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ABSTRACT
Multivariate time series anomaly detection is a crucial data mining technique with a
wide range of applications in areas such as IT applications. Currently, the majority of
anomaly detection methods for time series data rely on unsupervised approaches due
to the rarity of anomaly labels. However, in real-world scenarios, obtaining a limited
number of anomaly labels is feasible and affordable. Effective usage of these labels can
offer valuable insights into the temporal characteristics of anomalies and play a pivotal
role in guiding anomaly detection efforts. To improve the performance of multivariate
time series anomaly detection, we proposed a novel deep learning model named EDD
(Encoder-Decoder-Discriminator) that leverages limited anomaly samples. The EDD
model innovatively integrates a graph attention network with long short term memory
(LSTM) to extract spatial and temporal features frommultivariate time series data. This
integrated approach enables the model to capture complex patterns and dependencies
within the data. Additionally, the model skillfully maps series data into a latent space,
utilizing a carefully crafted loss function to cluster normal data tightly in the latent space
while dispersing abnormal data randomly. This innovative design results in distinct
probability distributions for normal and abnormal data in the latent space, enabling
precise identification of anomalous data. To evaluate the performance of our EDD
model, we conducted extensive experimental validation across three diverse datasets.
The results demonstrate the significant superiority of our model in multivariate time
series anomaly detection. Specifically, the average F1-Score of our model outperformed
the second-bestmethod by 2.7%and 73.4% in both evaluation approaches, respectively,
highlighting its superior detection capabilities. These findings validate the effectiveness
of our proposed EDD model in leveraging limited anomaly samples for accurate and
robust anomaly detection in multivariate time series data.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Neural
Networks
Keywords Multivariate time series, Anomaly detection, Deep learning, Probability distribution

INTRODUCTION
In real-world scenarios, multiple sensors or agents continuously collect data from various
system components for real-timemonitoring (Kim et al., 2023). These sensors will generate
a large amount of interrelated time series data. For example, in IT systems, performance
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monitoring software simultaneously gathers metrics like CPU utilization, memory usage,
and user visits, among others, and stores them in a time series database. These metrics
often exhibit complex correlations. For instance, an increase in user visits will usually
lead to an increase in CPU utilization. When the system is abnormal, this correlation
may be broken. However, manually identifying anomalies from hundreds or thousands
of performance metrics based on experience alone is challenging and often impractical.
Therefore, employing machine learning algorithms to detect anomalies in the multivariate
time series data collected by these systems has emerged as a significant research area (Cook,
Msrl & Fan, 2020).

Normal data in anomaly detection often consists of samples that exhibit regular
patterns, while anomalies are characterized as any substantial deviation from the normal
samples (Tian, Su & Yin, 2022). The data in time series anomaly detection has two
categories: univariate and multivariate. Univariate time series anomaly detection focuses
on identifying anomalies in a singular metric. However, anomalies in a single metric
may not always be indicative of systematic anomalies, making this strategy ineffective for
finding systematic anomalies. Conversely, multivariate time series anomaly identification
involves examining the association between variables, providing a more precise reflection
of anomalies at a systemic level. In this work, we focus on the issue of detecting anomalies
in multivariate time series data.

Prior research often prefers unsupervised implementation due to the difficulty and cost
of obtaining anomalous examples (Li & Jung, 2023). Their approaches involve training the
model with several normal samples and subsequently utilizing either the reconstruction
error (Malhotra et al., 2016; Li et al., 2019; Su et al., 2019) or prediction error (Hundman et
al., 2018;Zong et al., 2018) to detect anomalies. As a result of themodel receiving substantial
training exposure to normal data, anomaly detection in the data can be achieved through
a comparison of the reconstruction or prediction error for the normal data to that of the
unexposed anomalous data.

For instance, Malhotra et al. (2016) employed an encoder–decoder scheme based on
long short term memory (LSTM) networks to reconstruct time series and detect anomalies
through reconstruction errors. In order to capture the potential interdependencies among
the variables, Li et al. (2019) incorporated the entire collection of variables and utilized
a GAN framework with an LSTM model to represent the temporal correlation of the
series. An unsupervised anomaly identification technique was proposed by Hundman et
al. (2018). It makes use of LSTM networks to forecast temporal data and then exploits
prediction errors to identify anomalies. The DAGMM model was proposed by Ruff et al.
(2019) and focuses onmultivariate data anomaly detection without temporal dependencies.
It seamlessly integrates the processes of density estimation and dimensionality reduction
in a natural way. Because the two processes are independent, end-to-end joint training
prevents the model from achieving a local optimum and prediction errors are also used
to identify anomalies. Although some progress has been made in the field of anomaly
detection in time series data, the limited number of anomaly samples utilized in prior
research have not been fully utilized. These samples contain valuable information that
could provide more precise guidance for the anomaly detection model.
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Addressing the challenges posed bymultivariate time series anomaly detection, this paper
presents a novel anomaly detection model called EDD (Encoder-Decoder-Discriminator).
The EDDmodel aims to effectively utilize limited abnormal sample information to enhance
the model’s ability to identify anomalies. It achieves this by leveraging the differences in
probability distributions between normal and abnormal data in the latent space, addressing
the issue that reconstruction and prediction models can become too robust and insensitive
to minor anomalies. In summary, our work offers an innovative solution to anomaly
detection in multivariate time series, enhancing reliability and precision. The salient
contributions of this work are outlined as follows:

• Novel anomaly detection technique (EDD): We introduced a new anomaly detection
technique, EDD, tailored for multivariate time series data. This technique excels at
extracting diverse features, enabling a more precise distinction between normal and
abnormal patterns.
• Effective utilization of limited anomalous data: Traditional methods often overlook
the limited availability of anomalous data in multivariate time series. We addressed
this gap by effectively incorporating this data into our model. This approach is crucial
for instructing algorithms to accurately differentiate between normal and anomalous
instances, significantly improving the model’s performance.
• Rigorous evaluation: To assess the performance of our model, we conducted extensive
comparison experiments using two distinct identification approaches. These experiments
were conducted on both publicly available datasets and a proprietary dataset, ensuring
a comprehensive evaluation. The results demonstrate that our approach surpasses
state-of-the-art methods in identifying abnormalities for multivariate time series data.

RELATED WORK
In data analysis, the detection of anomalies in time series data stands as a pivotal concern that
has garnered significant attention from researchers. To address this challenge, numerous
strategies have been proposed to efficiently pinpoint these irregularities. These methods
can be categorized into two broad families based on their underlyingmethodology: classical
machine learning algorithms and deep learning algorithms.

Classic algorithms
Because of their simplicity and interpretability, classical machine learning algorithms
have been favored by some studies in the past for anomaly detection tasks. For
instance, Ramaswamy, Rastogi & Shim (2000) introduced a new method for identifying
outliers using the distance from a point to its k-th nearest neighbor. Points were ranked
based on this distance, and the top n points were classified as outliers. Shyu et al. (2003)
employed the principal component analysis method to extract key features from the data,
resulting in low-dimensional projections. The reconstruction error resulting from this
process was then utilized as the anomaly score. Furthermore, Liu, Ting & Zhou (2008)
proposed a novel model-based approach to anomaly detection that shifts the focus
from profiling normal instances to explicitly isolating anomalies. The innovative iForest
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algorithm efficiently leverages sub-sampling, resulting in linear time complexity and
minimal memory requirements. While these techniques offer ease of use and minimal
processing complexity, their detection accuracy is somewhat limited due to the neglect of
the intrinsic temporal properties inherent in time series data.

Deep learning algorithms
In recent years, with the expansion of data size and complexity, classical machine learning
algorithms have faced performance bottlenecks when dealing with large-scale and high-
dimensional data. Deep learning is widely used in the field of multivariate time series
data anomaly detection due to its excellent feature extraction capability and superiority
in modeling high-dimensional sequence data. Some recurrent neural networks, such as
RNN and LSTM, are widely used in time series data anomaly detection due to their natural
sequence feature extraction capability. For example, Su et al. (2019) proposed a stochastic
recurrent neural network that captures the normal patterns of multivariate time series by
modeling the data distribution using stochastic latent variables.Wei et al. (2023) proposed
a hybrid model based on LSTMs and self-encoders that solves the long-term dependency
problem, which cannot be solved by shallow machine learning. Due to its efficient parallel
computing capabilities and powerful context information processing abilities, Tuli, Casale
& Jennings (2022) chose to build an anomaly detection model based on Transformer.
This model can leverage the characteristics of Transformer to quickly and accurately
identify abnormal observations in time series data. In addition, in order to explicitly
capture the dependencies between variables, Deng & Hooi (2021) has incorporated a
graph structure learning module to increase the spatial feature extraction capability of the
model. To increase model performance, several studies (Zhao et al., 2020; Xia et al., 2023)
have, of course, merged the first two types of approaches to extract temporal as well as
spatial correlations of sequences. More recently, diffusion models (Lin et al., 2023) have
attracted significant attention in the realm of artificial intelligence content generation,
with some researchers applying them to anomaly detection in multivariate time series
data. A noteworthy example is ImDiffusion (Chen et al., 2023), a novel framework rooted
in the imputation diffusion model. It accurately captures the inherent dependencies and
stochastic nature of MTS data, enabling precise and robust anomaly detection. However, a
notable limitation of these techniques is that they do not fully leverage the limited available
aberrant data, which could potentially further enhance the performance of multivariate
time series anomaly detection.

PROBLEM STATEMENT
In this article, the model primarily receives multivariate time series data collected over a
specific time frame as input. Consider an entity or system equipped with N sensors, each
capturing data at regular intervals. The amassed data from all sensors during a designated
time period can be expressed as X ∈RN×L, where L represents the length of each individual
time series. Furthermore, Xi,: signifies the complete time series recorded by the ith sensor
or feature, while X:,t indicates the values of all features captured at time point t. For each
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time series, a sliding time window of length k is used to generate a fixed-length input, and
X:,t−k+1:t represents the time window data divided at time t .

In general, the task of multivariate time series anomaly detection involves utilizing the
observation value at time t to assess whether an entity exhibits anomalous behavior. This
can be formally expressed through Eq. (1), which outlines the detection mechanism based
on the available data.

yt = f (X:,t ) (1)

where yt is a Boolean indicator, a value of 1 signifies that the entity is in an abnormal
state at the t -th timestamp, whereas a value of 0 implies the entity is operating normally.
This binary representation enables clear identification of anomalous events within the
multivariate time series data.

