |V | |E| γ NuQClq NF1 NR1

0.999 29 29 29
Brock400_2 400 59786

0.95 40 40 40
0.999 31 31 31

Brock400_3 400 59681
0.95 39 39 39
0.999 69.9 70 70

C1000.9 1000 450079
0.95 222 222 222
0.999 79.3 80.4 79.9

C2000.9 2000 1799532
0.95 288 285.5 285.4
0.999 44 44 44

gen200_p0.9_44 200 17910
0.95 104 104 104
0.999 55 55 55

gen400_p0.9_55 400 71820
0.95 183 183 183
0.999 66 66 66

gen400_p0.9_65 400 71820
0.95 197 197 197
0.999 40 40 40

hamming10-4 1024 434176
0.95 87.2 87.7 87.8
0.999 50 50.3 50

frb50-23-1 1150 580603
0.95 164 164 164
0.999 50 50.2 50

frb50-23-2 1150 579824
0.95 161 161 161
0.999 50.9 51 51

frb50-23-4 1150 580417
0.95 162 162 162
0.999 50.7 50.9 50.7

frb50-23-5 1150 580640
0.95 165 165 165
0.999 52.8 52.9 52.8

frb53-24-1 1272 714129
0.95 204 204 204
0.999 53 53 53

frb53-24-2 1272 714067
0.95 177 177 177
0.999 52.3 52.7 52.8

frb53-24-4 1272 714048
0.95 185 185 185
0.999 52.3 52.9 53.1

frb53-24-5 1272 714130
0.95 175 175 175
0.999 58.1 58.3 58.2

frb59-26-1 1534 1049256
0.95 248 248 248
0.999 58.1 58.3 58.2

frb59-26-2 1534 1049648
0.95 244 243.7 243.7
0.999 58 58.2 58.1

frb59-26-4 1534 1048800
0.95 238 238 238
0.999 58.6 58.6 58.6

frb59-26-5 1534 1049829
0.95 231 231 231
0.999 10 10 10

p-hat1000-1 1000 122253
0.95 12 12 12

(continued on next page)
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Table 1 (continued)

Instance |V | |E| γ NuQClq NF1 NR1

0.999 47 47 47p-hat1000-2 1000 244799
0.95 109 109 109
0.999 70 70 70

p-hat1000-3 1000 371746
0.95 210 210 210
0.999 12 12 12

p-hat1500-1 1500 284923
0.95 14 14 14
0.999 67 67 67

p-hat1500-2 1500 568960
0.95 193 193 193

In the dense graph tested, there are no distinct discontinuities in the degree distribution
of vertices. The degrees of vertices cover a range from 1 to the total number of vertices
in each graph, with the highest degree almost reaching the total number of vertices. The
NF1 and NR1 algorithms rely on historical vertex information for selection, and the dense
graph ensures rich connection relationships between vertices, providing comprehensive
vertex information. This allows NF1 and NR1 to effectively leverage this rich connectivity
for better results. In contrast, sparse graphs exhibit discontinuous degree distributions and
weaker vertex connections, resulting in less significant impact for NF1 and NR1, although
results comparable to NuQClq can still be achieved.

Our proposed variants utilize two variables, scoreHistory and populationHistory, to track
the historical secondary scores and the maximum historical γ -quasi-clique of each vertex
across different iterations. The number of maximum iterations in the algorithm plays a
crucial role in influencing the results. Figures 4 and 5 depict the impact of variant F1 and
variant R1 on the algorithm at varying maximum iterations, respectively.

We have analyzed various examples using different maximum iterations such as 4,000,
2,000, and 1,000. Our findings show a noticeable variance in results across these iterations.
Specifically, when comparing F1 and R1 scores, the 4,000 iteration mark outperforms
NuQClq. Consequently, we have determined that setting the maximum number of
iterations to 4,000 in the algorithm yields superior outcomes.

Table 3 illustrates the search performance of each algorithm across different instances.
Despite my algorithm displaying a slightly higher average search time compared to the
comparison algorithms, all results remain well below the maximum search time limit of
1000 seconds. This indicates that while there may be a slight increase in search time in
certain scenarios, overall it remains within an acceptable range and does not exceed the
predetermined time limit, thereby not significantly impacting the algorithm’s practicality.
Moving forward, reducing search time will be a key focus for our future research endeavors.
In general, the discovery of larger γ -quasi-cliques holds vast potential for the analysis and
optimization of diverse complex systems. This contributes to a deeper understanding of
the internal structure and relationships within the system, offering more effective methods
and strategies for addressing real-world problems.
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Table 2 Comparison of experimental results in sparse instance.

