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ABSTRACT
Schizophrenia is a severe mental disorder that impairs a person’s mental, social, and
emotional faculties gradually. Detection in the early stages with an accurate diagnosis
is crucial to remedying the patients. This study proposed a new method to classify
schizophrenia disease in the rest state based on neurologic signals achieved from the
brain by electroencephalography (EEG). The datasets used consisted of 28 subjects,
14 for each group, which are schizophrenia and healthy control. The data was
collected from the scalps with 19 EEG channels using a 250 Hz frequency. Due to the
brain signal variation, we have decomposed the EEG signals into five sub-bands using
a band-pass filter, ensuring the best signal clarity and eliminating artifacts. This work
was performed with several scenarios: First, traditional techniques were applied.
Secondly, augmented data (additive white Gaussian noise and stretched signals) were
utilized. Additionally, we assessed Minimum Redundancy Maximum Relevance
(MRMR) as the features reduction method. All these data scenarios are applied with
three different window sizes (epochs): 1, 2, and 5 s, utilizing six algorithms to extract
features: Fast Fourier Transform (FFT), Approximate Entropy (ApEn), Log Energy
entropy (LogEn), Shannon Entropy (ShnEn), and kurtosis. The L2-normalization
method was applied to the derived features, positively affecting the results. In terms
of classification, we applied four algorithms: K-nearest neighbor (KNN), support
vector machine (SVM), quadratic discriminant analysis (QDA), and ensemble
classifier (EC). From all the scenarios, our evaluation showed that SVM had
remarkable results in all evaluation metrics with LogEn features utilizing a 1-s
window size, impacting the diagnosis of Schizophrenia disease. This indicates that an
accurate diagnosis of schizophrenia can be achieved through the right features and
classification model selection. Finally, we contrasted our results to recently published
works using the same and a different dataset, where our method showed a notable
improvement.
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INTRODUCTION
The brain’s nervous system controls human general behaviors; it plays a fundamental role
in people’s lives, including their decisions, lifestyles, emotions, and judgments. Brain
diseases are electrical abnormalities whose severity varies based on several factors,
including the patient’s age, disorder location in the brain family medical history, and other
undefined elements that distinguish one patient from another. For instance, diseases that
affect the neural cells include Alzheimer’s, epilepsy, schizophrenia (SZ), Parkinson’s, etc.
These disorders have varied symptoms, each affecting a specific area and function of the
brain, which is discovered and diagnosed using various tools and tests.

Schizophrenia is a brain disorder burdensome the nerve cells; its symptoms appear
obviously between the ages of 16 and 30 (Huang et al., 2019; Li et al., 2023). The evoked
symptoms include delusions, hallucinations, depression, anxiety (Jauhar, Johnstone &
McKenna, 2022), etc. People who have schizophrenia may have an abnormal perspective of
the world around them (Zhu et al., 2022). Schizophrenia is one of the most severe illnesses
that can eradicate the brain’s neural system. The WHO organization’s official report
declared that there are more than 21 million subjects, of which around 1% suffer from
mental diseases, all over the world (Sadeghi et al., 2022). These symptoms can be utilized to
identify the patient’s condition into positive and negative (or cognitive) categories; thus,
timely detection is considered an essential part of the recovery process for patients (Aslan
& Akin, 2020). The neuroimaging techniques field provided the knowledge underlying
symptoms of schizophrenia and other brain disorders, inspiring and accelerating scientific
development to reach new goals in the medical field. The conventional technique for
diagnosing ScZ is based entirely on the unique patient’s response and the experience
psychiatrists have, which makes this process extremely subjective, biased, and time-
consuming.

In recent years, electroencephalography devices (EEG) have shown a magnificent
contribution to dealing with nervous system diseases and diagnosing them, such as
epilepsy (Al-Azzawi, 2021; Al-azzawi et al., 2022), Alzheimer’s disease (Al-Jumaili et al.,
2023; Ferdowsi et al., 2024; Kim et al., 2024; Nour, Senturk & Polat, 2024), and
schizophrenia (Khare, Bajaj & Acharya, 2023). EEG was the ideal instrument for capturing
the electrical activity of the brain using a variety of electrodes because of its non-invasive
nature, which provides a high and complex brain dimensionality that contains a huge
amount of data. EEG penetrates and collects the brain’s electrical activity, enabling the
ability to diagnose illnesses that had hitherto eluded specialists. These recorded signals are
then clearly sent to the outside world, which handles them in various ways that support the
scientific objective. On the same side, in the medical field, machine learning (ML) is one of
the most significant techniques that provides a sophisticated understanding of handling,
processing, and analyzing various dataset types such as brain signals, genetic information,
and medical images (Al-Jumaili et al., 2021; Al-Jumaili, Duru & Uçan, 2021). Besides, ML
could diagnose, detect, predict, and classify different diseases precisely. ML handles
schizophrenia detection in a new computational method compared to traditional methods,
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where signals’ hidden information is extracted from the data using a feature extraction
technique.

Furthermore, the extracted features can reduce the signal’s dimensions, quantifying the
most related data. In addition, these properties are used with either the frequency domain
or the time domain (Aksöz et al., 2022; Gosala et al., 2023). Subsequently, many types of
algorithms are utilized to enhance the precision of the findings of the analysis, diagnostic,
and detection procedures. Linear discriminant analysis (LDA), support vector machines
(SVM), and K-nearest neighbors (KNN) for instance. Since the precision ratio from
previously published studies is generally fairly acceptable, we attempted to significantly
improve the accuracy by proposing a method which summarize the most significant
proposed methodological contributions in the detection of schizophrenia by EEG signals
as follows:

1) To propose a highly effective method for classifying epoched EEG signals of SZ and
healthy controls using machine learning algorithms in terms of decreased complexity.

2) To investigate the effects of augmentation techniques using two methods SNR and
stretch on classification accuracy.

3) To compare the classification performance of less number of electrode usage with
varying epoch lengths of 1-, 2-, and 5-s.

RELATED WORK
There have been several publications and articles about the classification of schizophrenia;
one of these articles was done by Hartini & Rustam (2021), classified the Schizophrenia
dataset which had two groups (schizophrenic and non-schizophrenic). RBF and
polynomial kernel functions were utilized, and they applied four different k-fold validation
methods (3, 5, 7, and 10). The best outcome obtained when K = 10 was 69%. de Miras et al.
(2023), to acquire machine learning classifiers for schizophrenia based on resting-state
EEG data, they have assessed if machine learning techniques may aid in the diagnosis of
the disorder. They have also developed a processing pipeline. They tested five machine
learning algorithms: support vector machines (SVM), k-nearest neighbors (kNN), logistic
regression (LR), decision trees (DT), random forest (RF), and SVM. SVM produced the
best classification results (89%) when it came to separating patients with schizophrenia
from healthy subjects. Further, Hassan, Hussain & Qaisar (2023), employed a multi-
channel EEG signal dataset in their study to identify schizophrenia. They created a channel
selection mechanism based on a thorough performance analysis of the convolutional
neural network (CNN) while taking into account the unique EEG channels in various
brain regions. To train the classification model, they combined several machine learning
(ML) classifiers with CNN. Their results demonstrate that a hybridization of CNN and
logistic regression (LR) utilizing three channels—T4, T3, and Cz—achieves 90% and 98%
accuracy, respectively. Siuly et al. (2020) used EEG signal data with two groups, which are
schizophrenia and healthy subjects. They applied empirical mode decomposition to the
signals and then applied the Kruskal-Wallis test to select the most significant features.
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Then, all features were fed to the SVM to classify them. The highest result achieved was
93.21%. In their research, Khare et al. (2020) got 88% with SVM out of the five
classification techniques used, including KNN, DA, ensemble method, and decision tree.
They applied kurtosis, variance, root mean square, mean, and minimum as feature
extraction methods on the EEG signal of the schizophrenia dataset and then used the
Kruskal-Wallis test to select the best features. Additionally, Jain et al. (2022), classified the
EEG signals into schizophrenia and control groups. Empirical Wavelet Transform has
been used in their study to decompose the signals and they applied three different types of
entropy (sample entropy, Shannon entropy, and log energy entropy) as feature extraction.
Then four techniques were used (support vector machine (SVM), k-nearest neighbor
(KNN), linear discriminant (LD), and neural network) with two types of K-folds (5 and 10)
to achieve their goal. The best classification accuracy they achieved was 87% using SVM,
KNN, and a neural network with k = 5.

Meanwhile, in this study, we proposed a new technique for schizophrenia disorder
classification to distinguish schizophrenia patients from healthy people by using EEG
signals. The EEG dataset is applied to the band-pass filter as a preprocessing phase, which
blocks signals at undesirable frequencies from passing through in preparation for
schizophrenia disorder classification. After preprocessing, the filtered EEG signals are split
into the delta, theta, alpha, beta, and gamma frequency sub-bands. The suggested method’s
primary objective is to precisely categorize schizophrenia by extracting the perceptive
features of the Fast Fourier Transform, approximate entropy, log energy entropy, Shannon
entropy, and kurtosis for every frequency band related to the EEG data signals. Also, each
EEG band has been normalized by L2-normalization methods, where the normalization of
EEG signals helps accuracy and performance enhancement in conventional ML models.
Finally, these features of the EEG signals are fed into the three supervised machine learning
classifiers used.

Based on the results obtained in previous studies and according to Table 1, which
highlights the researchers’ use of various classifiers to classify schizophrenia disorder, we
observe that different datasets with various techniques had been used, and the results were
differentiated and did not meet expectations. Therefore, we propose a method that has the
ability to further increase the accuracy of the diagnosis of schizophrenia.

MATERIALS AND METHODS
In the following paragraphs, this article will present the impact of the window size and the
band-pass filter on classifying schizophrenia EEG signals using four traditional ML
models. For the classification technique, firstly, we discuss the dataset availability, the
preprocessing technique, and finally, the ML models used for SZ classification.

Dataset
The dataset used in our approach is a publicly available EEG dataset (Olejarczyk &
Wojciech, 2017). The signals employed contain 28 subjects, 14 from each group: patients
with paranoid schizophrenia and healthy controls under resting state with eyes closed
condition.
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Table 2 illustrates the EEG dataset details, where the montage was performed using a
standard 10–20 system and the dataset was compiled using the following 19 EEG channels:
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 (Sazgar
et al., 2019).