Recognizing the crucial role of historical data in analyzing the current state of an entity,
the utilization of such data spanning a specific duration can be leveraged to enhance
the performance of anomaly detection. Consequently, Eq. (1) can be refined to Eq. (2),
incorporating the historical context to improve detection accuracy.

yt = f (X:,t−k+1:t ). (2)

Therefore, we devise a deep learning model that seamlessly integrates the comprehensive
feature set of an entity at time t alongside contextual information, ultimately outputting
a precise determination of whether the entity exhibits anomalous behavior at that specific
timepoint.

THE EDD MODEL
Overview
The goal of the EDD model is to encode normal data into similar probability distributions
within the latent space, while ensuring that the probability distribution of abnormal data
stands out distinctly. This approach allows for the precise identification of abnormalities.
The EDD model is comprised of three key components: the Encoder, the Decoder, and
the Discriminator. Figure 1 illustrates the model’s fundamental structure. The Encoder
is responsible for meticulously extracting the features from the multivariate time series
data and encoding the normal data into a designated distribution. To ensure that the
Encoder captures the essence of the original data and its output distribution incorporates
the primary information, the Decoder is employed. The Decoder reconstructs the original
data using samples drawn from the Encoder’s probability distribution. The Discriminator
of EDD is proposed to discern the disparities between the distributions of normal and
anomalous data in the latent space. Its guidance also assists the Encoder in determining
which type of data (specifically, anomalous data) does not require encoding into the
designated distribution. Each of the three modules is comprehensively explained in the
following subsections.

Encoder
The Encoder is responsible for extracting relevant features from time series data. In analogy
to VAE (Kingma &Welling, 2013), the EDD model aims to map these extracted features
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onto a Gaussian distribution. Over the long term, the dependencies among multivariate
time series data remain consistent, with normal data adhering to these dependencies while
abnormal data deviate from them. Consequently, theoretically, anomaly detection can
be achieved by isolating the characteristics that are shared by normal data but absent in
abnormal data. When extracting features from multivariate time series data, it is essential
to capture both temporal and spatial features. Temporal features refer to the relationships
between individual variables across different time points, elucidating the evolving trends
within each sequence. Spatial features, on the other hand, highlight the interconnections
among various variables. Accurate extraction of these two types of features enhances the
model’s generalization capabilities, enabling a more precise distinction between normal
and abnormal data.

Prior research (Dos Santos & Gatti, 2014) has demonstrated the effectiveness of
convolution operations in feature extraction. Therefore, we initiate the feature extraction
process by applying a 1-D convolution layer to the original data. This step aids in
preprocessing the data before proceeding to extract the aforementioned temporal and
spatial features.

Spatial-feature extractor
To extract associative relationships among variables, we utilize Graph Attention Networks
(GAT) (Veličković et al., 2017). Initially, the data is represented as a graph structure, where
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each variable corresponds to a graph node. The time series of variables within a given
window serve as node features, with all nodes being neighbors of each other.

Subsequently, we employ GAT to learn the dependencies between these variables.
GAT computes the similarity between nodes via an attention mechanism and assigns
weights accordingly. Specifically, for each node, GAT computes similarity scores with
its neighboring nodes, transforms these scores into probability distributions using the
softmax function, and then weights and sums the neighboring node features based on the
attention weights. These weighted features are subsequently combined with the node’s
own features to update its representation. This process can be formally expressed by the
following formulas:

eij = LeakyReLU (EaT [Whi||Whj]) (3)

αij =
Softmax(eij)∑

k∈Ni
Softmax(eik)

(4)

hi′= σ (
∑
j∈Ni

αijWhj) (5)

where hi denotes the feature vector of node i, Ni denotes the set of neighboring nodes
of node i, W is the learnable weight matrix, Ea is the learnable attention vector, σ is the
activation function, and hi′ is the feature representation with the dependency relationship
between variables.

Temporal-feature extractor
Recurrent neural networks (RNNs) possess remarkable feature extraction capabilities for
sequential data. Among various RNNvariants, the LSTM (Hochreiter & Schmidhuber, 1997)
stands out as a powerful model that addresses the gradient disappearance issue in standard
RNNs. The LSTM is capable of learning long-term dependencies within sequences, making
it an ideal choice for extracting temporal dependencies. In this study, we utilize the LSTM
network to capture the temporal dependencies in the given sequence. We integrate the
output of the 1-D convolution layer with the spatial feature extraction module, resulting in
a vector matrix C with dimensions k×2n. This matrix C is then fed into the LSTM model
to extract the temporal dependencies. In essence, at each time step, the hidden state output
ht−1 of the previous unit, the memory state ct−1, and the data of the current time step are
jointly processed by the current LSTM unit, as shown in Eq. (6):

ht ,ct = LSTM (et ,ht−1,ct−1). (6)

In our work, the hidden state output of the final LSTM unit encapsulates information
from all time steps, and the hidden state output is forwarded to the latent distribution
mapping module as spatiotemporal fusion features, enabling the model to effectively
incorporate both spatial and temporal information for downstream tasks.
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Latent distribution mapper
The Gaussian distribution is employed as a representative of the latent distribution of
the data. The latent distribution mapping module is constructed from two identically
structured multi-layer perceptrons (MLPs). These twoMLPs are tasked with producing the
mean and standard deviation of the Gaussian distribution in the latent space, respectively.
This process can be expressed as follows:

Means=MLP1(hf ) (7)

Stds=MLP2(hf ). (8)

The symbol hf denotes the feature vector that integrates spatial and temporal
information. To bolster the model’s information-conveying capabilities, the multilayer
perceptrons produce diverse sets of latent distributions as their output.