Instance |V | |E| γ NuQClq NF1 NR1

0.9 136 136 136
0.8 150 150 150
0.7 176 176 176
0.6 199 199 199

bio-
WormNet 2444 78731

0.5 241 241 241
0.8 4 4 4
0.7 5 5 5CSphd 1882 1740

0.6 6 6 6
0.7 6 6 6
0.6 7 7 7delaunay_n10 1024 3056

0.5 9 9 9
0.6 6 6 6

EX2 560 4368
0.5 9 9 9
0.7 5 5 5

G44 1000 9990
0.6 6 6 6
0.9 8 8 8
0.8 10 10 10
0.7 13 13 13
0.6 17 17 17

145bit 1002 11315

0.5 22 22 22
0.9 13 13 13
0.8 15 15 15
0.7 17 17 17
0.6 20 20 20

ia-
email-
univ

1133 5451

0.5 25 25 25
0.7 9 9 9
0.6 11 11 11

ia-
fb-
message

1266 6451

0.5 16 16 16
0.7 4 4 4
0.6 5 5 5

inf-
euroroad

1171 1417

0.5 6 6 6
0.9 29 29 29
0.8 32 32 32
0.7 40 40 40
0.6 49 49 49

soc-
hamsterster 2426 16630

0.5 63 63 63
0.9 58 58 58
0.8 76 76 76
0.7 95 95 95

soc-
FourSquare 639014 3214986

0.6 117 117 117
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Figure 2 Degree distribution of dense graphs.
Full-size DOI: 10.7717/peerjcs.2173/fig-2

Figure 3 Degree distribution of sparse graphs.
Full-size DOI: 10.7717/peerjcs.2173/fig-3
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Figure 4 The results of variant NF1 under different iterations.
Full-size DOI: 10.7717/peerjcs.2173/fig-4

Figure 5 The results of variant NR1 under different iterations.
Full-size DOI: 10.7717/peerjcs.2173/fig-5
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Table 3 The search time for each instance.

Instance γ NuQClq NF1 NR1 Instance γ NuQClq NF1 NR1

0.999 18.05 46.65 41.13 0.9 0.01 0.19 0.24
Brock400_2

0.95 0.01 0.17 0.24 0.8 0.13 0.61 0.46
0.999 37.24 61.19 103.18 0.7 0.11 0.61 0.33

Brock400_3
0.95 0.01 0.09 0.03 0.6 0.07 0.39 0.14
0.999 202.84 54.87 27.23

bio-WormNet

0.5 187.98 235.05 219.00
C1000.9

0.95 0.66 34.05 42.42 0.8 0.01 0.01 0.01
0.999 290.28 450.15 292.39 0.7 0.01 0.01 0.01

C2000.9
0.95 49.32 200.76 282.06

CSphd

0.6 0.01 0.01 0.01
0.999 0.01 0.03 0.01 0.7 0.01 0.01 0.01

gen200_p0.9_44
0.95 0.01 0.01 0.01 0.6 0.01 0.01 0.01
0.999 0.11 0.49 3.41

delaunay_n10

0.5 0.01 0.01 0.01
gen400_p0.9_55

0.95 0.01 0.03 0.04 0.6 0.01 0.01 0.01
0.999 0.01 0.05 0.05

EX2
0.5 0.01 0.01 0.01

gen400_p0.9_65
0.95 0.02 0.15 0.12 0.7 0.01 0.01 0.01
0.999 0.05 0.15 0.08

G44
0.6 0.01 0.01 0.01

hamming10-4
0.95 243.62 186.65 168.25 0.9 0.01 0.02 0.01
0.999 203.74 158.31 140.48 0.8 0.01 0.01 0.01

frb50-23-1
0.95 1.85 45.55 19.19 0.7 0.01 0.01 0.02
0.999 270.72 130.18 56.04 0.6 0.02 0.03 0.03

frb50-23-2
0.95 1.13 10.53 25.66

145bit

0.5 0.01 0.01 0.01
0.999 223.51 179.90 148.98 0.9 0.01 0.03 0.01

frb50-23-4
0.95 1.41 41.64 69.14 0.8 0.01 0.07 0.08
0.999 258.83 326.16 447.68 0.7 0.03 0.06 0.05

