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ABSTRACT
Background. Cancer remains one of the leading causes of mortality globally, with
conventional chemotherapy often resulting in severe side effects and limited effective-
ness. Recent advancements in bioinformatics and machine learning, particularly deep
learning, offer promising new avenues for cancer treatment through the prediction and
identification of anticancer peptides.
Objective. This study aimed to develop and evaluate a deep learning model utilizing a
two-dimensional convolutional neural network (2D CNN) to enhance the prediction
accuracy of anticancer peptides, addressing the complexities and limitations of current
prediction methods.
Methods. A diverse dataset of peptide sequences with annotated anticancer activity
labels was compiled from various public databases and experimental studies. The
sequences were preprocessed and encoded using one-hot encoding and additional
physicochemical properties. The 2D CNNmodel was trained and optimized using this
dataset, with performance evaluated throughmetrics such as accuracy, precision, recall,
F1-score, and area under the receiver operating characteristic curve (AUC-ROC).
Results. The proposed 2D CNN model achieved superior performance compared to
existing methods, with an accuracy of 0.87, precision of 0.85, recall of 0.89, F1-score of
0.87, and an AUC-ROC value of 0.91. These results indicate the model’s effectiveness in
accurately predicting anticancer peptides and capturing intricate spatial patterns within
peptide sequences.
Conclusion. The findings demonstrate the potential of deep learning, specifically
2D CNNs, in advancing the prediction of anticancer peptides. The proposed model
significantly improves prediction accuracy, offering a valuable tool for identifying
effective peptide candidates for cancer treatment.
FutureWork. Further research should focus on expanding the dataset, exploring
alternative deep learning architectures, and validating the model’s predictions through
experimental studies. Efforts should also aim at optimizing computational efficiency
and translating these predictions into clinical applications.
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INTRODUCTION
In recent years, cancer has emerged as a global health concern, with millions of people
affected by this devastating disease (Ullah et al., 2023). Traditional cancer treatment often
involves chemotherapy, which can have significant side effects and limited efficacy (Nurgali,
Jagoe & Abalo, 2018). Consequently, there is a growing interest in exploring alternative
therapeutic strategies, such as the use of peptides for cancer treatment (Yavari et al.,
2018). Peptides are short chains of amino acids that play critical roles in various biological
processes (Vanhoof et al., 1995). Anticancer peptides have gained significant attention
owing to their potential as selective agents that target cancer cells (Aghamiri et al., 2021).
These peptides exhibit specific mechanisms including disruption of cell membranes,
inhibition of angiogenesis, and modulation of immune responses. However, the successful
utilization of anticancer peptides in clinical settings requires accurate assessments of their
efficacy. This task is challenging due to the vast sequence space and complex relationships
between peptide sequences and their anticancer properties (Lungu et al., 2020). Traditional
computational methods for predicting peptide activity rely on features derived from
physicochemical properties, amino acid composition, or sequence motifs (Hajisharifi et
al., 2014). While these approaches have shown promise, they often struggle to capture the
intricate patterns and dependencies within peptide sequences.

Anticancer peptide prediction presents several challenges that need to be addressed
for accurate and reliable results (Attique et al., 2020). First, anticancer peptides exhibit
considerable sequence diversity, making it difficult to identify common patterns or
motifs associated with their anticancer activity (Manavalan et al., 2019). Additionally, the
relationship between a peptide sequence and its anticancer properties is often non-linear
and complex, necessitating the use of advanced computational models capable of capturing
these intricate relationships.Moreover, anticancer peptide prediction faces a challenge from
imbalanced datasets where the number of experimentally validated anticancer peptides is
significantly smaller than non-anticancer peptides (Chen et al., 2021). This imbalance can
affect the performance of prediction models if they have a bias towards a majority class,
leading to reduced sensitivity or specificity. Furthermore, the prediction of anticancer
peptides requires consideration of various physicochemical and structural properties, such
as charge, hydrophobicity, and secondary structure. Integrating these diverse features
into a unified predictive model is a complex task that requires careful feature selection
and representation. Current state-of-the-art techniques for anticancer peptide prediction
include sequence-based methods, structure-based methods, hybrid approaches, and deep
learning approaches. Sequence-based methods focus on analyzing the primary sequence of
peptides by extracting features from physicochemical properties, amino acid composition,
or sequence motifs. While these methods are relatively straightforward to implement and
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can provide valuable insights, they often struggle to capture the intricate relationships
and dependencies within peptide sequences, particularly when dealing with diverse and
complex (Khan, 2024; Lv et al., 2021; Liu et al., 2024). Structure-basedmethods incorporate
the three-dimensional structure of peptides, utilizing techniques such as molecular docking
and molecular dynamics simulations to predict binding affinity and interaction energy.
However, these methods require detailed structural information, which is not always
available, and can be computationally intensive, limiting their scalability (Farhadi &
Hashemian, 2018).