As previously mentioned, in order to distinguish between normal and abnormal data in
the latent space, it is expected that the Encoder’s outputs for normal data will be clustered
at specific points, while the outputs for abnormal data will exhibit a random distribution.
In order to achieve this, we employ a loss function to modify the output of the Encoder:

LossKL=KL(N (µ,σ 2),N (µ0,σ
2
0 )). (9)

To ensure that the Encoder’s processing of normal data adheres to the desired
distribution pattern, we compute the KL divergence between the distribution of normal
data outputs and a pre-specified Gaussian distribution. This KL divergence serves as one of
the losses in the model. Subsequently, we employ the gradient descent algorithm to refine
the model’s parameters accordingly.

Decoder
In our EDD model, a subset of data is randomly sampled from the Gaussian distribution
formulated by the Encoder, leveraging the reparameterization strategy. These sampled data
are subsequently fed into the Decoder, which serves as a multi-layer perceptron responsible
for reconstructing the original data. The Decoder plays a pivotal role in guiding the Encoder
towards extracting richer, more meaningful features. While the Decoder is not directly
involved in anomaly detection, its significance lies in providing a mechanism that enables
the Encoder to delve deeper into the inherent differences between normal and abnormal
data in the training dataset. Without the Decoder, the Encoder may overrely on superficial
features, disregarding the deeper, more significant features within the data. This limitation
may compromise the model’s generalization capabilities. Consequently, when confronted
with unseen anomalies, the Discriminator may struggle to effectively identify them if it
lacks adequate extraction of internal features.

We utilize a multi-layer perceptron (MLP) as the architecture for our Decoder.
By introducing randomly sampled data into this MLP, it generates a reconstructed
approximation of the original data. Subsequently, we employ gradient descent to minimize
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the reconstruction loss, which is computed as the mean square error (MSE) between the
reconstructed and the actual data. The reconstruction loss is formally defined as follows:

Lossrec =
∑k

t=1
∑N

i=1(xi,t − x̂i,t )
2

N ×k
. (10)

In this formula, xi,t denotes the actual value of the ith variable at time t within the
considered time window, while x̂i,t represents the reconstructed approximation of the
same variable at the same time point.

Discriminator
Just like the Decoder, the Discriminator obtains its input via reparameterization, which
involves randomly sampling data from the Gaussian distribution generated by the Encoder.
The core responsibility of the Discriminator is to accurately differentiate between normal
and abnormal data by learning the distinct probability distributions of both types in the
latent space. Additionally, since the gradients of the sampled data are not truncated, the
Discriminator effectively guides the Encoder to refrain from encoding abnormal data
into regions of high probability density. Unlike supervised learning methods that solely
rely on a loss function to separate the Encoder’s output for abnormal data, our approach
offers the advantage of allowing the Encoder to focus solely on learning the features of
normal data. This enhanced focus on normal data features boosts the model’s expressive
power, facilitating the clustering of normal data in the latent space. Consequently, the
Discriminator can effectively discern the distributional disparities between normal and
abnormal data in the latent space, even with limited exposure to abnormal data samples.

The Discriminator’s architecture also employs a multi-layer perceptron (MLP) for
implementation. The model’s output comprises a set of vectors. To ensure precise anomaly
detection, we aim for the model to produce vectors that are nearly all-zeros for normal data
and close to all-ones for abnormal data. To accomplish this, we leverage the cross-entropy
loss function.

Losspos=−
1
N

N∑
i=1

log(1−pi) (11)

Lossneg =−
1
N

N∑
i=1

log(pi). (12)

We employ binary cross-entropy to compute the Discriminator’s loss. where Losspos
denotes the discrimination loss associated with normal data, while Lossneg represents the
corresponding loss for abnormal data. The model’s output is represented by pi.

TRAINING AND INFERENCE
Model training
Algorithm 1 outlines the training procedure for our model. Initially, the Encoder processes
the normal data and a randomly selected subset of abnormal data at time t to derive their
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latent space representations, denoted as Zpos and Zneg (line 5). Subsequently, based on these
distributions, resampling techniques are employed to generate corresponding sample data
(Line 6). These sampled data are then input into the Discriminator, and their respective
discrimination results, Ods

pos and Ods
neg , are obtained (Line 7). Concurrently, the sampled

data from the latent space distribution of normal data is fed into the Decoder to reconstruct
the original normal data, yielding the reconstruction output Odc

pos (Line 8). To evaluate the
model’s performance, we utilize Eq. (9) to compute the KL divergence (LossKL) between
the normal distribution output by the Decoder and the predefined distribution, measuring
their similarity (Line 9). Additionally, we employ Eq. (10) to calculate the reconstruction
error (Lossrec) of the normal data, assessing the accuracy of data reconstruction (Line 10). In
terms of classification performance, we utilize Eq. (11) and Eq. (12) to calculate the binary
cross-entropy losses (Losspos and Lossneg ) for normal and anomalous data, respectively.
These loss values reflect the model’s performance in anomaly detection (Line 11). Finally,
we aggregate these loss terms and update the model parameters iteratively using gradient
descent algorithms (Lines 12, 13).