Processing and feature extraction
EEG signals may contain a variety of noises that have a noticeable impact on classification
accuracy; therefore, preprocessing is an essential step in diminishing noise (artifacts).
Thus, various filters can be applied to enhance the signal quality. Initially, we used a
frequency filter to decompose the EEG signal and eliminate redundant frequencies. The
bandpass filter divides data into five frequency sub-bands: delta rhythm (0.1–4 Hz), theta
rhythm (5–9 Hz), alpha rhythm (10–14 Hz), beta rhythm (15–31 Hz), and gamma rhythm
(32–100 Hz), by allowing only certain frequencies to pass through readily. This helps to
filter out frequencies that are too high or too low, where there are a lot of high-frequency

Table 1 Studies classified schizophrenia patients and healthy controls using different techniques.

Ref. Year Features Electrode
no.

Number of
subjects

Classifiers Acc
%

Patients Control

Devia et al. (2019) 2019 Event-related potentials 32 11 9 LDA 71

Phang et al. (2019a) 2019 CNN 16 45 39 SVM 92.87

Torres Naira & Del Alamo (2020) 2019 PCC 16 45 39 CNN 90

Rajesh & Kumar (2021) 2021 SLBP 16 45 39 Logitboost 91.66

de Miras et al. (2023) 2023 Multiple features techniques 31 11 20 KNN 87

Kim et al. (2021) 2021 Multiple features techniques 19 14 14 SVM 75.64

Ko & Yang (2022) 2022 Gramian angular field 9 49 32 VGGNet 93.20

Buettner et al. (2019) 2019 FFT 19 14 14 Random forest 80

WeiKoh et al. (2022) 2022 Local configuration pattern 19 14 14 KNN 97.20

Lillo, Mora & Lucero (2022) 2022 Micro-states 19 14 14 CNN 93

ArivuSelvan & Moorthy (2020) 2020 Thalamic NA 115 76 ANN 83

Park et al. (2020) 2020 Hippocampus NA 86 66 LR, AB, XGBoost, and
SVM

80.4

Santos Febles et al. (2022) 2020 NA 64 54 54 Multi-kernel SVM 83

De Rosa et al. (2022) 2022 Hippocampus NA 20 20 RF 95

Chin et al. (2018) 2018 NA NA 141 71 SVM 92

Sutcubasi et al. (2019) 2019 NA NA 93 23 ANN 81.25

Vyškovský, Schwarz & Kašpárek
(2019)

2019 NA NA 52 52 MLP 73.12

Baygin et al. (2023) 2023 TQWT NA NA NA KNN 99.20

Khare, Bajaj & Acharya (2023) 2023 Margenau–Hill time-frequency
distribution

19 14 14 CNN 97.4

16 45 39 99

64 49 32 96

Khare, Bajaj & Acharya (2023) 2021 SPWVD 64 49 32 CNN 93.36
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and noise components in the original brain data, and filtering functions help to identify the
EEG’s detailed information.

These settings achieve the best possible compromise between reducing artifacts that are
outside the relevant range of human EEG signals and preventing the development of new
artifacts.

We applied the bandpass filter to the EEG data before it was segmented into specific
window length. Figure 1 shows the results before and after applying the band-pass filter.

Due to the limited number of subjects, we applied two augmented methods to the
dataset involved: AWGN and Stretch to increase the size of the data by generating more
training data, which positively effect intensive classifier learning. First, we applied AWGN
which is a kind of noise that is utilized to add random noise to the EEG by adding Gaussian
noise (signal-to-noise ratio (SNR)). Normally, the addition of SNR is in dB, and we applied
a 10dB value with Signal power (measured). Equation (1) illustrates the mathematical
representation of AWGN.

SNR ¼ 10:log10
Psignal
Pnoise

� �
: (1)

Second, we applied a stretching method to augment the signal, which in turn increases
the training of the classifier. In addition, we used it to examine our proposed approach to
classifying schizophrenia subjects. We performed the stretch method on the x-axis with a
20% time stretch for the original signal and employed it for the 19 channels.

Table 2 The details of the datasets used.

Features Values

Total subjects 28

HC 14

SZ 14

Males (SZ) 7

Females (SZ) 7

Males (HC) 7

Females (HC) 7

Mean age (SZ) 28.1 ± 3.7 years

Mean age (HC) 27.75 ± 3.15 years

Mean age (Male SZ) 27.9 ± 3.3 years

Mean age (Male HC) 26.8 ± 2.9 years

Mean age (Female SZ) 28.3 ± 4.1 years

Mean age (Female HC) 28.7 ± 3.4 years

EEG segment 15 min

No. of segments 21,702

No. of segments without artefacts 30

No. of channels 19

Sampling Freq. (Hz) 250
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Due to the biophysical properties such as conductivity differences of brain, skull and
scalp tissues, it is not straightforward to investigate the cortical activity from the measured
scalp potentials with a few electrodes. On the other hand, increasing the number of scalp
electrodes requires more attention to decrease the impedance which is one of the crucial
signal quality issues. Thus, the determination of the best-performing electrodes may allow
for faster and cost-effective data collection. For this reason, we used different scenarios by
reducing features using the MRMR feature selection technique. The MRMR algorithm is a
sequential feature selection technique that locates an ideal set of characteristics that are
both mutually and maximally different (Ding & Peng, 2005). The MRMR maximizes the
feature set’s relevance to the response variable and minimizes its redundancy.

Since there is not a single, accepted rule for feature limitations, the number of features is
open to debate. We discussed two feature reduction scenarios to examine our proposed
model, which are eight, and five the best features.

In terms of window length, there are no standard criteria used by researchers to segment
signals into a specific window size, while many studies have been conducted using different
epochs window sizes (Kim et al., 2021; Sun et al., 2021; Vázquez, Maghsoudi & Mariño,
2021; Agarwal & Singhal, 2023; de Miras et al., 2023; Ranjan, Sahana & Bhandari, 2024).
In order to investigate which time window is optimal, we used three different epoch
window sizes for classification, and since the brain signals contain many frequencies, the
choice of window size is crucial in affecting the final results: Therefore, a bandpass filter
was used. The distribution range of the signal was between (0.1 to 100), where low
frequencies (such as delta and theta) require a large window size. In contrast, higher
frequencies (eg, beta, gamma) require a small window size. Therefore, the choices of the
epoch sizes were (1, 2, and 3 s) to capture all the frequencies and evaluate the proposed

Figure 1 Decomposition of EEG signals using a band-pass filter. Full-size DOI: 10.7717/peerj-cs.2170/fig-1
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method if it has the ability to obtain promising results. Also, in terms of computational
efficiency, we evaluate the window size effect on feature extraction and the final results of
the classifier, besides the time duration needed to predict speed and training time for the
same classifier.

Bear in mind that determining classification accuracy depends on the ability to extract
features from EEG signals, which is not just a difficult phase but also a critical and
challenging step in the classification process. For schizophrenia, EEG patterns can be
extracted using both time-domain and frequency-domain feature techniques. Time-
domain feature extraction techniques use changes in signal time series to analyze EEG
data, whereas non-linear analysis techniques have recently been widely used to analyze
EEG data. As the next step to the preprocessing phase, various methods are used with EEG
signals, such as fuzzy entropy, permutation entropy, symbolic dynamics-based entropy,
sample entropy, time-frequency distributions, wavelet transform, and eigenvector
methods to extract features.

In this study, six extraction methods were calculated for each window epoch to extract
the hidden features. We implemented two cases: features implemented with the band-pass
filter and features implemented without. Specifically, FFT, log energy entropy, kurtosis,
and Shannon entropy were implemented with the band-pass filter; in contrast,
approximate entropy was applied in both cases with the band-pass filter and without.

Fast Fourier transform
Fast Fourier transform (FFT) has changed the world, is one of the most important
algorithms developed of all time, and is the enabling piece of technology in most digital
communication, audio, image compression, and signals. The real reason for depending on
FFT is its quick and effective method of denoising data. The FFT feature has been
implemented on the SZ EEG signals to convert the time domain to the frequency domain
(Sedik, Marey & Mostafa, 2023). It helps measure the power spectrum of the data from the
frequency band. Equation (2) below illustrates the mathematical formulation of FFT,
where X(K) means the Fourier coefficient of x(n), and the odd n and even n are compatible
with odd numbers and even numbers with the frequency of K, respectively.

X Kð Þ ¼
XN�1

n¼0

X n½ �Wkn
N ¼

X
n even

x nð Þnwkn
N þ

X
n odd

x nð Þwkn
N (2)

K ¼ 0; 1 . . . . . . ;N � 1;

Approximate entropy
Entropy is the most frequently used feature to measure time-domain features and is also
widely used in disease detection. Approximate entropy (ApEn) is defined as a
measurement of the regularity or randomness of data in a time series and is used for short-
length data due to its lower sensitivity to noise. Equation (3) shows the mathematical
formula, where r stands for the similarity criterion, e stands for (the length of the data
segment being compared), and N stands for (the length of data).
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ApEn E; r;Nð Þ ¼ 1
N � eþ 1ð Þ

XN�eþ1

i�1

log Ce
i rð Þ � 1

N � e

XN�e

i¼1

log Ceþ1
i rð Þ: (3)

Shannon entropy
Shannon and Weaver established entropy for information theory, which characterizes a
signal’s complexity, irregularity, uncertainty, or unpredictability. ShnEn is a time-domain
complexity metric that does not rely on the signal spectrum. A discrete signal’s ShnEn may
be computed as Eq. (4):

Hsh ¼ �
XNa

i¼1
Pi log Pi: (4)

Na is the total number of amplitude values in the signal with the I range, and pi is the
probability of the signal with the ai amplitude.

In practice, instead of calculating all amplitude values, the probability density function
of the signal is predicted using the histogram. Signal amplitudes are split into k bins to
generate the normalized form of Hsh, and entropy is computed as Eq. (5):

ShEn ¼ HSh
og k

(5)

Log energy entropy
The ShnEn and log energy entropy (LogEn) are calculated using the entropy-based wavelet
packet decomposition proposed by Coifman and Wickerhauser. Entropy is utilized as the
feature method because it can be used to determine how random the information is
Prasanna, George & Subathra (2024). LogEn, which is represented by Eq. (6), is a
commonly used metric in signal processing that can extract relevant information:

E ¼
X

n
log wn2

i;j

� �
(6)

where wn2
i;j

� �
are the computed WPD coefficients.

Kurtosis

The word kurtosis, which means ‘tailedness’, comes from the Greek word ‘kyrtos’ or
‘kurtos’ (The MathWorks, Inc., 2022). It is considered one of the shape measurements and
is historically defined as the peakedness of a distribution. Nowadays, it is just clarifying the
tail extremity, which means either existing outliers (for the sample kurtosis) or the
propensity to produce outliers (for the kurtosis of a probability distribution). A normal
distribution will have a kurtosis of three, called mesokurtic, while a distribution of more
than three is called leptokurtic and called platykurtic, which is less than three. Kurtosis has
been used to find the normality of data for statistical analysis from range 1 to infinity
throughout the below Eq. (7) (The MathWorks, Inc., 2022).

j ¼ E x � lð Þ4
r4

(7)
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After the feature extraction step, and due to the features extracted having different
scales, normalization is important to ensure the feature will be in the same range, which
can improve training speed and performance. The normalized features are input for the
classification: SVM, KNN, QDA, and EC. FFT, ApEn, LogEn, ShnEn, and kurtosis are all
computed using a MATLAB routine.