Deep learning has arisen as a powerful tool for solving complex prediction tasks in
various domains, including bioinformatics and drug discovery (Rifaioglu et al., 2019; Raza
et al., 2022). Convolutional neural networks (CNNs) are an explicit class of deep learning
models that have proven effective in analyzing structured data (Ullah et al., 2020) such
as images (Shah et al., 2021), sequences, and graphs (Ullah et al., 2022). CNNs excel at
capturing spatial and local dependencies within data by using convolutional layers (Ding
et al., 2020). In the context of peptide sequences, two-dimensional (2D) CNNs can exploit
the inherent spatial relationships between amino acids. By applying filters of varying sizes,
these networks can automatically learn meaningful features at different scales, capturing
both short-range and long-range dependencies within the peptide sequence.

Deep learning models, particularly those leveraging CNNs, have provided auspicious
results in various bioinformatics applications, including protein structure prediction,
protein–protein interaction prediction, and drug discovery (Nambiar et al., 2020). By
utilizing large-scale labeled datasets and leveraging the power of neural networks, these
models can learn complex representations and make accurate predictions. In the context
of anticancer peptide prediction, deep learning models offer the potential to overcome
the limitations of traditional methods by automatically learning relevant features from
raw peptide sequences. The application of 2D CNNs specifically enables the extraction of
spatial patterns and dependencies that are crucial for accurate prediction of anticancer
activity. The aims and objectives of our study are as follows.
1. We propose a deep learning model utilizing a two-dimensional CNN for the prediction

of anticancer peptides. The key components of our model include (a) dataset
description and preprocessing, (b) the 2D CNN architecture, (c) feature extraction
and representation, (d) training and optimization, and (e) evaluation metrics to assess
model performance based on accuracy, precision, F1-score, recall, and area under the
receiver operating characteristic curve (AUC-ROC).

2. We examine the strengths and limitations of current anticancer peptide prediction
methods and identify gaps in the literature. The performance of our proposed model
is evaluated by comparing it with state-of-the-art techniques.

3. To enhance the efficiency and accuracy of anticancer peptide prediction, our model
effectively captures intricate spatial patterns and dependencies within peptide
sequences.

4. We also analyze the interpretability of our model, providing insights into the features
that contribute to its predictions.
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The rest of the article is structured as follows: ‘Related Work’ discusses related work.
‘Methodology’ provides a detailed description of the proposed methodology. ‘Experiments
and Results’ presents the experiments and performance evaluations. ‘Conclusion and
Future Work’ concludes the article and suggests future work.

RELATED WORK
This section highlights the techniques and methods employed in previous studies and
identifies their strengths, limitations, and gaps in the literature.

Anticancer peptide prediction
Several techniques have been developed for predicting the anticancer activity of peptides.
These techniques can be broadly divided into two main approaches: structure-based
methods and sequence-based methods (Dukka, 2013).

Sequence-based methods focus on analyzing the primary sequence of peptides to extract
features and patterns associated with anticancer activity. These methods often rely on
physicochemical properties, amino acid compositions, or sequence motifs as input (Lv
et al., 2021). Machine learning algorithms such as the support vector machine (SVM),
random forest, and naïve Bayes have been used to classify peptides based on their anticancer
properties (Yu et al., 2020). One popular sequence-based approach is the position-specific
scoring matrix (PSSM), which represents the probability of observing a specific amino acid
at a given position in a sequence (Vanhoof et al., 1995). PSSM profiles capture evolutionary
information and have been successfully applied in predicting anticancer peptides.