Algorithm 1: Training Process
Require: Encoder E , Decoder DC and Discriminator DS, normal dataset Xpos and

anomaly dataset Xneg , iteration limit n.
1 Initialize weights E , DC , DS
2 i← 0
3 while i< n do
4 for t=1 to T do
5 Zpos,Zneg← E(X t

pos),E(X
s
neg )

6 Spos,Sneg← Sample(Zpos),Sample(Zneg )
7 Ods

pos,O
ds
neg←DS(Spos),DS(Sneg )

8 Odc
pos←DC(Spos)

9 LossKL=KL(Zpos,Z0)

10 Lossrec =
∥∥∥Odc

pos−X
t
pos

∥∥∥
11 Losspos,Lossneg =BCELoss(Ods

pos,
E0),BCELoss(Ods

neg ,
E1)

12 Loss= LossKL+LossRec+Losspos+Lossneg
13 Update weights of E , DC , DS using Loss
14 i← i+1
15 end
16 end

Model inference
Using the trained anomaly detection model for inference (summarized in Algorithm 2),
we define the anomaly score for a given data point within a specific time window of the
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test set as follows:

Score=BCELoss(Ods,E0) (13)

As previously mentioned, the Decoder serves solely as an auxiliary component, aiding in
the extraction of more comprehensive features from the Encoder. Consequently, during the
inference phase, there is no need to feed the test data into the Decoder for reconstruction.
Instead, our focus is on utilizing the Encoder to map the test data into the latent space
effectively (line 2). Following this, we sample data from the latent space distribution and
forward it to the Discriminator (line 3). The Discriminator then produces a set of vectors,
where each value indicates the likelihood of the corresponding test data being anomalous
(line 4). To derive the final anomaly score, we compute the cross-entropy loss between this
vector and 0 (line 5). In alignment with established practices in prior research, we adopt the
Peak Over Threshold (POT) method Siffer et al. (2017) for automatic threshold selection.
The POT method is a statistical approach rooted in extreme value theory, which fits the
data distribution to a generalized Pareto distribution. This enables us to determine an
appropriate risk value that dynamically sets the threshold. Any anomaly score surpassing
the POT threshold is deemed anomalous (line 6).

Algorithm 2: Inference Process
Require: Trained Encoder E , Decoder DC and Discriminator DS, test dataset X.

1 for t=1 to T do
2 Z← E(X t )
3 S← Sample(Z )
4 Ods

←DS(S)
5 Score=BCELoss(Ods

pos,
E0)

6 yt = 1(Scoret ≥ POT )
7 end

EXPERIMENTS
Datasets and metrics
• Datasets: To validate the efficacy of our proposed model, we employ three datasets:
MSL, SMAP, and ETL. MSL and SMAP are publicly available datasets released by NASA
(O’Neill et al., 2010) and have gained widespread utilization in anomaly detection
tasks related to multivariate time series data. Additionally, the ETL dataset was
collected through randomly and repeatedly executing 60 distinct ETL tasks via scripting
in a commercial company’s ETL system. The performance metrics dataset, which
encompassed the utilization of critical hardware resources such as CPU, memory, and
disk I/O, was gathered using the Prometheus tool. The overall duration of this dataset
spans 104.5 h, with a collection frequency of once every five seconds. A detailed statistical
overview of these three datasets is presented in Table 1.
• Evaluationmetrics: We utilize precision, recall, and F1-Score as evaluation metrics to
assess the model’s performance. Previous works, such as those by Tian, Su & Yin (2022),
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Table 1 Brief overview of datasets.

Datasets Features Train Test Anomalies

MSL 55 58,317 73,729 10.53%
SMAP 25 135,183 427,617 12.79%
ETL 12 54,361 20,881 18.62%

Zhao et al. (2020), and Tuli, Casale & Jennings (2022), often adopt a lenient approach,
termed ‘‘soft identification,’’ where the entire abnormal interval is deemed correctly
identified if only one point within it is marked as abnormal. However, this method can
inflate the precision and recall scores, particularly when dealing with long abnormal
intervals in the test set, leading to a potentially misleading performance evaluation.
To address this limitation, we introduce a more stringent evaluation strategy known
as ‘‘hard identification.’’ Under this approach, the identification status of other points
within an interval remains unaffected, even if the interval itself is marked as abnormal.
This approach ensures a more accurate assessment of the model’s true performance.