Normalization
Standardization and normalization are the two most common feature scaling methods in
machine learning. Normalization is regarded as a crucial phase in the production of data.
Generally, normalization is the most widely used method with data in linear
transformations. Feature scaling, whose values range from 0 to 1, makes comparing data
easier. Therefore, we utilized the L2 normalization method in our approach, and the
outcomes served as inputs for the next stage, classification, which raised and improved our
accuracy results.

Classification
The classification of individuals with schizophrenia was done using the following four
classifiers widely used in classifying EEG signal datasets. The baseline techniques were
employed as part of the proposed ML method described in this section: SVM, KNN, QDA,
and EC. The following section will give a quick overview of each of these approaches.

Support vector machine
In recent years, many articles have used SVM to classify various datasets. The most critical
component in SVM is the hyperplane, which affects the accuracy of the result based on the
optimal hyperplane used to classify the dataset into different groups. Furthermore, the
class boundaries are subject to finding the ultra-optimal level, which removes some
irrelevant data from the training data set to reduce classification error. SVM employs a
variety of kernels, including Polynomial, Gaussian, Radial Basis Function (RBF), Laplace
RBF, Sigmoid, and Anove RBF, etc., which are named a (kernel trick). However, as shown
in the mathematical expression in Eq. (8), the two essential parameters are W and (Z-B),
where W represents the transport vector and B is the displacement of that vector. The
distance from Z to the hyperplane is:

D zð Þ ¼ W . Z � B; where Z 2 A if D zð Þ > 0
B if D zð Þ < 0

�
: (8)

K-nearest neighbors
KNN is a non-parametric classification method that uses a distance check to discover the
classifier’s closest neighbors. The Euclidean distance equation is used to calculate distance,
and the mathematical formula is presented below in Eq. (9). To classify a certain (X), the
classifier check measures the distance between the (X) and the other data during the
training phase. It assigns it a specific label (K) indicating its class, and KNN will do the
same with all data until all data is.
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dis x1; x2ð Þ ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1i� x2iÞ2

q
: (9)

Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) is a machine learning and statistical classification
classifier that uses quadric surfaces to classify two or more classes of different types of
information. It is a more appropriate form than a linear classifier. QDA, in particular,
employs a Gaussian distribution for each class. As demonstrated by mathematical Eq. (10).
P x j y ¼ kð Þ is modeled as a multivariate Gaussian distribution with density, and d is the
number of features.

Figure 2 illustrates the pipeline for the categorization method applied in this research
using the entropy family, FFT, and kurtosis.

P x j y ¼ kð Þ ¼ 1

ð2pÞd2jP kj12
exp � 1

2
ðx � lkÞt

X�1

k

x � lkð Þ
 !

: (10)

Ensemble classifier
It is a machine learning method that combines more than one model to provide an
accurate classification. There are different types of algorithms used such as decision trees,
neural networks, support vector machines, or k-nearest neighbors. It relies on each model’s
advantages to provide an outcome that is more robust and durable than any of the models
alone. Ensemble classifier (EC) can handle the complexity of a multidimensional dataset
and reduce the variance and bias of classification results, by overcoming the weak points of
each classifier (Ranjbari et al., 2021).

Evaluation metrics
In this section, we explain the method that we used to validate each model independently.
We used multiple forms of performance rating scales by using a confusion matrix which is
one of the most used methods to examine, evaluate, and represent the classifier efficacy.
The results were obtained through the classifiers using four sorts of outcomes, namely true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). Table 3
shows the formulas used to compute the assessment metrics: accuracy, sensitivity,
specificity, precision, negative predictive value (NPV), F1-Score, and Matthew’s
correlation coefficient (MCC) (Chicco & Jurman, 2023).

RESULTS
This section presents the results of our proposed method. This article investigated the role
of the window epoch size and the impact of the band-pass filter in schizophrenia EEG
signal classification using the database from (Olejarczyk & Wojciech, 2017). First, the used
dataset had two classes: 14 patients with schizophrenia condition and 14 with healthy
conditions, and the dataset was available and could be accessed. The recording signals were
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collected from 19 channels, and all the outcomes were evaluated according to the
frequencies of 250 Hz. In addition, we investigated the impact of the band-pass filter on the
signals that had been recorded by EEG, which affected the performance of the models. In
addition to the traditional techniques, we used data-augmented methods (AGW and
stretched signals) and the MRMR features selection method using the eight and five best
features.

Then, we looked at the effectiveness of six feature extraction techniques (FFT, ApEn,
LogEn, ShnEn, and kurtosis) side by side with SVMs, KNNs, QDA, and EC.

After extracting the attributes, we normalized the data using the L2-normalization
method, and then the algorithms were trained using three epoch sizes (1, 2, and 5 s) to
assess more effectively. This produced three scenarios using machine learning algorithms
for classifying schizophrenia disorder according to each epoch’s size.

Figure 2 Classification EEG signal data with schizophrenia disorder in two labels: schizophrenia and
healthy control. Full-size DOI: 10.7717/peerj-cs.2170/fig-2

Table 3 Evaluation metrics.

Accuracy ¼ TP þ TNð Þ= TP þ FP þ TN þ FNð Þ
Sensitivity ¼ TP= TP þ FNð Þ
Specificity ¼ TN= TN þ FNð Þ
Precision PPVð Þ ¼ TP= TP þ FPð Þ
Negative Predictive Value NPVð Þ ¼ TN= TN þ FNð Þ
F1� score ¼ 2 � TPð Þ= 2 � TP þ FP þ FNð Þ
MCC ¼ TP � TNð Þ � FP � FNð Þð Þ=p TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þð Þ
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One-second epoch size
In the first scenario, we used a 1-s epoch window size and relied on the performance of the
six features. These were used as an effective tool for EEG signal analysis and have been
applied to diagnose neurological diseases.

SVM and EC outperformed the other two classifiers with 99% accuracy when
implementing LogEn; in contrast, KNN, and QDA obtained 98%, and 96% accuracy
values, respectively. Table S1 presents the actual and predicted values of the confusion
matrix for the four classifiers, while Table 4 demonstrates the calculated parameters:
sensitivity, specificity, precision, NPV, F1-Score, and MCC. The results obtained with the
highest accuracy for the above parameters were 99% for SVM and EC. According to all the
above results, KNN was in second place, while QDA came last.

Moreover, Fig. S1 illustrates the ROC curves obtained, particularly the 1-s epoch size
with pure dataset (without augmented or reduced features), using the six features’
methods, including the ApEn with and without Bandpass-Filter for the SZ dataset. These
diagrams visually represent the classification performance, showing how the four classifiers
used on the SZ dataset are between the true positive rate (sensitivity) and the false positive
rate (specificity).

For utilizing the SNR signal as a dataset applied to the feature extraction methods,
Table S2 represents the confusion matrices for all classifiers. When using the results
obtained from the SNR augmented method, they were all ideal using LogEn feature with
Band-pass filter. Further, Table 5 illustrates the measured parameters for classifiers and
shows 99% for all. Moreover, the prediction speed and training time were fairly acceptable.

Figure S2 illustrates the ROC curves obtained, particularly the 1-s epoch size and
applying the SNR augmented method on the dataset, using the six features’ ‘methods’.
These graphs visually represent the classification performance, showing how the four
classifiers used on the SZ dataset are between the true positive rate (sensitivity) and the
false positive rate (specificity). The effectiveness of an individual classifier is represented by
each curve on the ROC graph.

Table S3 shows the confusion matrices for all classifiers when using the Stretch signal as
a dataset for feature extraction. When employing the Stretch-augmented technique, all the
results were optimal when combined with the LogEn feature and a Band-pass filter.
Furthermore, Table 6 provides the measured parameters for classifiers, all accuracies were
fairly acceptable for all classifiers. Likewise, the prediction speed and training duration
were also adequate.

The ROC curves generated using the six features’ methods and the stretch approach
applied to the dataset are shown in Fig. S3, with special attention to the 1-s epoch size. The
four classifiers employed on the SZ dataset are represented visually in these graphs and the
effectiveness of an individual classifier is represented by each curve on the ROC graph.

The latest developments indicate that utilizing EEG with fewer features, possibly even as
few as five or eight, could completely transform the technology’s usability and affordability.
This technique aims to find the optimal features to work with, which saves setup time, and
complexity. In the concept of this study, two scenarios are used to reduce the features by
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selecting eight and five best features. Tables S4 and S5 show the results of the confusion
matrix obtained by using the features after reducing to five and eight and using these
features as inputs to the classifiers. Tables 7 and 8 show the ability of the classifiers to
classify with fewer features, as the results obtained were good compared to the results
obtained using 19 channels.

Figures S4 and S5 display the ROC curves produced by applying the reduction features
strategy to the dataset and the six feature approaches. The 1-s epoch size should be noted.
These graphs show the four classifiers used on the SZ dataset visually, with each curve on
the ROC graph representing the efficacy of a single classifier.

Two-second epoch size
The next step of the proposed method is to classify schizophrenia by the selected features
with a 2-s epoch window size. In the process of training and testing the EEG data using the
four algorithms with the 19-electrode dataset. The confusion matrix of the proposed

Table 4 One-second epoch size classification performance results of four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 97 97 97 97 98 97 95 11,879.4 250.2

KNN 95 95 95 95 95 95 90 1,196.39 108.48

QDA 93 95 93 91 95 93 87 105,281.1 3.769

EC 96 96 97 97 96 96 93 124.4 1,262.4

SVM ApEn 82 87 78 78 86 82 65 5,295.21 875.15

KNN 73 85 63 68 82 75 49 1,221.87 298.98

QDA 75 98 53 66 97 79 57 63,405.56 5.025

EC 85 81 89 87 84 84 71 676 155

SVM ApEn + Bandpass 82 86 77 78 86 82 64 104,405.87 1,453.77

KNN 73 84 62 67 81 75 46 5,236.17 21.4

QDA 74 98 53 66 97 79 57 674,686.27 1.11

EC 81 74 92 94 70 83 66 14,347.6 1,326.4

SVM Shannon entropy 87 83 93 94 81 88 76 114,062.06 3,434.53

KNN 82 76 88 89 74 82 64 833.21 238.26

QDA 92 92 92 93 90 93 84 94,346.25 4.578

EC 95 94 96 96 95 95 91 28,210.4 2,641.6

SVM Log energy entropy 99 99 99 99 99 99 99 31,065 2,370.53

KNN 98 98 99 99 98 99 97 390.78 321.09

QDA 96 94 99 99 93 97 93 137,986.41 5.36

EC 99 99 99 99 99 99 98 113.1 1,280.4

SVM Kurtosis 73 71 75 78 68 74 47 1,319.60 96.82

KNN 63 78 45 63 63 70 25 7,330.22 2,659.32

QDA 68 59 80 78 61 67 39 117,144.71 4.076

EC 71 76 67 70 73 73 43 12,829.4 1,286.9

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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method shown in Table S6, summarizes the actual and predicted values obtained from the
experiments. Whereas the results are shown in Table 9, which compares the accuracy
resulting from the classification of schizophrenia in the proposed model with other
learning models. These results show that the proposed method has an average accuracy of
99% in classifying healthy and schizophrenia subjects and has misclassified only one of the
test samples. On the other hand, the prediction speed with 2-s epoch for both higher
classifiers (EC and SVM) were only 204.5921 and 42,483.20 s. Again, the SVM and EC
classifiers got identical accuracy utilizing the Log Energy Entropy feature, and compared
with the other metrics values, KNN came in second, and QDA came in last.