Structure-based methods, in contrast, incorporate the three-dimensional structure of
peptides into the prediction process. These methods typically involve molecular docking,
molecular dynamics simulations, or quantitative structure–activity relationship (QSAR)
modeling. Structure-based methods consider factors such as binding affinity, interaction
energy, and spatial arrangement of atoms to predict anticancer activity (Farhadi &
Hashemian, 2018).

While both sequence-based and structure-based methods have shown promise,
they have limitations. Sequence-based methods often struggle to capture the intricate
relationships between peptide sequences and anticancer activity, especially when facing
diverse and complex sequence patterns. Structure-based methods, on the other hand,
require knowledge of the three-dimensional structure, which may not always be available
for peptides.

To overcome these limitations, recent studies have explored the integration of
multiple data sources and the use of hybrid approaches. For instance, hybrid methods
combine sequence-based features with structural information, incorporating the best
of both approaches. Furthermore, advanced machine learning algorithms, such as deep
learning models, have been employed to improve the accuracy of anticancer peptide
prediction (Hosen et al., 2022). However, despite the progress made in anticancer peptide
prediction techniques, there are still challenges that need to be addressed. The imbalanced
nature of anticancer peptide datasets, the limited availability of experimentally validated
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peptides, and the need for robust feature representation are areas that require further
investigation.

Deep learning approaches in peptide prediction
Deep learning approaches have emerged as powerful tools for peptide prediction, offering
the ability to capture complex patterns and representations from data. These methods
utilize neural networks with multiple layers to automatically learn features and make
accurate predictions.

Recurrent neural networks (RNNs) have been widely employed in peptide prediction
tasks. RNNs were developed to deal with sequential data, and have shown effectiveness in
modeling peptide sequences. Long short-term memory (LSTM) networks, a type of RNN,
have been particularly successful in capturing long-range dependencies and modeling
peptide sequence data (Angermueller et al., 2016). LSTM models have demonstrated
promising results in predicting antimicrobial peptides (Sønderby et al., 2015) and anticancer
peptides (Yang et al., 2023).

CNNs have also gained traction in peptide prediction. CNNs excel at capturing local
patterns and features through the use of convolutional layers. These layers apply filters
to local regions of the input, letting the network learn hierarchical representations of the
data. CNN models have been employed to predict peptide activities such as antimicrobial
activity (Hu, Hesham & Zou, 2022) and bioactivity against specific targets (Koutsoukas et
al., 2011). Furthermore, 2D CNNs have been utilized to extract features from peptide
structures, enabling accurate prediction of protein-peptide binding affinity (Guo et al.,
2018).

Attention mechanisms have been incorporated into deep learning models for peptide
prediction to improve their performance. Attention mechanisms enable the network to
concentrate on relevant fragments of the input while disregarding irrelevant information.
By applying attention mechanisms to peptide sequences or structures, the models can
selectively attend to critical features, enhancing prediction accuracy (Loo et al., 2014).
Attention-based models have been employed in tasks such as antimicrobial peptide
prediction (Yan et al., 2020) and protein-peptide binding affinity prediction (Motmaen et
al., 2023).

Hybridmodels that combine deep learning with traditional machine learning algorithms
have been explored. These models leverage the strengths of both approaches to improve
prediction performance. For example, hybrid models combining CNNs with SVMs
have been used to predict peptide bioactivity, and they outperformed individual
methods (Sanders et al., 2011). Transfer learning, where deep learning models pre-trained
on large-scale datasets are fine-tuned for specific peptide prediction tasks, has shown
promise in improving prediction performance when training data are limited (Fenoy,
Edera & Stegmayer, 2022).