Experimental setup
Baselines
To highlight the performance of our proposed method, we compare it with multiple
benchmark models, including both classic methods and currently popular deep learning
algorithms, as follows:

• IF (Liu, Ting & Zhou, 2008): This technique employs an iTree binary search tree
structure to isolate samples, subsequently leveraging these isolated sample points to
detect anomalies.
• KNN (Ramaswamy, Rastogi & Shim, 2000): This method relies on the distance between
a node and its k-th nearest neighbor to compute the anomaly score, offering an efficient
approach to anomaly detection.
• MTAD-GAT (Zhao et al., 2020): Leveraging the power of GAT, this method learns
temporal and spatial dependencies among variables. The anomaly score is derived from
the combined reconstruction and prediction errors.
• TranAD (Tuli, Casale & Jennings, 2022): TranAD is an anomaly detection model rooted
in the Transformer architecture, it utilizes both reconstruction and prediction errors as
loss functions during training. During testing, the prediction error serves as the anomaly
score.
• GDN (Deng & Hooi, 2021): This method uses embedding vectors to capture spatial
relationships among variables, employing attentionmechanisms for one-step prediction.
The prediction error is considered the anomaly score.
• ImDiffusion (Chen et al., 2023): This innovative approach combines time series
interpolation with diffusion models, enabling accurate and robust anomaly detection in
multivariate time series data.
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Table 2 Some crucial hyperparameters of model training.

Hyperparameters Value

Window size 20
Learning rate 0.001
Iterations 50
Alomaly proportion 0.1

Configuration
In this study, we implemented the proposed method using PyTorch 1.13.1 framework
and CUDA 11.7 technology on an RTX A6000 GPU, leveraging the Adam optimizer for
model training. Table 2 summarizes the crucial hyperparameters and their values for
model training. For all datasets, we employed a unified set of experimental parameters.
Specifically, the input window size was set to 20, as it was found to be an appropriate value
for capturing temporal dependencies while avoiding excessive noise or computational
complexity. A learning rate of 0.001 was chosen as it strikes a balance between stability and
convergence speed. Our model achieved convergence after 50 training iterations across all
three datasets. Furthermore, during training, we randomly selected 0.1 of the anomalous
samples from the test set as the anomalous data for training. This proportion was chosen
as we observed a significant improvement in the F1-Score when increasing the ratio up to
0.1, with diminishing gains thereafter.

In the specific implementation of the model, we configured the parameters for multiple
key modules. Within the Encoder, we employed a one-dimensional convolutional kernel
with a size of 7. For Spatial-feature Extractor, we utilized an optimized Graph Attention
Network (GAT) that exhibited stronger feature representation capabilities (Brody, Alon
& Yahav, 2021). Both the input and output dimensions of the GAT were set to be equal
to the number of features in the dataset. The Temporal-feature Extractor consisted of a
single layer LSTM network with an output dimension of 160. The Latent Distribution
Mapper comprised two identical Multi-Layer Perceptrons (MLPs), each containing three
layers. The input layer dimension matched the LSTM output dimension, the hidden layer
dimension was set to 128, and the output layer dimension was 16. The activation function
between the input layer and the hidden layer was the tanh function. Both the Decoder
and the Discriminator were implemented using MLPs with three layers. The input layer
dimension aligned with the output dimension of the Latent Distribution Mapper, the
hidden layer dimension was 160, and the output layer dimension was equivalent to the
number of features in the dataset.

Experimental results
Tables 3 and 4 present the performance metrics of each model, utilizing the ‘‘soft
identification’’ and ‘‘hard identification’’methods, respectively. Given the varying threshold
selection mechanisms among methods, this study meticulously tests each model’s potential
thresholds and reports the outcomes with the highest F1-Score. The tables present F1-
Scores, emphasizing the peak value in bold and the second-highest in underline. In the
soft identification approach, Table 3 reveals that EDD achieves superior performance
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Table 3 Performance of our models and benchmarks with soft identification.

Model MSL SMAP ETL

Pre Rec F1 Pre Rec F1 Pre Rec F1

IF 0.5574 0.9640 0.7064 0.3977 0.9108 0.5536 0.6453 0.8770 0.7435
KNN 0.4222 0.9653 0.5875 0.3117 0.9585 0.4704 0.5835 0.9423 0.7207
MTAD-GAT 0.9219 0.9660 0.9434 0.8362 0.9999 0.9107 0.786 0.8955 0.8372
TranAD 0.9142 0.7959 0.8509 0.7370 0.8430 0.7865 0.6703 0.7186 0.6936
GDN 0.9300 0.7826 0.8513 0.8687 0.5907 0.7032 0.7978 0.8953 0.8437
ImDiffusion 0.8844 0.8664 0.8753 0.8716 0.9662 0.9164 0.7852 0.8753 0.8237
EDD 0.9212 0.9168 0.9190 0.9180 0.9544 0.9358 0.9307 0.8819 0.9057

Notes.
Peak values are indicated in bold. Second-highest values are indicated with an underline.

Table 4 Performance of our models and benchmarks with hard identification.