Although SVM and EC produce superior ROC values for SZ, KNN often performs
better in class distinction than SVM. In Fig. S6, when comparing SVM and EC to other
classifier techniques, QDA performs worse in the data because its ROC curve is often
lower.

Table 5 One-second epoch size classification performance results with SNR for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 97 97 98 97 98 97 95 18,340.3 190

KNN 96 95 96 95 96 95 92 424.4 1,054.4

QDA 95 93 97 96 94 95 91 32,623.1 21.1

EC 97 96 97 97 97 97 94 31.7 5,436.5

SVM ApEn 72 66 78 78 67 71 45 3,962.8 851.7

KNN 70 63 79 80 61 71 42 4,113.2 1,104.4

QDA 65 62 67 58 70 60 29 281,495 1.9

EC 69 63 75 73 65 68 39 11,821.7 2,369.5

SVM ApEn + Bandpass 72 68 77 75 70 71 45 1,152.3 1,688.6

KNN 69 62 78 79 60 70 41 586.1 3,191.7

QDA 69 61 81 84 57 71 42 39,658.7 24.1

EC 67 64 70 63 71 64 34 5,181.5 4,721.9

SVM Shannon entropy + Bandpass 90 86 95 94 87 90 81 2,894.6 821.8

KNN 95 94 95 94 95 94 90 400.1 3,061.6

QDA 69 59 96 98 45 74 49 60,912.9 15.3

EC 99 99 99 99 99 99 98 38,264.8 3,527.2

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 99 47,392.1 98.1

KNN 99 99 99 99 99 99 99 554.5 405.4

QDA 99 99 99 99 99 99 99 34,577.3 24.5

EC 99 99 99 99 99 99 99 40 5,756.9

SVM Kurtosis + Bandpass 67 63 70 65 68 64 34 826.5 1,924.4

KNN 62 59 64 54 68 56 23 785.2 3,338

QDA 59 58 59 34 79 43 16 32,784.7 29.2

EC 63 57 72 74 54 65 30 30,899.4 4,791.8

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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Then, the 2-s epoch window size was applied to the data that was augmented by using
the SNR method. The confusion matrix results of our technique are clarified in Table S7,
whereas the performance parameters recorded greatly varying rates with the six features
utilized, as illustrated in Table 10. In contrast, the four classifiers using log energy entropy
with a bandpass filter obtained equal and ideal values, which is a result of the 2-s epoch
window size that was used.

For visual representation, the ROC is considered one of the methods used to check the
performance of classifiers when comparing different classes. Figure S7 illustrates the ROC
curves produced by applying the SNR approach to the dataset and the six attributes. The
graphs show the four classifiers used on the SZ dataset visually, with each curve on the
ROC graph representing the success rate of a single classifier.

In addition to the SNR technique, the dataset underwent the stretch augmentation
method, a technique for enhancing classification accuracy by diversifying the data’s
plausible changes. It was a way to tackle the small data issue and has shown an encouraging

Table 6 One-second epoch size classification performance results with stretch for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 97 97 97 97 97 97 94 14,815.9 336.8

KNN 96 96 95 95 96 95 92 222.5 2,293.3

QDA 93 90 95 95 90 92 86 42,727.4 27.2

EC 96 95 97 97 95 96 93 30.2 7,720.7

SVM ApEn 92 92 92 90 94 91 84 3,580.1 781.1

KNN 90 91 89 87 93 89 81 1,828.3 1,965.6

QDA 81 84 87 86 85 85 72 350,875.9 3.8

EC 91 89 92 90 91 90 81 507.8 2,325.6

SVM ApEn + Bandpass 79 72 87 87 72 79 60 973 1,948.4

KNN 71 61 93 95 51 75 50 297.5 3,079.9

QDA 71 61 97 98 49 75 53 42,705 32.3

EC 77 67 92 93 63 78 58 12 11,851.3

SVM Shannon entropy + Bandpass 87 80 95 94 80 86 75 886.2 2,874.4

KNN 93 92 95 94 93 933 87 254.5 4,914.9

QDA 63 55 96 98 35 71 41 57,873.2 23.5

EC 97 96 98 98 97 97 95 23,228.9 6,893.9

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 98 20,876.8 566.4

KNN 98 98 99 99 98 98 97 256.5 30,776.2

QDA 96 92 99 99 93 96 92 31,882.6 26.8

EC 99 99 99 99 99 99 98 11.1 38,298.1

SVM Kurtosis + Bandpass 73 67 82 82 66 74 49 499.8 2,660.4

KNN 69 65 72 67 70 66 38 330.8 4,418.7

QDA 49 47 87 98 100 63 17 38,595 30.3

EC 73 66 83 83 65 74 49 10,616.1 7,548.9

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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result. The Confusion Matrix results are shown in Table S8. Here is a breakdown of how
well the augmented method performed: The accuracy of this technique, which combines
ML models and feature extraction methods, is determined by the percentage of successful
classifications, as shown in Table 11, which illustrates the performance of the classifiers.
The accuracies varied for the six features; in contrast, the LogEn feature gained with SVM,
KNN, and EC 99%. However, with an accuracy of 97%, the QDA also performs admirably.

The ROC curves obtained via the SNR technique on the dataset and the six
characteristics are shown in Fig. S8. The four classifiers utilized on the SZ dataset can be
seen using such graphs, where each curve on the ROC graph denotes the achievement
efficiency of a specific classifier.

Features reduction was applied to the dataset to investigate the possibility of achieving
maximum accuracy with a minimum feature number. We applied a 2-s epoch window size
to the dataset with feature reduction, which sped up computational time and improved the
overall efficiency of EEG testing. This procedure was done in two different cases: the

Table 7 One-second epoch size classification performance results with five electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 92 90 94 93.7 90.8 91.9 84 21,765 501.3

KNN 90.8 86.7 95 94.6 87.6 90.5 82 1,350.7 471.2

QDA 81.7 71.8 92.9 92 74 80 65.6 186,543 2.5

ENS 91.9 91 92.7 93 90.6 92 83.8 98.2 1,870

SVM ApEn 74 65.5 84.7 84 66 73.7 50 3,980.7 398.3

KNN 72.6 68.8 77 78.6 67 73 45.9 1,492.1 740.1

QDA 67.5 68 65 87.6 36 76.6 28 312,847.1 22.1

ENS 72 64.5 81.5 80 66.6 71 46 17,681.4 727.6

SVM ApEn + Bandpass 75.6 68 85 85 68 75.6 53 4,978.5 786.3

KNN 67.8 70 57.7 88 29.6 78 22 2,650 2,590.1

QDA 69.7 62 95.5 97.8 42.9 75.9 48 243,101.9 2.9

ENS 73.7 67 88 92.9 54 78 51 51,469.9 1,322.8

SVM Shannon entropy+ Bandpass 71.9 68.6 84 94 41.9 79 43.6 4,299 2,598.6

KNN 90.9 85.7 96.6 96.5 86 90.8 82 1,987.9 2,655.1

QDA 58.5 42.5 87 85 45.9 56.8 30 220,989 13.9

ENS 96.8 95.7 97.9 97.6 96 96.7 93.7 41,987.9 3,001.8

SVM Log energy entropy + Bandpass 97.7 96.6 98.9 99 96 97.8 95.5 35,987.3 26,932

KNN 97 94.7 99.6 99.6 95 97 94.5 1,150.7 1,100.9

QDA 91.9 85.6 99 98.9 85.9 91.8 84.8 67,542.9 22.9

ENS 98.9 98.8 99 98.8 99 98.8 97.9 89.9 26,987

SVM Kurtosis + Bandpass 67.5 64.6 73 82.7 50.9 72.6 35.6 4,562 968.9

KNN 63 50 81.9 79.8 53.7 61.7 32.9 2,879.9 1,192.3

QDA 48.8 48 59 93.6 8 63.5 3 296,150 2

ENS 68.9 62.5 85.5 91.7 47 74 43 43,617.9 2,000

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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highest five and eight features. Tables S9 and S10 show the results obtained using the
confusion matrix, which will show the performance of the classifiers with four outcomes:
true positive, true negative, false positive, and false negative. As well as the accuracy shown
in Tables 12 and 13 of all classifiers and feature extraction methods. The highest results
were obtained in both cases (five and eight features) using the features of Log Energy
Entropy. While FFT ranked second in terms of the highest results, the other feature
outcomes were varied. The effect of reducing the features from eight to (five had no
significant impact on the results, as the results were very similar, especially when using log
energy entropy. EC achieves better results than the other classifiers, whereas the others
were acceptable in both cases. Figures S9 and S10 show the ROC curves to determine
which classification algorithm is most suitable for both current cases. With high precision
and recall for both electrodes above, the classifiers appear to perform well in properly
classifying schizophrenia, and results showed that the model can learn effectively.