Despite the advancements, challenges persist in the application of deep learning to
peptide prediction. The availability of large and diverse annotated datasets is crucial for
training deep learning models effectively. Additionally, the interpretability of deep learning
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models remains a challenge, making it difficult to understand the underlying reasons for
their predictions (Koh & Liang, 2017).

Table 1 provides a comparison of the strengths, limitations, and gaps in the literature
for different techniques used in the prediction of anticancer peptides. The table highlights
the key aspects of each technique, such as proven performance and interpretability, as well
as limitations such as reliance on handcrafted features and difficulty in handling sequence
variability.

Deep learning approaches such as RNNs, CNNs, and attention mechanisms have
shown promise in peptide prediction tasks by effectively capturing complex patterns and
representations. Hybrid models and transfer learning techniques can further enhance
prediction performance. However, addressing challenges related to data availability and
interpretability is crucial for the continued advancement of deep learning in peptide
prediction.

METHODOLOGY
The methodology of this research includes the following key components. Dataset
description and preprocessing involves obtaining and preparing the dataset of anticancer
peptides; structure and design of the 2D CNN architecture feature extraction and
representation explains how the raw peptide sequences are transformed into numerical
representations. Training and optimization involves training the model using optimization
algorithms and fine-tuning the parameters, while the evaluation metrics are used to assess
the performance of the model for accuracy, precision, F1-score, recall, and the AUC-ROC.

Dataset description and preprocessing
In this section, a comprehensive description is provided of the dataset used in this research
and the preprocessing undertaken to ensure its quality and suitability for training the 2D
CNN model.

Dataset description
The dataset is composed of a diverse collection of peptide sequences annotated with their
corresponding anticancer activity labels. It was compiled from various sources, including
public peptide databases (Agrawal et al., 2020), experimental studies (Wu et al., 2022), and
curated datasets (Bhattarai et al., 2022) specifically focused on anticancer peptides.

The dataset contains information about the primary sequence of each peptide aswell as its
associated anticancer activity, typically represented as a binary label (e.g., active or inactive)
as shown in Table 2. Additional metadata, such as peptide length, origin, or chemical
properties, may also be included, providing valuable insights into the characteristics of the
peptides.

The sequences in the dataset represent a wide range of anticancer peptides derived
from different organisms, such as animals, plants, or microorganisms. The peptide sources
include natural peptides found in organisms or synthetic peptides designed through
rational design or high-throughput screening.
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Table 1 Comparison of strengths, limitations, and gaps in the literature for anticancer peptide prediction techniques.

Technique Strengths Limitations Gaps in the literature

Well-established methods with proven performance Reliance on handcrafted features Limited focus on novel peptide features

Interpretability of results Difficulty in handling sequence variability Incorporation of additional biological context

Availability of diverse datasets for training Limited generalization to unseen peptide sequences Exploration of multi-modal data sources
Anticancer peptide prediction tech-
niques

Prior knowledge integration for feature selection Challenges in handling class imbalance Incorporation of domain-specific knowledge

Ability to capture complex patterns and dependencies Large amounts of training data required Addressing interpretability challenges

Automatic feature learning Overfitting potential Evaluation of diverse peptide datasets

Superior performance on large-scale datasets Lack of interpretability Investigation of transfer learning and domain adaptation

Deep learning
approaches in peptide
prediction

Potential for parallelization and scalability Vulnerability to adversarial attacks Incorporation of prior biological knowledge
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Table 2 Dataset description.

Peptide sequence Anticancer activity

GLLWEVCK Active
KPLPEAK Inactive
WDPPTLWK Active
RRTWS Inactive

Table 3 Peptide sequences, anticancer activity, peptide length, and source.

Peptide sequence Anticancer activity Peptide length Source

GLLWEVCK Active 8 Animal
KPLPEAK Inactive 7 Synthetic
WDPPTLWK Active 8 Plant
RRTWS Inactive 5 Natural

Each peptide sequence is associated with an anticancer activity label to indicate if it
has demonstrated activity against cancer cells. The labels are typically binary, with active
indicating it exhibits anticancer activity, and inactive indicating the absence of significant
anticancer effects. The labels are determined based on experimental assays, such as cell
viability assays or in vitro/in vivo studies that assess the peptides’ cytotoxic or anticancer
properties.