Model MSL SMAP ETL

Pre Rec F1 Pre Rec F1 Pre Rec F1

IF 0.1524 0.1446 0.1446 0.1532 0.2495 0.1898 0.3349 0.2427 0.2815
KNN 0.2052 0.3411 0.2562 0.1955 0.5145 0.2833 0.3045 0.2944 0.2994
MTAD-GAT 0.2166 0.4293 0.2880 0.1983 0.4487 0.2751 0.2129 0.8724 0.3423
TranAD 0.3688 0.0441 0.0789 0.1742 0.2896 0.2175 0.1973 0.3022 0.2387
GDN 0.1255 0.3445 0.1839 0.0948 0.1161 0.1044 0.2358 0.3515 0.2822
ImDiffusion 0.2095 0.4452 0.2849 0.1058 0.2358 0.1460 0.1866 0.2939 0.2283
EDD 0.5039 0.5144 0.5091 0.3149 0.4968 0.3855 0.6158 0.7487 0.6757

Notes.
Peak values are indicated in bold. Second-highest values are indicated with an underline.

on both the SMAP and ETL datasets, surpassing the second-best score by 3% and 7%,
respectively. For the MSL dataset, it ranks second in F1-Score performance. Transitioning
to the hard identification approach, as shown in Table 4, our proposed method surpasses
all benchmarkmodels across all datasets, with particularly impressive gains observed on the
MSL and ETL datasets. Specifically, our method outperforms the second-ranked approach
by 36% and 97% on theMSL and ETL datasets, respectively. A comparison of the two tables
highlights the limitations of the evaluation approach used for previous models. Notably,
several models that exhibit robust performance in the soft identification approach display
subpar performance in the hard identification approach. This discrepancy is attributed
to the soft identification evaluation approach, which conceals incorrect detections within
a specific range if a model identifies an anomaly within that range. Conversely, the hard
identification approach does not allow for such concealment, leading to a significant
decline in the model’s performance metrics.

Ablation studies
To assess the effectiveness of each component in our EDD model, we conducted a series
of ablation experiments. Specifically, we excluded the key configurations of each model
component individually to observe the corresponding performance changes. To ensure
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Figure 2 Ablation results of ablation experiments.
Full-size DOI: 10.7717/peerjcs.2172/fig-2

rigorous evaluation, we utilized the F1-Score metric from the hard identification approach,
which offers stricter criteria for performance assessment. This allowed us to precisely detect
any performance degradation in the model.

In the first experiment, we disabled the reconstruction loss (Lossrec) to explore the impact
of the Encoder module on model performance. This variant was designated as EDD-REC.
Subsequently, we turned off the KL loss (LossKL) to investigate whether clustering normal
data effectively enhances model performance. This variant was labeled as EDD-KL. Lastly,
we eliminated the negative loss (Lossneg ) to assess the guidance provided by abnormal data
on the model. This variant was denoted as EDD-NEG.

The experimental results are presented in Fig. 2. These findings indicate that each key
module in our model contributes positively to improving overall performance. Notably,
the introduction of a limited amount of abnormal data had the most significant impact
on enhancing model performance. This underscores the critical role of abnormal data in
guiding the model to identify anomalous patterns effectively.

Data distinguishability
In anomaly detection, algorithms typically aim to establish a threshold that effectively
separates abnormal data from normal data, solely relying on anomaly scores. This approach
disregards the distinctiveness between normal and abnormal data. However, a model that
demonstrates superior discrimination between these two categories is likely to excel in tasks
that demand greater distinctiveness, thereby indicating its overall superior performance.
To compare our approach with others, we conducted studies using the highly effective
deep learning method, MTAD-GAT.

To visualize the anomaly scores on the test set, we generated box plots, as shown in
Fig. 3. Specifically, subfigure A, B, and C represent the box plots for the MSL, SMAP, and
ETL datasets respectively. The figures clearly illustrate that the proposed EDD method
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Figure 3 Box line plot of MTAD and EDD’s anomaly scores for normal and abnormal data.
Full-size DOI: 10.7717/peerjcs.2172/fig-3

exhibits a more pronounced distinction between normal and abnormal data compared to
MTAD-GAT. This enhanced distinguishability is crucial for accurate anomaly detection.

Additionally, while analyzing the ETL dataset (Fig. 3C), we observed that MTAD-GAT
did not exhibit clear distinguishability between normal and abnormal data. Despite this, the
F1-Score, computed using the soft identification evaluation method, surprisingly reached
a remarkably high score of 0.8372. This apparent paradox further validates the concern
raised in this article: that the soft identification evaluation approachmay not always provide
an accurate assessment of model performance. Therefore, this article introduces a hard
identification evaluation approach to ensure a more precise performance evaluation of the
model.

Latent space distribution
The idea of implementing anomaly detection in this article is to distinguish normal data
from abnormal data based on their different probability distributions in the latent space. In
the Encoder of the EDDmodel, we use the LossKL to map the distribution of normal data in
the latent space to a normal distribution, while making no constraints on the distribution
of abnormal data. This allows the normal data to be more clustered in the latent space,
and the abnormal data to be randomly distributed. The Discriminator only needs to learn
the difference between normal data and a small amount of abnormal data to distinguish
most unseen anomalies. We visualized the encoding in the latent space on a 2D plane, as
shown in Fig. 4. The visualization results are consistent with our expectations. The normal
data (green points) are clustered at one point, and the model’s seen abnormal data (yellow
crosses) and unseen abnormal data (purple rectangles) are randomly distributed in the
latent space.