frb50-23-5
0.95 0.69 35.19 59.85 0.6 0.02 0.01 0.03
0.999 279.06 317.25 100.68

ia-email-univ

0.5 0.01 0.01 0.01
frb53-24-1

0.95 1.72 40.52 29.76 0.7 0.01 0.01 0.01
0.999 266.89 240.48 140.37 0.6 0.01 0.01 0.01

frb53-24-2
0.95 0.39 15.59 18.40

ia-fb-message

0.5 0.01 0.01 0.01
0.999 97.20 233.13 404.01 0.7 0.01 0.01 0.01

frb53-24-4
0.95 1.38 42.42 46.22 0.6 0.01 0.01 0.01

frb53-24-5 0.999 116.62 204.09 331.65
inf-euroroad

0.5 0.01 0.01 0.01
0.95 1.78 108.43 138.65 0.9 0.12 0.55 0.34
0.999 127.64 172.96 179.37 0.8 0.01 0.01 0.01frb59-26-1
0.95 6.07 46.78 145.21 0.7 0.01 0.01 0.01
0.999 39.28 153.32 60.76 0.6 0.01 0.01 0.01

frb59-26-2
0.95 12.25 222.48 207.89

soc-
hamsterster

0.5 0.01 0.01 0.01
0.999 159.88 148.15 116.94 0.9 3.94 25.09 77.87

frb59-26-4
0.95 2.67 209.62 198.92 0.8 7.77 30.24 64.26
0.999 268.93 189.39 182.27 0.7 10.24 24.26 51.30

frb59-26-5
0.95 1.57 34.07 65.09

soc-
FourSquare

0.6 13.55 16.17 35.55
(continued on next page)

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2173 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2173


Table 3 (continued)

Instance γ NuQClq NF1 NR1 Instance γ NuQClq NF1 NR1

0.999 0.01 0.05 0.01 0.999 0.69 1.41 2.79p-hat1000-1
0.95 0.01 0.01 0.01

American75
0.95 0.98 1.30 1.65

0.999 0.01 0.01 0.01 0.999 3.16 7.98 12.22
p-hat1000-2

0.95 0.01 0.01 0.01
Auburn71

0.95 3.41 5.03 5.84
0.999 0.02 0.13 0.26 0.999 1.32 2.33 4.08

p-hat1000-3
0.95 0.01 0.01 0.01

Baylor93
0.95 1.06 2.59 2.00

0.999 7.50 22.65 18.46 0.999 2.64 6.50 7.96
p-hat1500-1

0.95 0.36 0.12 0.24
Berkeley13

0.95 11.63 19.65 14.00
0.999 0.01 0.03 0.08 0.999 0.48 0.99 1.23

p-hat1500-2
0.95 0.01 0.01 0.01

Brandeis99
0.95 0.92 1.72 1.58

CONCLUSIONS AND FUTURE RESEARCH
This study explores the maximum γ -quasi-clique problem and presents two novel local
search algorithms, NF1 and NR1. These algorithms leverage an information feedback
model that incorporates historical data from the NuQClq algorithm to calculate fitness
values. Additionally, we consider the historical maximum γ -quasi-clique as important
information for calculating feedback ratings. By strategically adding and deleting vertices,
these algorithms offer effective solutions for addressing the maximum γ -quasi-clique
problem using local search methods. The performance of NF1 and NR1 is evaluated
through computational experiments on synthetic graphs and real-world network graphs
across various applications, illustrating their efficacy.

We conducted a series of tests on very dense instances and sparse graphs, and obtained
better experimental results in dense graphs. Although larger γ -quasi-clique cannot
be obtained in sparse graphs, and this algorithm is only more effective in very dense
situations, there are certain limitations to this approach. However, it cannot be denied
that incorporating information feedback models into the maximum γ -quasi-clique search
algorithm is a good optimization approach, achieving better or comparable results in
almost all instances tested. For tests under other density thresholds and more instances,
and further optimization of the algorithm will be important in our future work.

A series of tests were conducted on both very dense instances and sparse graphs, with
better experimental results observed in dense graphs. It was noted that larger γ -quasi-
cliques could not be obtained in sparse graphs, limiting the effectiveness of this method in
such scenarios. However, it is undeniable that incorporating information feedback model
into the maximum quasi-clique search algorithm is a feasible optimization method, has
led to improved or equivalent maximum quasi-clique results in almost all tested instances.
Further optimization of the algorithm will be a primary focus of our future research.
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