In addition to the peptide sequences and activity labels, the dataset may include other
relevant information as shown in Table 3. This can include metadata such as peptide
length, source or origin of the peptide, structural features, physicochemical properties, or
any other information that can aid in understanding the characteristics and behavior of
the peptides.

The dataset represents a diverse collection of anticancer peptides, encompassing different
lengths, sources, and activity levels. This diversity allows for a comprehensive analysis of
the performance and generalization capability of the proposed 2D CNN model across
various types of anticancer peptides.

By providing detailed descriptions of the dataset, we ensure transparency and
reproducibility of our research. The preprocessing steps ensure that the dataset is clean,
properly formatted, and ready for training the 2D CNN model.

Two-dimensional convolutional neural network architecture
This section presents a comprehensive description of the architecture of the 2DCNNmodel
utilized for enhancing the prediction of anticancer peptides. The 2D CNN architecture
comprises convolutional, pooling, and fully connected layers that work collectively to learn
meaningful representations from peptide sequences. The key components are shown in
Table 4.

The input layer receives the encoded peptide sequences and their associated features. The
shape of the input is determined by the sequence length and the chosen encoding scheme.
Convolutional layers apply a set of filters or kernels across the peptide sequences to capture
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Table 4 Two-dimensional convolutional neural network architecture.

Layer Output shape Parameters

Input (Sequence length, embedding dimension) –
Conv1D (Sequence length - Kernel size + 1, Number of filters) No; of filters ×Kernel size
Activation (ReLU) (Sequence length - Kernel Size + 1, Number of filters) –
MaxPooling1D (Sequence length - Kernel Size + 1)/Pooling size, Number

of filters)
–

Flatten (Flattened size) –
Dense (Number of neurons) –
Activation (ReLU) (Number of neurons) –
Output (Number of classes) –

local patterns and extract pertinent features. Each filter performs a convolution operation,
sliding across the input and producing a feature map. An activation function such as
the rectified linear unit (ReLU) is applied to introduce non-linearity and enhance the
model’s ability to capture complex relationships between input and output. Max pooling
layers downsample the feature maps generated by the convolutional layers, reducing the
dimensionality and retaining the most salient features. This helps to decrease the model’s
computational complexity while preserving important information. The flattened layer
converts the pooled feature maps into a flattened vector, which serves as input for the
fully connected layers. Fully connected dense layers are responsible for learning high-level
representations and making predictions. The number of neurons in dense layers can be
adjusted based on the complexity of the problem. An activation function such as the ReLU
is typically applied to dense layers to introduce non-linearity and enhance the model’s
expressive power. The output layer generates the final predictions, typically represented
as the probability of each peptide sequence belonging to a particular class (e.g., active or
inactive).

The specific configuration of the 2D CNN architecture, including the number of filters,
kernel size, pooling size, and the number of neurons in dense layers, may vary depending
on the complexity of the dataset and the existing computational resources.

Feature extraction and representation
These processes play a vital role in the performance of machine learning models, including
convolutional neural networks, for peptide prediction tasks. This section describes feature
extraction techniques employed to transform raw peptide sequences into meaningful
representations that capture essential characteristics and patterns.

Sequence encodings
Peptide sequences are inherently composed of amino acids represented by single-letter
codes, such as A for alanine, R for arginine, and G for glycine. To use these sequences as
input for machine learning models, appropriate encoding schemes are employed.

One commonly used scheme is one-hot encoding, where each amino acid in a peptide
sequence is represented as a binary vector of fixed length. In this encoding, each position
in the vector corresponds to a unique amino acid, and the occurrence of an amino acid is
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Table 5 One-hot encoding.

Peptide sequence Encoded representation

GLLWEVCK [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
KPLPEAK [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
WDPPTLWK [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
RRTWS [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Table 6 Additional features.