Anomaly proportion
The core of the algorithm in this article lies in optimizing the model’s ability to detect
anomalies through a small amount of anomalous data. However, in real-world applications,
the scarcity and difficulty of acquiring anomalous labels have become crucial factors
restricting the improvement of model performance. To deeply explore the specific impact
of the proportion of anomalous data on model performance, we designed an anomalous
data ratio parameter γ in the experiment, which adjusts the proportion of anomalous
data extracted from the test set for training to the total amount of anomalous data.
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Figure 4 Probability distribution of data in the latent space.
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The experimental results, as shown in Fig. 5, clearly demonstrate the model’s F1-Score
performance under different anomalous data ratios.

The figure shows that in the absence of anomalous data for training, the model’s
performance on numerous datasets is poor, emphasizing the importance of anomalous
data in model training. However, by incorporating a modest bit of aberrant data as training
guidance, the model’s performance improves dramatically. Remarkably, with only 1%
of anomalous data included, the model’s F1-Score increased by more than three times
on average. This conclusion emphasizes the relevance of crucial information contained
in anomalous data for improving the model’s anomaly detection capacity, as well as
providing useful insights into how to successfully employ limited anomalous data in actual
applications. Furthermore, the experimental results also show that even with a very low
anomalous data ratio (around 5%), the model can still effectively improve its anomaly
recognition performance. This finding further validates the feasibility of deploying the
algorithm in practical applications.

CASE STUDY
In this section, we delve into two representative cases to illustrate the strengths and
limitations of the EDD model in detecting anomalies in multivariate time series data.

Firstly, Fig. 6 showcases a successful anomaly detection case by the EDD model. Within
the highlighted red segment, while individual metrics appeared normal, the model’s ability
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Figure 5 Impact of the proportion of anomalous data onmodel performance.
Full-size DOI: 10.7717/peerjcs.2172/fig-5

to capture complex relationships among features enabled it to identify a potential anomaly.
Specifically, despite a surge in the number of ETL tasks being executed on a node, the
CPU usage remained abnormally low. Further analysis revealed concurrent increases in
dirty memory data and the number of IO operation components, suggesting a possible
IO bottleneck. This case underscores the EDD model’s superiority in considering intricate
relationships among multiple variables and provides valuable insights for subsequent root
cause analysis.

However, Fig. 7 presents a case where the EDD model falsely classified normal data as
anomalous. During the red segment, all metrics exhibited significant spikes, prompting the
model to flag it as anomalous. Nevertheless, a closer look at the tasks being executed on the
node revealed that these spikes were actually caused by a sudden influx of tasks, a normal
occurrence rather than an anomaly. This infrequent event in historical data confounded
the model, leading to a misclassification. This case highlights the limitations of the EDD
model in handling rare events and suggests that future research should incorporate more
historical data and domain knowledge to enhance the model’s accuracy and robustness.

In summary, through the analysis of these two cases, we have gained a deeper
understanding of the EDD model’s strengths and weaknesses in detecting anomalies
in multivariate time series data. Future research will focus on further refining the model to
improve its performance in practical applications.
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Figure 6 True positive case in anomaly detection with the EDDmodel.
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CONCLUSION AND FUTURE WORKS
In this article, we propose a novel multivariate time series anomaly detection model named
EDD that incorporates anomaly perception capabilities. By leveraging a graph attention
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network and LSTM, our EDD model effectively extracts spatial and temporal features
from sequences, respectively. A key advantage of our approach is the utilization of a
limited amount of easily obtainable abnormal data, which guides the model to enhance its
discrimination between normal and abnormal time series. Through extensive evaluation on
multiple datasets, our method consistently outperforms other representative approaches
in most scenarios. Moreover, our model exhibits superior separability between normal
and abnormal data, indicating its superior accuracy in distinguishing between the two.
We further validate the effectiveness of each key module through ablation experiments,
confirming their contributions to the overall performance.

Ourwork has built a preliminary foundation for the efficient utilization of limited labeled
data for anomaly detection, and further work can be carried out in the following directions
in the future: Firstly, enhancing the utilization of the available labeled data can lead to
improved detection accuracy. Current methods may not fully capitalize on the information
contained in these limited samples. Future research can investigate techniques to effectively
leverage the labeled data, such as semi-supervised learning methods or data augmentation
strategies tailored for anomaly detection. Secondly, exploring more advanced feature
extraction techniques can further improve the model’s ability to distinguish anomalies.
Current methods rely on graph attention networks and LSTMs to capture spatial and
temporal features, but there may be other techniques or combinations of techniques that
can better capture the underlying patterns in the data. Future work can investigate novel
feature extraction methods or combinations of existing techniques to improve detection
performance. Thirdly, addressing the challenges posed by the randomness of abnormal data
distribution remains a key area for future research. While this work provides a foundation
for understanding these challenges, there is still room for improvement in controlling the
distribution of abnormal data in the latent space. Future algorithms can aim to develop
more robust and consistent mechanisms for encoding anomalies, ensuring that they are
consistently separated from normal data, regardless of their specific distribution patterns.
Overall, the directions outlined above represent promising areas for future research in
anomaly detection, building upon the foundation established by this work.
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