Table 8 One-second epoch size classification performance results with eight electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 95 94.5 96 96.6 94 95.5 90.8 3,780.4 209.1

KNN 94.9 95 94 95 94 95 89.6 870 554

QDA 90.7 88 92.9 92.6 88.9 90 81.5 153,476.1 15.7

ENS 95.6 93.6 97.8 97.9 93 95.7 91 66.9 2,867

SVM ApEn 82 77 87 86.7 78 81.7 64.6 6,850.8 459

KNN 81.8 79.7 83.9 82.8 80.9 81 63.8 13,654 550

QDA 69.8 70.9 66 87.8 39.6 78 31.8 269,483.9 27.9

ENS 80 79 81.8 88.5 68.9 83.6 59 27,691.1 659

SVM ApEn + Bandpass 76.7 84.7 46.5 85.6 44.8 85 30.8 3,547.9 12.3

KNN 70.6 68.7 73 78.9 61.8 73 41 889.3 1,679.3

QDA 68.9 88.9 61 46.9 93 61 45 91,734.5 27

ENS 75.8 81 57.5 86 48.7 83.7 36.9 55.9 3,879.3

SVM Shannon entropy + Bandpass 80.8 78 83.9 86 75 82 61.8 7,132.8 845.1

KNN 94.8 93.8 95.8 95.7 94 94.8 89.7 2,029.2 1,590.9

QDA 59.9 51 97.7 99 31 67.7 38 16,573.8 2.8

ENS 97.8 96.6 98.9 98.8 97 97.7 95.7 19,831.3 3,981.4

SVM Log energy entropy + Bandpass 98.6 99 97.7 97.9 99 98.6 97 65,741.8 155.2

KNN 98.9 98.9 98.9 98.8 98.9 98.9 97.8 2,803.9 380

QDA 94.8 90.5 99.5 99.5 90.5 94.8 90 166,790.1 4

ENS 98.9 98.9 98.9 99 98.8 99 97.9 55.3 2,500.8

SVM Kurtosis + Bandpass 68.6 62.6 76.5 77.9 60.7 69 38.9 2,980.6 2,691

KNN 63.7 59 68 67 61 63 27.9 1,877.8 1,190.1

QDA 49.8 47.7 90.5 98.9 8 64 16.5 124,531.5 5.9

ENS 68.7 65 74 80.7 56.5 72 38.5 12,671.9 2,098.1

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).

Alazzawı et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2170 18/42

http://dx.doi.org/10.7717/peerj-cs.2170/supp-9
http://dx.doi.org/10.7717/peerj-cs.2170/supp-10
http://dx.doi.org/10.7717/peerj-cs.2170/supp-24
http://dx.doi.org/10.7717/peerj-cs.2170/supp-25
http://dx.doi.org/10.7717/peerj-cs.2170
https://peerj.com/computer-science/


Five-second epoch size
In the last scenario, a 5-s epoch size was used, in the first case, the data was used without
changing or modifying anything (no augmentation or features reduction). As shown in
Table 14, the four classifiers are identical to the two scenarios above and got the highest
result using the SVM with the Log Energy Entropy feature. For the highest accuracy here,
the sensitivity, specificity, precision, NPV, F1-Score, and MCC were 98%, 99%, 98%, 98%,
and 97% for each parameter, respectively. Also, we illustrated the confusion matrix values
in Table S11. Thus, we demonstrated that our model yielded high classification
performance, and the area under the curve rate of each ROC is higher than 99%, as
presented in Fig. S11.

Table S12 shows the confusion matrices for each classifier when using the SNR signal as
a dataset for the feature extraction techniques. Each of the outcomes from the SNR
approach worked perfectly when the LogEn feature with the band-pass filter was used.
Furthermore, Table 15 displays 99% for all classifiers and indicates the measured

Table 9 Two-second epoch size classification performance results of four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 97 97 97 96 97 96 94 78,870.56 14.18

KNN 94 94 95 93 95 93 88 1,109.58 55.65

QDA 93 90 96 94 92 92 86 133,488.53 1.87

EC 96 95 97 96 96 95 92 203.4 332.7

SVM ApEn + Bandpass 77 73 81 79 76 76 54 1,7452.77 39.71

KNN 71 62 88 91 55 74 48 844.01 77.51

QDA 71 61 97 98 49 75 52 138,362.86 1.753

EC 76 68 89 91 65 77 57 211.1 315.9

SVM ApEn 86 84 88 86 87 85 72 57,978.78 444.40

KNN 85 83 88 85 85 84 70 8,527.96 9.11

QDA 78 69 90 91 66 79 58 319,534.75 1.45

EC 85 81 89 87 83 84 70 1,033.5 52.7

SVM Shannon entropy 60 78 58 20 95 32 23 1,700.017 123.67

KNN 90 87 92 91 88 89 79 1,245.70 58.06

QDA 69 61 95 97 45 75 49 50,695.47 3.97

EC 96 95 97 97 96 96 93 32,070 147.2

SVM Log energy entropy 99 99 99 99 99 99 99 42,483.20 26.64

KNN 99 98 99 99 99 99 98 1,096.95 57.44

QDA 97 94 100 100 95 97 94 133,697.57 1.78

EC 99 98 98 99 99 99 98 204.5921 388.2029

SVM Kurtosis 73 70 76 70 76 70 46 43,297.83 52.54

KNN 67 67 67 52 79 59 33 6,695.99 11.71

QDA 51 48 89 98 13 64 20 162,253.80 1.56

EC 74 68 81 80 69 73 49 16,782.5 423.9

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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parameters. Also, the training duration plus prediction speed were satisfactory. The ROC
curves are displayed in Fig. S12 to help identify the best classification algorithm.

When employing the stretched signals as a dataset for feature extraction approaches,
Table S13 displays the confusion matrices for each classifier. Using the LogEn functionality
with the band-pass filter allowed all the Stretch approach’s results to function flawlessly. In
addition, Table 16 shows the measured parameters and shows 99% for all classifiers. In
terms of prediction speed, the EC classifier has excellent accuracy. Impressively, the
algorithm’s stability and dependability were demonstrated effectively with prediction
speed. Moreover, Fig. S13 illustrates the ROC obtained stretch method.

The confusion matrices computed for the datasets consisting of reduced features, are
displayed in Tables S14 and S15, respectively. Compared to the findings utilizing 19
electrodes, Tables 17 and 18 demonstrate the classifiers’ capacity to classify with fewer
features since the former’s results were superior and close to the results when 19 electrodes
were used. Finally, Figs. S14 and S15 show the ROC for the last scenario.

Table 10 Two-second epoch size classification performance results with SNR for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 96 95 96 95 96 95 91 26,290.9 90.2

KNN 94 95 93 92 96 93 88 954.8 334.4

QDA 94 93 95 95 94 94 89 78,916.6 7.8

EC 96 96 97 96 96 96 93 102.5 1,194.1

SVM ApEn 74 73 75 69 79 71 48 5,980.7 207.9

KNN 73 71 74 67 77 69 45 6,348.8 284.6

QDA 64 70 62 35 88 47 28 189,720.1 1.1

EC 72 69 74 68 75 69 43 503.7 658.7

SVM ApEn + Bandpass 78 74 81 79 77 76 56 2,919.6 243.5

KNN 74 67 84 85 65 75 51 1,017.8 347.5

QDA 70 62 84 87 56 72 45 51,116 8.3

EC 75 68 83 83 68 75 52 104.9 1,194

SVM Shannon entropy + Bandpass 91 86 96 95 87 90 82 8,940 120.2

KNN 96 96 96 96 96 96 92 2,208.3 543.3

QDA 71 61 96 97 49 75 52 39,289.4 16.8

EC 99 99 99 99 99 99 98 16,290.4 2,479.8

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 99 44,797 41.8

KNN 99 99 99 99 99 99 99 1,585.7 95.5

QDA 99 99 99 99 99 99 99 39,550.8 13.3

EC 99 99 99 99 99 99 99 63.9 1,408

SVM Kurtosis + Bandpass 69 65 71 66 71 65 37 1,616.7 447.4

KNN 61 62 61 38 80 47 21 836.8 5,14.4

QDA 58 67 57 14 94 24 15 57,521.9 7.9

EC 66 60 73 72 61 66 34 13,041.8 1,274.7

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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Accordingly, and for more investigation of the classifier’s ability and to make sure from
the evaluation, we used the error bar to illustrate data variability because when you have
small data, the range of errors expands. The variability or uncertainty of the outcome
values can be known through error bars, with the standard deviation, standard error, and
confidence interval error. How standard deviations describe the data you gathered changes
from one measurement to the next. On the other hand, standard errors indicate how much
the mean result may vary if the entire experiment were redone. Error bars create lines with
bar charts extending from the edge or the center of the displayed data point. The length of
an error bar aids in revealing the degree of uncertainty surrounding a data point. While a
big error bar would suggest that the values are more dispersed and less dependable, a small
error bar indicates that the data are concentrated, indicating that the plotted averaged
value is more likely. We measured the error bars for all cases (standard, stretch, SNR,
MRMR features reduction) that were used in this study. In Fig. 3, for the first case in which

Table 11 Two-second epoch size classification performance results with stretch for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 96 95 96 95 96 95 92 25,162.8 100.8

KNN 94 93 94 93 94 93 88 587.3 527.9

QDA 92 90 94 92 91 91 84 60,337.6 12.6

ENS 95 95 96 95 95 95 91 83.3 1,445

SVM ApEn 95 95 95 95 96 95 91 9,231.9 179.3

KNN 94 95 94 93 96 94 89 2,597.8 477.8

QDA 87 86 87 85 88 85 74 403,344.1 2.2

ENS 95 94 96 95 95 95 90 912.2 701

SVM ApEn + Bandpass 83 78 88 86 81 82 67 4,478.3 244.4

KNN 76 68 85 84 69 75 53 637.2 684.1

QDA 73 62 96 97 55 75 55 60,083.6 23.3

ENS 82 73 94 94 74 82 68 79 1,641.1

SVM Shannon entropy + Bandpass 88 82 95 95 82 88 77 7,891.3 289.2

KNN 94 93 95 94 94 93 88 1,793.6 792.1

QDA 67 58 96 97 41 72 46 40,134.3 19.2

ENS 97 97 98 98 97 97 95 21,243.5 1,947.5

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 99 52,458.3 76.7

KNN 99 99 99 99 99 99 98 2,132.5 190.5

QDA 97 95 99 99 96 97 95 36,103.9 16

ENS 99 99 99 99 99 99 99 53.5 1,976.8

SVM Kurtosis + Bandpass 73 69 78 75 72 72 47 2,777 554.3

KNN 68 66 69 60 74 63 35 1,378.5 775.1

QDA 50 47 85 97 12 64 17 38,185.8 41.2

ENS 75 66 88 90 63 76 54 44,475.1 1,295.8

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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the data used was standard data, the error bars are relatively small if the window size is 2 s
compared to the window size of 1 and 3 s, indicating low variance.

The error bars in Fig. 4, for the second scenario in which the SNR method was used, the
error rate is greater than the first case in all cases, and this indicates that when using this
technique (SNR), the error rate will be greater.

While the third case is when using a stretch dataset, Fig. 5 shows the three windows used
(1, 2, and 5), where the error rate was varied in the window of 1 and 2 s, but the difference
is very clear when the window was 5 s in size.