Peptide sequence Secondary structure Solvent accessibility

GLLWEVCK [H, H, C, . . . ] [0.45, 0.67, . . . ]
KPLPEAK [C, C, E, . . . ] [0.32, 0.78, . . . ]
WDPPTLWK [C, C, C, . . . ] [0.65, 0.22, . . . ]
RRTWS [H, H, H, . . . ] [0.78, 0.56, . . . ]

indicated by assigning 1 to the corresponding position, while all other positions are set to
0. This encoding scheme, shown in Table 5, preserves the categorical nature of the amino
acids but does not capture the relationships or dependencies between adjacent amino
acids.

Additional features
In addition to encoding peptide sequences, additional features can be extracted and
incorporated to enhance representations of peptides. These features can include
physicochemical properties of amino acids, such as hydrophobicity, polarity, or charge,
or higher-level structural properties, such as secondary structure predictions or solvent
accessibility, as shown in Table 6.

Representation fusion
To incorporate both encoded peptide sequences and the additional features, various fusion
techniques can be employed. One common approach is concatenation, where the encoded
sequences and additional features are combined into a unified representation. Alternatively,
feature-specific neural networks can be used to process encoded sequences and additional
features separately and then combine their representations at a later stage.

The resulting feature representations, obtained through encoding, extraction of
additional features, and fusion techniques, provide comprehensive input for the 2D CNN
model. These representations capture both primary sequence information and higher-level
characteristics of peptides, enabling the model to learn complex relationships and make
accurate predictions.

Table 7 shows the process of feature extraction and representation for peptide sequences,
including various encoding schemes, incorporation of additional features, and fusion
techniques. These techniques ensure that the input data are altered into an appropriate
format for the 2D CNN model, enabling effective learning and prediction of anticancer
peptide activity.
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Table 7 Concatenation fusion.

Peptide sequence Encoded representation Secondary structure Solvent accessibility Peptide sequence

GLLWEVCK [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [H, H, C, . . . ] [0.45, 0.67, . . . ] GLLWEVCK
KPLPEAK [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [C, C, E, . . . ] [0.32, 0.78, . . . ] KPLPEAK
WDPPTLWK [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [C, C, C, . . . ] [0.65, 0.22, . . . ] WDPPTLWK
RRTWS [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [H, H, H, . . . ] [0.78, 0.56, . . . ] RRTWS

Table 8 Example of a 2D CNNmodel architecture.

Layer type Number of filters Kernel size Activation Output size

Convolution 32 (3, 3) ReLU (32, H, W)
Max pooling – (2, 2) – (32, H/2, W/2)
Convolution 64 (3, 3) ReLU (64, H/2, W/2)
Max pooling – (2, 2) – (64, H/4, W/4)
Flatten – – – (64 * H/4 * W/4)
Fully connected 128 – ReLU 128
Fully connected 1 – Sigmoid 1

Training and optimization
This process plays a key role in the development of an accurate and robust predictive model
for anticancer peptide prediction. In this section, we describe the steps involved in training
the 2D CNN model and optimizing its performance.

The architecture
The 2D CNN architecture determines the structure and organization of the neural network
layers, including convolutional layers, pooling layers, and fully connected layers, as shown
in Table 8. The architecture selection rests on the complexity of the data and the desired
performance. Commonly used architectures in peptide prediction include variations of
LeNet, VGG, and ResNet.

Loss function and optimization
To train the model, a suitable loss function is chosen to evaluate discrepancies between
predicted anticancer activity and ground truth labels. Commonly used loss functions
for binary classification include binary cross-entropy and logistic loss. The optimization
process minimizes the loss function through an optimization algorithm such as stochastic
gradient descent, Adam, or RMSProp. Hyperparameters of the optimization algorithm,
such as learning rate, weight decay, and momentum, are tuned to improve the convergence
and generalization of the model.

Training procedure
After feeding the training dataset through the 2D CNN model, the model’s parameters are
updated based on the computed loss. The dataset is typically divided into batches, with
each batch processed iteratively throughout the training process. The model’s parameters
are updated through backpropagation, where the gradients of the loss function concerning
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the model’s parameters are calculated and utilized to update the weights and biases of
the network. The training process continues for a certain number of epochs or till a
convergence criterion is met.

Evaluation metrics
Evaluation of the trained model is essential to assess its performance and effectiveness
in predicting anticancer peptide activity. The evaluation metrics to measure the model’s
performance are described in this section.

Accuracy
Accuracy is a commonly used metric that measures the proportion of correctly predicted
samples out of the total number of samples. It provides an overall measure of the model’s
predictive performance.

Precision, recall, and F1-score
Precision, recall, and F1-score are used in binary classification tasks to assess a model’s
performance with positive and negative samples. Precision represents the percentage of
correctly predicted positive samples out of all samples predicted as positive, while recall
measures the percentage of correctly predicted positive samples out of all positive samples.
The F1 score combines both precision and recall into a single metric, providing a balanced
evaluation of the model’s performance.

AUC-ROC
The area under the ROC curve is usually used to assess a model’s ability to discriminate
between positive and negative samples. It plots the true positive rate against the false positive
proportion at various classification thresholds. A higher AUC-ROC value indicates better
discrimination by the model.

EXPERIMENTS AND RESULTS
In this section, we provide an in-depth analysis of the experiments conducted to evaluate
the performance of our proposed deep learning model for enhancing the accuracy in
predicting anticancer peptides. We detail dataset preparation and preprocessing, discuss
the cross-validationmethodology, present a comprehensive performance analysis, compare
our model with existing methods, and touch upon the model’s interpretability.

Dataset description and preprocessing
The cornerstone of our experiments lies in a meticulously curated dataset comprising
diverse peptide sequences annotated with anticancer activity labels, as shown in Table 9.
This dataset amalgamates peptides from various sources, including public databases,
experimental studies, and curated datasets.

Each peptide sequence is accompanied by a binary label indicating whether it possesses
active or inactive anticancer properties. Supplementary metadata, such as peptide length,
origin, and chemical properties, enrich our understanding of peptide characteristics, as
shown in Table 10.
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Table 9 Dataset description.

Peptide sequence Anticancer activity

GLLWEVCK Active
KPLPEAK Inactive
WDPPTLWK Active
RRTWS Inactive

Table 10 Peptide sequences, anticancer activity, peptide length.

Peptide sequence Anticancer activity Peptide length

GLLWEVCK Active 8
KPLPEAK Inactive 7
WDPPTLWK Active 8
RRTWS Inactive 5

Dataset split and cross-validation
To ensure a robust evaluation of the proposed model, the dataset was divided randomly
into training, validation, and testing sets. The dataset’s random split still preserved the
distribution of positive and negative samples in each set. The training set is utilized to
train the model, the validation set is used to fine-tune hyperparameters and monitor
performance, and the test set is utilized for the final evaluation, as shown in Table 11.

Cross-validation further validates themodel’s performance and assesses its generalization
ability. K-fold cross-validation splits the dataset into k subsets or folds.

The model is trained and tested k times, each time with a different fold serving as
the validation set, and the remaining folds serving as the training set. The performance
metrics then average the k iterations to obtain robust and unbiased estimates of the model’s
performance, as shown in Fig. 1.

The experiments used an 80:10:10 split for training, validation, and testing sets,
respectively. Five-fold cross-validation ensures a comprehensive assessment of the model’s
performance.

This split and cross-validation strategy enables us to evaluate the model’s performance
on different subsets of the data, assess its generalizability, and ensure reliable and unbiased
performance estimates, as shown in Fig. 2. It gives us confidence in themodel’s effectiveness
and its potential for real-world applications.

Model performance evaluation
We evaluated the performance of the proposed 2D CNN architecture using accuracy,
precision, F1-score, recall, and AUC-ROC, as shown in Table 12.

These metrics provide insights into the classification accuracy, the model’s ability to
correctly identify positive samples, and its overall performance in distinguishing between
positive and negative samples, as shown in Fig. 3.
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Table 11 Dataset split and cross-validation.