In the last case, when using the MRMR method, the results were close in both cases,
especially in one and two window sizes Epoch, counter to the five the difference was clear.
Figures 6 and 7 indicate that in the case of five features, the possibility of obtaining good
results while reducing the impact and thus enabling greater consistency in outcomes
between several windows. In general, the results obtained were promising and indicate that
it is possible to classify schizophrenia even in the case of reduced features.

Table 12 Two-second epoch size classification performance results with five electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 91 88 93 90.6 91.5 89.5 81.9 11,392.9 167.3

KNN 90 87.7 92 90 89.9 89 80 2,048.9 231

QDA 79.6 73.5 85.8 84 75.8 78.5 59.7 164,357 455.9

ENS 91.6 98 57 92.6 84 95 65 255.9 470.8

SVM ApEn 83 82 84 80 85 81.5 66 11,987 60.9

KNN 82.5 82.8 82 84 80.9 83 65 43,994 123.9

QDA 66 58 78 79.5 56 67 36 173,921 19.1

ENS 81.5 82 80 80 82 81 63 13,999.2 161.9

SVM ApEn + Bandpass 82.6 83.5 81.8 81 84 82 65 12,963.1 109.5

KNN 72.9 64.8 88.9 92 56 76 50.9 5,106.3 166.1

QDA 72.9 61.6 94.5 95.5 56 74.9 54 254,110.8 2.1

ENS 80.9 74.5 91 92.9 69.5 82.7 64 348 423.7

SVM Shannon entropy + Bandpass 72 63 89.5 91.7 56.9 74.7 50.6 26,567.5 269

KNN 93.8 93 94 94.7 92.9 94 87.7 8,410.3 299.1

QDA 58.9 61.6 53.5 72.6 41 66.6 14 155,539 2

ENS 97 98 95.9 96 97.9 97 94 26,718.3 569.9

SVM Log energy entropy + Bandpass 98.6 98 99 99 98 98.6 97 104,827.1 98

KNN 98 97.9 98 98 98 98 96 7,180.3 107.2

QDA 94.8 96 93 93 96 94.7 89.6 159,914.8 17.8

ENS 98.7 99 98 98 99 98.5 97 195.5 488.7

SVM Kurtosis + Bandpass 70 67.6 73 71.8 69 69.6 41 8,970.6 149.1

KNN 62 59 90 98 20 74 30 624,973 209.8

QDA 50.7 48 61 85.5 20 61.8 7 162,115 2.2

ENS 72 62.5 83 81 65.5 70.7 46 15,123 631.3

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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According to the findings obtained from the entropy attribute, the best explanatory
electrodes were found to be concentrated in the frontal, central, and parietal areas. The
frequency of the occipital entropy was distributed among the theta and beta bands while
frontal entropy was observed in beta and gamma bands. Frontal gamma band power was
shown to be a discriminator between SZ and healthy groups byMitra et al. (2015). On the
other hand, resting state theta band power was shown to increase in SZ patients (Iglesias-
Tejedor et al., 2022). The literature findings of the resting state EEG of the SZ patients
mostly overlap with the reduced features that we obtained. Thus, it seems as a promising
approach to reduce the features to be used in the classification of SZ from healthy group.
On the other hand, alpha band entropy of the parietal electrode was one of the main
features that discriminates the resting state EEG of SZ group from healthy ones.

From the three scenarios above, it can be observed that the window size significantly
influences the accuracy values since when the epoch was 1-s in size, accuracy was at its best

Table 13 Two-second epoch size classification performance results with eight electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 94.9 93.5 96 95 94.7 94 89.7 32,176.5 98

KNN 93.6 93.5 93.7 94 93 93.8 87 1,167.8 271.9

QDA 87.5 83 91 89.8 85.6 86 75 105,423.2 1.5

ENS 95.8 95 96.6 96.6 95 95.8 91.7 110.9 920.7

SVM ApEn 90 92 88.7 90.9 90.8 91.7 81.5 7,690 188.1

KNN 90.6 91.8 88.5 93 86.8 92 80 14,108 205

QDA 77.7 81 72 81 72 81 53.7 112,851 16.3

ENS 88.8 88 89 89 88 88.8 77.7 17,121 231.5

SVM ApEn + Bandpass 81.6 76 89 90.9 72.6 82.9 64.5 131 182,345

KNN 75.5 63 90 88.7 67 73.8 54.6 2,849.8 175

QDA 74 96.6 67 47 98.5 63.5 54 141,822.1 2

ENS 82.7 79 84.6 74 88 76.7 63 130 673.8

SVM Shannon entropy + Bandpass 82.9 74 94 94 73.7 83 68 112.5 219,342

KNN 96.9 96 97.6 97.6 96 96.9 93.9 7,342.2 241

QDA 72 60.5 97 97.7 53.7 74.7 54 96,512.3 13

ENS 97.6 95.9 99 99 96 97.6 95 349 1,023.9

SVM Log energy entropy + Bandpass 98.7 99 98 98 99 98.7 97.5 82,751.2 32

KNN 98.8 98.9 98.7 99 98 99 97.5 6,789.7 58.1

QDA 97.7 97 98 98.7 96 98 95 98,451.8 2

ENS 98.9 99 98.9 99 98 99 97.8 147.4 644

SVM Kurtosis + Bandpass 70 63 78.8 79.5 62 70 41.9 5,999 171.7

KNN 63.5 61 65.9 64 62.8 62.7 27 5,055.7 254.3

QDA 51.5 47 89.5 97.6 15.5 63.9 22 74,523 14.9

ENS 73.9 68 80 80.5 68 74 48.7 15,521.6 709.9

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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and fell as the epoch size gradually increased or decreased. The second significant result
was the evaluation metrics related to window epoch size that got the best accuracy.

Finally, visual assessment assists physicians in the identification of the signal of the
disorder and its location in the brain. The power spectrum density can illustrate the
difference between the signals of a patient suffering from schizophrenia compared to the
signals of a healthy one. The healthy signals will appear homogeneous and constant,
whereas the subject signals exhibit inconsistencies and odd rhythms.

DISCUSSION
For a long time, it was believed that schizophrenia affected both sexes equally often.
However, according to more current evidence, males are more likely than women to suffer
from schizophrenia (González-Rodríguez et al., 2023). The way that diseases progress
depending on a person’s gender is becoming more and more recognized in medicine. Men
typically experience the early signs of schizophrenia before women do. It is well known

Table 14 Five-second epoch size classification performance results of four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 95 95 96 95 96 95 91 62,512.1 5.5

KNN 92 92 93 91 93 92 85 2,861.3 10.7

QDA 93 91 95 94 92 92 86 111,541.6 1.8

EC 95 93 96 95 94 94 90 316.7 89.5

SVM ApEn 78 71 91 92 66 80 60 9,289.1 8.5

KNN 72 63 90 93 52 75 49 2,418.4 9

QDA 73 64 95 97 53 77 54 56,887.9 1.5

EC 83 79 86 83 83 81 65 1,293.9 18.6

SVM ApEn + Band-pass 85 82 87 84 85 83 69 73,877.4 31.7

KNN 84 84 83 77 89 80 66 9,025 9.4

QDA 77 67 90 90 67 77 57 43,113 3.9

EC 77 70 89 91 65 79 58 16,629.5 53.9

SVM Shannon entropy 85 89 83 77 92 83 70 56,088.3 138.8

KNN 89 86 93 91 88 89 79 2,021.8 16.1

QDA 71 62 94 96 51 75 52 48,728.9 4.1

EC 96 95 97 97 96 96 93 16,963.8 58.1

SVM Log energy entropy 99 99 99 99 99 99 98 75,324.9 2.7

KNN 99 98 99 99 98 98 97 3,365.5 8.6

QDA 98 95 100 100 96 98 95 120,410.5 1.3

EC 98 98 99 99 98 98 97 16,881.6 59.6

SVM Kurtosis 70 65 80 71 76 68 46 22,516.1 10.4

KNN 69 63 74 73 65 68 38 10,477.2 6.3

QDA 54 49 89 97 18 66 25 145,563.7 1.7

EC 69 63 78 79 62 70 41 17,675.1 64.7

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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that there are gender variations in schizophrenia, which are said to have an impact on
several areas, such as symptom profiles, illness progression, and disease start (Ayesa-
Arriola et al., 2020).

The age range when it occurs most frequently in men is 18 to 25, but for women, it
happens around 4 years later (Gogos et al., 2019; Zorkina et al., 2021). As well, during
menopause, women again face a second wave of disease (Barker & Vigod, 2023).
Schizophrenia progresses more severely in men (Esposito et al., 2024). Although gender
differences in schizophrenia are usually noted after diagnosis, a recent review indicates that
they may exist before clinically detectable symptoms appear, with men showing worse
premorbid functioning than women, such as more social disengagement, isolation, and
inadequate self-care (Hoffman et al., 2022).

Apart from the gender disparities in social and behavioral areas, males are more likely
than women to exhibit anomalies in brain morphology when diagnosed with
schizophrenia. Gross anatomical examinations, for instance, reveal more severe frontal

Table 15 Five-second epoch size classification performance results of four classifiers with SNR augmented method.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 94 94 94 93 95 93 94 23,731 22.3

KNN 92 93 92 89 95 91 92 1,892.1 100.4

QDA 93 92 94 93 93 92 93 42,874.9 2.1

EC 95 95 95 94 96 95 95 260.7 271.8

SVM ApEn 91 91 91 89 92 90 82 27,528.2 20.6

KNN 90 90 91 89 92 89 81 8,871.1 59.7

QDA 77 83 74 63 89 72 56 156,474.5 0.76

EC 92 90 93 92 92 91 84 1,746.3 96.4

SVM ApEn + Bandpass 87 85 88 85 88 85 74 22,700.2 22.7

KNN 83 81 85 82 84 82 67 2,428.7 48.6

QDA 79 72 87 87 72 79 60 58,816.2 2.5

EC 88 84 92 91 86 88 77 234 243.1

SVM Shannon entropy + Bandpass 91 86 96 96 87 90 82 22,872.7 18.3

KNN 97 97 97 96 98 97 95 7,718.8 56.5

QDA 75 65 95 96 58 78 58 36,348.4 1.7

EC 99 99 99 99 99 99 98 16,828.4 283.8

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 99 49,353.9 13.7

KNN 99 99 99 99 99 99 99 5,558.3 34.2

QDA 99 99 100 100 99 99 99 50,101.1 2.2

EC 99 99 99 99 99 99 99 272.2 185.6

SVM Kurtosis + Bandpass 71 68 74 68 74 68 42 20,627.9 43.2

KNN 64 60 66 57 69 59 27 1,905.3 71.1

QDA 59 59 60 35 79 44 17 49,366.9 2.6

EC 72 66 77 76 68 71 44 12,206.5 343.2

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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and temporal lobe atrophy in men and larger ventricular enlargement (Petric et al., 2024).
Moreover, males have more anomalies in the microstructure of white matter (Chatterjee
et al., 2020).