Dataset Number of samples Positive samples Negative samples

Training 800 400 400
Validation 200 100 100
Test 300 150 150

Figure 1 Training and validation loss.
Full-size DOI: 10.7717/peerjcs.2171/fig-1

Comparison with existing methods
The performance of the proposed deep learning model for the prediction of anticancer
peptides was compared with existing methods in the literature to assess its effectiveness
and superiority over the state-of-the-art approaches.

The proposedmethod demonstrated superior performance in accuracy, precision, recall,
F1-score, and AUC-ROC, as shown in Table 13. The accuracy of our proposed method
reached 0.87, indicating it correctly predicted the anticancer activity for a significant
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Figure 2 Training and validation accuracy.
Full-size DOI: 10.7717/peerjcs.2171/fig-2

Table 12 Performance metrics of the proposed 2D CNN architecture.

Metric Value

Accuracy 0.87
Precision 0.85
Recall 0.88
F1-Score 0.87
AUC-ROC 0.91

proportion of the samples. A precision of 0.85 demonstrates that our method effectively
identified true positive samples out of all samples predicted to be positive. The recall
value of 0.89 shows that our method accurately captured a large portion of true positive
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Figure 3 Performance metrics of the proposed 2D CNN.
Full-size DOI: 10.7717/peerjcs.2171/fig-3

Table 13 Performance comparison with existing methods.

Method Accuracy Precision Recall F1-Score AUC-ROC

DeepDNAbP (Nambiar et al., 2020) 0.75 0.72 0.78 0.75 0.82
CACPP (Nambiar et al., 2020) 0.81 0.78 0.83 0.80 0.85
Deep-AmPEP30 (Koutsoukas et al., 2011) 0.79 0.76 0.81 0.78 0.84
Proposed method 0.87 0.85 0.89 0.87 0.91

samples out of all positive samples. The F1-score of 0.87, which combines precision and
recall, reflects the overall effectiveness of our method in achieving a balanced performance.
Furthermore, the AUC-ROC of 0.91 indicates an excellent ability to discriminate between
positive and negative samples.
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The significant improvement in performance compared to existing methods can be
attributed to the enhanced ability of our model to capture intricate spatial patterns and
dependencies within peptide sequences using a two-dimensional convolutional neural
network. The 2D CNN architecture effectively extracted informative features and learned
complex relationships, leading to improved prediction accuracy.

In addition to the quantitative evaluation, qualitative analysis and interpretability of
the results further support the superiority of our method. The model’s interpretability
provides insights into the important features and patterns that contribute to the prediction
of anticancer peptide activity, helping to understand the underlying biological mechanisms.

CONCLUSION AND FUTURE WORK
In this research, we developed and evaluated a deep learning model based on a two-
dimensional convolutional neural network (2D CNN) to enhance the prediction accuracy
of anticancer peptides. Our experimental results demonstrated that the proposed model
significantly outperforms existing methods, achieving high accuracy, precision, recall, F1-
score, and AUC-ROC. The 2D CNN model effectively captures complex spatial patterns
and dependencies within peptide sequences, leading to improved prediction accuracy.
The implications of our study are substantial for the field of computational biology and
cancer treatment. By accurately predicting anticancer peptides, our model can aid in the
identification of effective peptide candidates, potentially accelerating the development
of novel cancer therapies. This advancement underscores the value of integrating deep
learning techniques into bioinformatics and drug discovery processes. Future research
should focus on expanding the dataset to include more diverse and comprehensive peptide
sequences, which could further improve the model’s robustness and generalization.
Additionally, exploring alternative deep learning architectures and incorporating other
relevant features could enhance the predictive performance. Validation of the model’s
predictions through experimental studies is essential to confirm their biological relevance
and efficacy. Efforts should also be directed towards optimizing computational efficiency
and translating these predictions into clinical applications, ultimately bridging the gap
between computational predictions and practical therapeutic development. Our study
contributes to the advancement of anticancer peptide prediction and showcases the
potential of deep learning in cancer research, offering a promising approach to identifying
effective peptide candidates for cancer treatment. Future work will continue to build on
these findings, aiming to standardize and optimize integrated predictive models for clinical
use.
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