SZ comprises disorders with somewhat overlapping brain correlates and
phenomenology (Nagy et al., 2023). Moreover, SZ appears to result from intricate
interactions between endogenous and exogenous variables that influence
neurodevelopment. Schizophrenia and other psychotic diseases are characterized by five
essential characteristics. Delusions, hallucinations, wildly chaotic or aberrant motor action,
disorganized thought processes (inferred from speech) (Baandrup, 2020). Treating SCZ at
its earliest stage may assist in slowing down the disease’s course.

Many articles have been published aimed at classifying schizophrenia diseases using
different types of techniques such as MRI (Tyagi, Singh & Gore, 2022), genetics (DNA) (Yu
et al., 2022), eye tracking (Lim, Mountstephens & Teo, 2022), facial features (Rahman et al.,
2021, Wang & Wang, 2021), tracking handwriting (Rashid et al., 2020), speech (Lopez-

Table 16 Five-second epoch size classification performance results of four classifiers with stretch signals.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 94 94 95 93 95 94 89 21,108.7 28.4

KNN 92 94 90 88 95 91 84 2,407.5 67.4

QDA 92 91 93 92 93 92 85 69,198.1 2.2

EC 94 94 94 92 95 93 88 212.1 263.9

SVM ApEn 94 94 95 94 95 94 89 193,844.3 282.6

KNN 95 95 95 93 96 94 90 7,429.2 56.2

QDA 88 87 89 87 89 87 76 234,666.4 0.8

EC 96 95 96 95 96 95 92 992.4 107.1

SVM ApEn + Bandpass 92 89 93 92 91 91 84 21,119.6 24.7

KNN 89 85 93 92 86 88 79 1,420.4 81.8

QDA 80 71 94 95 68 81 64 60,932.5 2.5

EC 94 91 97 96 92 93 88 237.4 234.5

SVM Shannon entropy + Bandpass 90 85 96 95 86 90 81 29,809 21.3

KNN 96 96 96 95 96 96 92 7,885 63.8

QDA 73 63 95 96 53 76 54 79,655.8 1.5

EC 98 97 98 97 98 97 96 27,852.6 357.2

SVM Log energy entropy + Bandpass 99 99 99 99 99 99 99 39,936.6 26.3

KNN 99 99 99 99 99 99 99 5,976.8 37.3

QDA 99 98 99 99 99 99 98 61,461.4 2.5

EC 99 99 99 99 99 99 99 177.3 279.8

SVM Kurtosis + Bandpass 74 70 79 76 73 73 49 19,357.3 58.2

KNN 67 67 67 55 78 60 34 4,651.1 77.7

QDA 55 50 83 94 23 65 24 70,696.9 2.1

EC 78 72 86 86 72 78 59 11,186.7 375

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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Bernal et al., 2022), and schizophrenia EEG signal (Krishnan et al., 2020). The last one is
the technique used to classify schizophrenia. Since EEG signals are complicated nonlinear
dynamic signals, it might be difficult to isolate their constituent parts precisely. In our
study, we confirmed the concordance of brain states within different diagnostic features
and across three different window sizes, which is a crucial step in linking brain states and
capturing the differences inside functional brain activities.

This section summarizes and discusses various work scenarios that have been done and
compares article results for classifying schizophrenic patients and healthy controls using
the same dataset and different datasets. Also, this part compares state-of-the-art
automated identification methods for SZ EEG data. Table 19 shows the most researchers
use a single dataset to classify EEG signals with SZ, as well as present a comparison of
article results classifying schizophrenic patients and healthy controls using different
datasets using different machine-learning techniques for EEG signals. Selection feature
extraction playing an essential role in improving classification accuracy, we proposed a

Table 17 Five-second epoch size classification performance results with five electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 88.6 84.8 92 91 86 87.9 77 36,398.2 19.5

KNN 90 90 91 91 90.6 90.7 81.6 8,167.8 28.1

QDA 82 82 81.9 85.7 78 84 64 101,433 1.4

ENS 90.8 87 92.8 87.9 92.5 87.6 80 505.7 98.2

SVM ApEn 85.8 85.5 86 89.9 80.6 87.6 71 36,288 25.4

KNN 84.8 83.7 85.7 82 86.8 83 69 42,568 28.1

QDA 65 67.7 64 46.9 80.8 55 29 89,231.5 12.9

ENS 80.6 72 86 77 82.5 74.8 59 12,184.2 44

SVM ApEn + Bandpass 87 87.9 85.8 91 79.9 89.8 72.7 69,544.4 21.9

KNN 82.9 81.5 84 82 83.6 81.8 65.8 7,745.6 29.9

QDA 70.9 69 83 96 29.9 80 37 64,465 1.5

ENS 87.8 83.7 92 91 84.7 87 75.9 598.8 92

SVM Shannon entropy + Bandpass 76.9 71.8 89 94 57 81 55.9 26,398 61.9

KNN 95 93 97 97 93 95 90 14,132.5 68.3

QDA 72 68.7 79 86.9 55.8 76.7 45 81,321.1 2.1

ENS 97.8 98 97 98 96.5 98 95 15,212.6 139.3

SVM Log energy entropy + Bandpass 98.6 98 99 99 98 98.6 97 91,126.7 9.1

KNN 97.8 96 99 99 96 97.7 95.6 15,123 12.9

QDA 91.7 86 98 98 85 91.9 84 183,989 1.1

ENS 98.9 99 98.9 98.8 99 98.9 97.9 456.5 92.9

SVM Kurtosis + Bandpass 71 58.6 83 76 68.6 66 43 39,912.3 430

KNN 65 59.9 71 70.9 60 64.9 31 9,169.5 50.8

QDA 57.9 55 67.7 85 30 66.9 19 83,304 2.2

ENS 73 66.6 80 81 66 73 47.5 11,659.1 166.9

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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method that combined the most important feature methods with a bandpass filter. That’s
why our results outperformed other researchers and they could not get higher results even
when using a bandpass filter. Using a bandpass filter in combination with various
preprocessing approaches, the methods by Kim, Lee & Lee (2020), Azizi, Hier & Wunsch
(2021), Kim et al. (2021), Keihani et al. (2022), fall short of achieving the remarkable
accuracy seen by Najafzadeh et al. (2021), Aydemir et al. (2022), Agarwal & Singhal (2023).

Next, Table 20 displays the outcomes of the articles that classified schizophrenia
disorder using the same dataset. Various factors affected the final results of classification,
such as the number of electrodes, size of the sample rate, number of subjects, and many
others. Thus, the results we observed in this research related to the features and
characteristics that were used and to the normalization techniques that were applied to the
extracted features. Based on our results, our proposed technique can classify healthy and
schizophrenic subjects and show clear differences in their brain activity based on power

Table 18 Five-second epoch size classification performance results with eight electrodes for four classifiers.

CT FE Evaluation metrics

Acc Sen Spe Pre NPV F1-score MCC Prediction speed (sec) Training time (sec)

SVM FFT 92.5 94 90.8 91 93.7 92.7 85 26,322.1 17

KNN 93 92.8 93 91.9 93.9 92 85.9 5,121.8 27

QDA 88.7 90.8 86.7 86.5 90.9 88.6 77.5 52,143.1 2.9

ENS 94.8 94.6 95 92.6 96 93.6 89 404 129

SVM ApEn 93.5 93.5 93.5 91.6 95 92.5 86.8 42,561.7 28

KNN 93 94 92 92.8 93.8 93.6 86.6 28,679 19

QDA 78.8 86 71.7 74.6 84.5 80 58.5 69,534.8 14.9

ENS 90.8 91 90.6 94.5 85 92.7 80.5 6,980.3 35.5

SVM ApEn + Bandpass 90 89 91 90.8 89.5 89.9 80 43,616.2 13.3

KNN 87 83 91 91 83.6 87 74.6 5,761.7 28.2

QDA 75.8 63 95 95 62.6 76 58 15,432.8 1

ENS 92.8 90 95.6 96 89 93 85.7 533.1 110.6

SVM Shannon entropy + Bandpass 82.8 74 93.6 93.5 74.5 82.7 67.9 45,943.2 27.3

KNN 96.9 95 98 97.9 96 96.5 93.7 13,144.9 48.2

QDA 69 60 94 96.9 45 74 47.8 119,905 0.7

ENS 97 97.6 97 96 98 97 94.6 26,179.5 138

SVM Log energy entropy + Bandpass 98.5 97.6 99 99 98 98 97 105,432 4

KNN 98.9 98.6 99 99 98.6 98.9 97.9 137,432.5 5

QDA 98.9 99 98.5 98.8 99 99 97.9 90,543.9 1

ENS 98.8 98 99 99 98 98.7 97.7 421 94

SVM Kurtosis + Bandpass 73.7 72 75.8 80.6 66 76 47 19,697 91.9

KNN 69 64.6 72.9 66.8 70.9 65.7 37.7 8,813.4 40

QDA 55 49 76 87.7 30 62.9 21 74,699.9 1

ENS 77 65 87.5 82 74 72.6 54 13,087 159

Note:
Where Classifier Types (CT), Feature Extraction (FE), Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre).
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spectrum and topography images. Thus, our method showed outperformance when
compared to these articles.

For time-series datasets, the augmentation includes techniques such as generating data,
shuffling features, time warping, and adding white Gaussian noise to signal (SNR) to the
original dataset. Among these, we used two different techniques: the SNR and the stretch

Figure 3 The mean error bars for the accuracy of the classification SZ using three Epoch window sizes with four classifiers based on standard
dataset. Full-size DOI: 10.7717/peerj-cs.2170/fig-3

Figure 4 The mean error bars for the accuracy of the classification SZ using three Epoch window sizes with four classifiers based on the SNR
dataset. Full-size DOI: 10.7717/peerj-cs.2170/fig-4

Figure 5 The mean error bars for the accuracy of the classification SZ using three Epoch window sizes with four classifiers based on the stretch
dataset. Full-size DOI: 10.7717/peerj-cs.2170/fig-5
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method to increase sample size which finally led to improving training and testing
classifiers. Then, a bandpass filter was applied to the augmented data and the sub-bands
were used as input to feature extraction to obtain the hidden information between the
signals to prepare it as input to the classifiers.

For the augmentation approach, first, according to which was calculated using the
LogEn method with the four classifiers, and the results for the performance showed that
LogEn outperformed the other feature indices with higher computational efficiency.
Second, in terms of accuracy, the results were obtained by using the stretch method and the
Log Energy Entropy features with all classifiers, ranged between 96 to 99, which is the
highest results obtained. FFT was second in terms of accuracy, and SVM obtained the
highest accuracy of 97%, while the lowest accuracy obtained by using QDA was 92%. For
the rest classifiers, the results ranged from 92% to 96%, which is relatively close to the first
method. The rest of the classifiers, the results obtained in all criteria were acceptable. From
the affirmative results, we concluded the window size that obtained the highest results was
1 s.

The final implementation was to use f the MRMR features selection methods by
selection (the eight and five best features). The highest results were also for the log energy

Figure 6 The mean error bars for the accuracy of the classification SZ using three Epoch window sizes with four classifiers based on the five
electrodes dataset. Full-size DOI: 10.7717/peerj-cs.2170/fig-6

Figure 7 The mean error bars for the accuracy of the classification SZ using three epoch window sizes with four classifiers based on the eight
electrodes dataset. Full-size DOI: 10.7717/peerj-cs.2170/fig-7
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Table 19 Comparison of the sensitivity (Sen)/specificity (Spec)/ accuracy (Acc) values as a result of our proposed method with articles using
various datasets.

Study Year Electrodes no. Classes Dataset Applied algorithms Acc% Spec Sen

Patients Control

de Miras et al. (2023) 2023 31 2 9♂, 20♀ 13♂, 7♀ SVM 89 90 63

Zhang (2019) 2019 64 2 49 32 RF 81 NA NA

Li et al. (2019) 2019 16 2 37♂, 10♀ 14♂, 11♀ SVM 90.48 91.30 89.47

Winterburn et al. (2019) 2019 NA 2 31♂, 19♀ 32♂, 18♀ Non-linear SVM 73.5 56.3 62.5

2020 8 2 48 24 RF 68 NA NA

2022 NA 2 158 76 Ensemble 87 65 98

2022 64 2 41♂, 8♀ 67♂, 14♀ HDSS 92.93 91.06 97.15

Baradits, Bitter & Czobor (2020) 2020 256 2 33♂, 37♀ 47♂, 28♀ SVM 82.7 81.43 82.67

2023 32 2 310 205 XGB 94 NA NA

Zandbagleh et al. (2022) 2022 64 2 13 11 SVM 89.21 90.3 88.2

Ciprian et al. (2021) 2021 20 2 37♂, 25♀ 38♂, 32♀ KNN 96.92 98.57 95

Phang et al. (2019b) 2019 16 2 45 39 MDC-CNN 93.06 93.33 93.33

Sun et al. (2021) 2021 64 2 36♂, 18♀ 31♂, 24♀ Hybrid DNN 99.22 NA NA

Guo et al. (2021) 2021 64 2 49 32 CNN 92 NA NA

Bretones et al. (2023) 2023 32 2 215♂, 97♀ 176♂, 144♀ RBF 93.40 NA NA

Present 2024 19 2 7♂, 7♀ 7♂, 7♀ SVM 99.9 99.9 99.9

Table 20 Comparison of the sensitivity (Sen)/specificity (Spec)/ accuracy (Acc) values as a result of our proposed method with articles using
the same datasets.

Study Year Electrodes no. Classes Dataset Applied algorithms Acc% Spec% Sen%

Patients Control

Akbari et al. (2021) 2021 19 2 7♂, 7♀ 7♂, 7♀ KNN 94.8 95.2 94.3

Jahmunah et al. (2019) 2019 SVM 92.91 NA NA

Prabhakar, Rajaguru & Lee (2020) 2020 AdaBoost 98.77 NA NA

Shalbaf, Bagherzadeh & Maghsoudi (2020) 2020 SVM 98.60 96.92 99.65

Oh et al. (2019) 2019 SoftMax 98.07 98.17 97.32

Shoeibi et al. (2021) 2021 Sigmoid 99.25 NA NA

Aslan & Akin (2020) 2022 SoftMax 99.5 NA NA

Das & Pachori (2021) 2021 SVM 98.9 98.8 99.1

Krishnan et al. (2020) 2020 SVM 93 93.33 98

Buettner et al. (2020) 2020 Random forest 96.77 NA NA

Chandran, Sreekumar & Subha (2021) 2021 SVM 99 NA 99

Racz et al. (2020) 2020 Random forest 89.29 NA NA

Sharma & Acharya (2021) 2021 KNN 97.20 98.06 96.49

Bagherzadeh, Shahabi & Shalbaf (2022) 2022 Boosted Trees 96.26 97.02 95.48

Hassan, Hussain & Qaisar (2023) 2023 LR 98 97 99

Gosala et al. (2023) 2023 DT 97.98 97.72 98.2

Kumar et al. (2023) 2023 AdaBoost 99.36 100 98.8

Agarwal & Singhal (2023) 2023 BT 96.12 96.99 95.20

Ours 2024 SVM 99.9 99.9 99.9
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entropy in both cases (five and eight features). The results ranged from 97.9 to 98.9 in all
epoch sizes for the classifiers (SVM, KNN, EC) in the case of eight-features in all window
sizes except the classifier QDA, the accuracy results obtained ranged from 94.8% to 98.9%.
Next, the five-features results were less when using eight-features, as observed in window
length 1 s. The results were 1% smaller in the classifiers (SVM, KNN). For the rest of the
classifiers, the results were the same. It is noted that the results obtained using FFT in both
cases (five- features and eight- features) were relatively close, as the difference was slight at
3% in Window lengths 1 and 2 s, while when using window length 5 s the ratio difference
was 4%. For the rest of the features and classifiers used, the results are lower than those
mentioned above. It is very noticeable that the best result was obtained by using window
5 s when dealing with the eight features, and this indicates the possibility of reducing the
features to a certain percentage without affecting the accuracy considerably.

Noteworthy, in a recent study, by Haider et al. (2024), applied the same dataset used
with the electrode reduction method (6-electrode) which in turn led to features reduction
also, they used the penalized sequential dictionary learning (PSDL) technique to classify
the SZ subjects and achieved 89.12%. Interestingly, our results indicated that our MRMR
features selection methods (five and eight features) have captured important information
that is captured by the three used epochs, yielding higher overall accuracy rates. Eventually,
the abovementioned results, the LogEn features calculated with SVM ns EC classifiers
recorded as the best method for classifying schizophrenic patients. This indicates that the
proposed method was better according to all the criteria by which it was measured.

The proposed SVM in high-dimensional spaces is very effective, and for the function of
decision, it uses a subset of training points, which makes it efficient in memory. In contrast,
the LogEn technique gives the most accurate characteristics for EEG classification with an
absolute error as low as 0.01. LogEn values are signal features that characterize the degree
of EEG complexity. Moreover, LogEn determines the optimum number of hidden neurons
in hidden layers. LogEn allows us to identify seizure activity from seizure-free epileptic
activity with excellent accuracy, even with few characteristics. Therefore, combining SVM
and LogEn could be a reason for significant performance improvement. The results show
that classifiers alone are unsuccessful at recognizing SZ. However, integrating SVM and log
energy entropy features dramatically enhanced SZ detection performance. As shown in
Table 11, our proposed architecture has maximum classification accuracy when LogEn
values are used as features.

Our method can support the clinical auxiliary diagnosis by quick diagnosis: by
examining EEG rhythms, which could point to abnormalities connected to the disorder,
such methods may aid in confirming the diagnosis of schizophrenia with higher accuracy.
A Scientific Study: gaining insight into the neurological basis of schizophrenia aids current
scientific endeavors. Physicians may discover more about the processes behind the illness
and recognize brainwaves. Due to the high accuracy achieved, it is possible to integrate this
method into a decision support system that will have a minimum error rate.

In this study, some limitations are listed below.
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1) The data set is open access instead of a collected private dataset or one gained from
cohort studies. Even though the number of subjects was low, we used the epoching
approach that enabled us to increase the size of the input data for machine learning.

2) The dataset in this article aimed to identify the condition rather than to assess its degree
of severity. Thus, it does not provide the stage of schizophrenia (prodromal, active, and
residual).

CONCLUSION
A person’s life and behavior are affected according to the changing electrical activity of the
brain, which the EEG can observe. It may be claimed that a healthy brain functions more
actively than a brain affected by schizophrenia.

In this study, we proposed a method to classify schizophrenia based on using an EEG
signal dataset that contains 28 subjects: 14 suffering from schizophrenia and 14 healthy
controls. Due to the variations of the EEG signal, we applied a band-pass filler to
decompose the EEG signal into five sub-bands. Next, we implemented six feature
extraction methodologies, we applied the first four (ApEn, LogEn, ShnEn, and kurtosis) to
the band-pass filter, and then we used FFT and ApEn again without band-pass filters to
compare the impact of the filter on the results.

Normalization was used for all features deduced to be on the same scale using the L2
normalization technique. Consequently, we fed the features to the SVM, EC, KNN, and
QDA classifiers. We implemented these classifiers using three window sizes (1, 2, and 5 s).
Based on the obtained results, we can see a significant variation in the features of EEG
signals between healthy subjects and schizophrenia patients, as presented in the tables
above. Since, there are many factors affect why the LogEn achieved the most beneficial
feature results, which are: 1) Dimensional reduction: by applying the energy logarithm of
the EEG signal and then computing the Entropy, this reduces the features space, which is
reflected in subsequent efficient computation. 2) artifact elimination: the logarithm aids in
eliminating the noise in the signals by emphasizing the magnitude of EEG signals. 3)
Sensitivity of the features: it can sense the distribution frequency bands, which is very
valuable with EEG signals, due to using a bandpass filter to divide the signal into sub-bands
(delta, theta, alpha, beta, and gamma). 4) Non-linear Dynamics: normally, EEG signals are
non-linear and complex; thus, the LogEn deals with the signals dynamically due to its
ability to capture features from signals with complexity and irregularity. Furthermore, the
LogEn strength is the ability of the probability distribution, which calculates the power
spectral density. Then the calculated values are normalized to the total signal energy, and
the captured values are used as probabilities. In our study, LogEn allows us to identify SZ
with excellent accuracy, even with few characteristics. The LogEn technique gives the most
accurate characteristics for EEG classification with a minimum error as low as 0.01. From
all classifiers, integrating SVM and EC with LogEn was the most effective with high-
dimensional spaces, and for the function of decision, which makes it efficient in memory.
Thus, the highest results were achieved using features extracted by LogEn with SVM and
EC classifiers.
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Based on the results obtained in this study, we conclude:

1) Using these feature extraction methods with this type of signal can reach high results.

2) Window epoch sizes could enhance classification precision.

3) The outcomes fluctuate depending on the window size. As a result, the signal
decomposition window-size epoch is important for identifying tiny changes in the EEG
recording.

For future work, we will apply wavelet transform to convert the signal to time-frequency
images and then apply these images to deep convolutional neural networks.
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